

研究报告

Research Articles

染色体 DNA 琼脂糖包埋法辅助的 ExoCET 技术克隆 放线菌天然产物生物合成基因簇

马婧贤^{1,2}, 韩舒婷^{1,2}, 盛勇^{1,2}, 王珩瑜^{1,2}, 邢利³, 罗晓霞³, 白林泉^{1,2}, 康前进^{1,2*}, 邓子新^{1,2}, 欧一新^{1,2*}

1 上海交通大学生命科学技术学院, 微生物代谢国家重点实验室, 上海 200240

2 上海交通大学代谢与发育国际联合合作实验室,上海 200240

3 塔里木大学生命科学学院,新疆 阿拉尔 843300

马婧贤,韩舒婷,盛勇,王珩瑜,邢利,罗晓霞,白林泉,康前进,邓子新,欧一新.染色体 DNA 琼脂糖包埋法辅助的 ExoCET 技术克隆放线菌天然产物生物合成基因簇. 微生物学报, 2022, 62(12): 4964-4980.

Ma Jingxian, Han Shuting, Sheng Yong, Wang Hengyu, Xing Li, Luo Xiaoxia, Bai Linquan, Kang Qianjin, Deng Zixin, Ou Yixin. Agarose-embedded chromosomal DNA combines with ExoCET technology to capture the biosynthetic gene clusters of natural products in *Actinobacteria*. *Acta Microbiologica Sinica*, 2022, 62(12): 4964–4980.

摘 要:【目的】本研究旨在通过将琼脂糖包埋染色体 DNA 的方法与 ExoCET 重组技术相结合, 建立放线菌天然产物生物合成基因簇的捕获方法。然后将克隆基因簇导入通用底盘宿主中,实现 目标生物合成基因簇的异源表达。【方法】首先,利用低熔点琼脂糖包埋技术制备菌株的染色体 基因组总 DNA,再用限制性内切酶消化含有染色体 DNA 的琼脂块,获得线性化的 DNA 样品; 然后利用 ExoCET 重组技术,以 p15A 线性载体片段将目标基因簇线性片段进行捕获;再通过 PCR-targeting 的方法向目标质粒中引入所需的接合转移 DNA 元件。接着,将改造质粒通过接合 转移导入到 Streptomyces coelicolor M1252 宿主中,获得不同的重组菌株。最后,对不同的菌株进 行发酵并提取化合物,最后进行活性检测以及质谱检测。【结果】通过该方法,从菌株 S. lincolnensis NRR2936 中成功获得了林可霉素生物合成基因簇(lmb-BGC),从菌株 Nonomuraea nitratireducens WYY166^T 中克隆得到了 2 个核糖体肽类化合物的生物合成基因簇(nioblantin, niob-BGC 和

基金项目:国家重点研发计划(2021YFC2100600);国家自然科学基金(31770034,31830104);上海市自然科学基金 (19ZR1475600)

Supported by the National Key Research and Development Program of China (2021YFC2100600), by the National Natural Science Foundation of China (31770034, 31830104) and by the Natural Science Foundation of Shanghai, China (19ZR1475600)

^{*}Corresponding authors. Tel: +86-21-34206119; E-mail: KANG Qianjin, qjkang@sjtu.edu.cn; OU Yixin, yixinou@sjtu.edu.cn Received: 31 March 2022; Revised: 8 May 2022; Published online: 20 June 2022

nitblantin, nitb-BGC),并实现了 Imb-BGC 在天蓝色链霉菌 M1252 中的成功表达。【结论】本研 究通过将低熔点琼脂糖包埋技术与 ExoCET 重组技术进行合理整合,定向克隆得到了林可霉素以 及 2 个新颖的羊毛硫肽类化合物的生物合成基因簇。然后,分别对重组质粒改造后,在天蓝色链 霉菌 M1252 宿主中进行表达,分别获得重组菌株 MJX01、MJX02 和 MJX04。最后,利用质谱以 及活性测试的手段对发酵提取物进行了检测,确定了林可霉素生物合成基因簇在天蓝色链霉菌 M1252 中成功表达。本研究为通过基因簇克隆和异源表达发掘新化合物奠定了基础。

关键词:染色体 DNA 的琼脂糖包埋方法; ExoCET 技术; 林可霉素; 羊毛硫肽; 异源表达; 质谱

Agarose-embedded chromosomal DNA combines with ExoCET technology to capture the biosynthetic gene clusters of natural products in *Actinobacteria*

MA Jingxian^{1,2}, HAN Shuting^{1,2}, SHENG Yong^{1,2}, WANG Hengyu^{1,2}, XING Li³, LUO Xiaoxia³, BAI Linquan^{1,2}, KANG Qianjin^{1,2*}, DENG Zixin^{1,2}, OU Yixin^{1,2*}

1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

2 Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

3 College of Life Science, Tarim University, Alar 843300, Xinjiang, China

Abstract: [Objective] To develop a method of cloning biosynthetic gene clusters of natural products (NP-BGCs) by combining agarose-embedded chromosomal DNA strategy with exonuclease combined with RecET recombination (ExoCET) technology and transform the cloned gene clusters into chassis cells for the expression of target NP-BGCs in heterologous hosts. [Methods] Firstly, the chromosomal DNA of the targeted strain was prepared by agarose-embedded plugs with the low-melting-temperature agarose and digested with the restriction enzymes to yield the linear DNA sample. Then, the linear target BGC was captured by the linear vector of p15A through the ExoCET technology. The desired integrative and conjugative elements were introduced into the BGC-containing plasmid through PCR-targeting approach. Subsequently, the final modified plasmid was introduced into Streptomyces coelicolor M1252 by intergeneric conjugation to yield the desired recombinant strains. Finally, the recombinant strains were fermented and analyzed for target compound production by UPLC-ESI-MS and the inhibitory activity against different indicator strains was detected. [Results] With this method, the BGC of lincomycin (*lmb*-BGC) and the BGCs of two ribosomal peptides (nioblantin, *niob*-BGC and nitblantin, nitb-BGC) were obtained from S. lincolnensis NRR2936 and Nonomuraea nitratireducens WYY166^T, respectively. Finally, the *lmb*-BGC was expressed in M1252 for production of lincomycin. [Conclusion] In this study, the *lmb*-BGC and two novel lanthipeptide BGCs were cloned by the agarose-embedded chromosomal DNA in combination with ExoCET technology. Then, the BGC-containing plasmids were modified for conjugations. The recombinant strains MJX01, MJX02, and MJX03 were obtained by conjugation with the strain M1252 host. The fermentation broth was extracted and analyzed by UPLC-ESI-MS and the anti-bacterial activity was detected. Finally, our results revealed that the lincomycin was successfully produced in the strain M1252 containing the *lmb*-BGC. This study lays the foundation for the discovery of new compounds through gene cluster cloning and heterologous expression in the chassis strain.

Keywords: agarose-embedded chromosomal DNA strategy; exonuclease combined with RecET recombination; lincomycin; lanthipeptide; heterologous expression; mass spectra

放线菌基因组中蕴含了丰富的天然产物生 物合成基因簇 (biosynthetic gene cluster of natural product, NP-BGC)^[1], 但约有 90%以上的 NP-BGC 均处于沉默状态^[2]。将一些沉默的 NP-BGC 转移到合适的异源宿主中, 解除原始 菌株对其表达的抑制效应,是获得新颖化合物 或提高目标产物产量的重要手段之一[3-5]。其 中,放线菌染色体中负责天然产物合成的功能 基因一般成簇排列^[6],为克隆完整的 BGC 提供 了便利。鉴于此, 天然产物大片段 BGC 的克隆 技术也得到了广泛关注,例如 Kouprina 等开发 了一种基于酵母的转化辅助重组技术 (transformation-associated recombination, TAR)^[7],利用该技术从糖单孢菌基因组中成功 捕获了73 kb的 taromycin A 生物合成基因簇^[8]。 Tao 等将 CRISPR/Cas9 系统与体外 λ 噬菌体包 装蛋白联用, 高效地克隆得到了 40.7 kb 的 sisomicin 生物合成基因簇^[9]。RecET 重组系统 在大肠杆菌中可以实现 DNA 片段的线性线性 同源重组^[10], Wang 等将该技术与核酸外切酶体 外组装联合构建了 ExoCET 方法,能够更加高 效地捕获目标天然产物的生物合成基因簇^[11]。

高质量大片段基因组 DNA 的获得是基因 簇克隆的关键,利用染色体 DNA 琼脂糖包埋法 制备基因组 DNA,由于将菌体包埋在低熔点的 琼脂糖凝胶中,在溶菌酶以及蛋白酶 K 的作用 下获得包埋在琼脂糖中的基因组 DNA,由于琼 脂糖对完整染色体的固定作用,防止了操作过 程中机械力对基因组 DNA 的损伤,能够获得完 整的基因组 DNA。研究中一般采用染色体琼脂 糖包埋法来构建大片段基因组 BAC 文库以及 检测大片段染色体或质粒的变化^[12-14]。而且, Jiang 等将大肠杆菌的基因组包埋在琼脂糖凝 胶中,并利用 CATCH 技术提高了目标生物合 成基因簇的捕获效率^[15]。Liang 等利用染色体 DNA 琼脂糖凝胶包埋法,通过 CRISPR/Cas12a 介导的 CAT-FISHING 技术成功捕获到 GC 含量 为 75%的 145 kb DNA 片段^[16]。

同时,为了实现目标 BGC 在异源宿主中的 高效表达,一些性能优良的细菌底盘宿主构建 也受到了极大的关注,现已用于天然产物的发 掘和工业化生产^[3]。例如,以天蓝色链霉菌 M145 为底盘,构建了删除竞争 BGC 和提高抗 生素耐受能力的宿主(菌株 M1152 和 M1154)^[17]。在此基础上,再插入1个或3个 $\Phi C31$ -attB 整合位点,获得了可以实现基因簇两 拷贝以及四拷贝的菌株 M1252 以及 M1452^[18]。 以变铅青链霉菌宿主 SBT5 为出发菌株,优化 了调控和外排系统,得到的变铅青链霉菌菌株 LJ1018, 使一些 BGC 表达效果更佳^[19]。而且, 为了更加广泛地发掘天然产物, Hao 等以 Streptococcus mutans UA159 为底盘菌株开发了 厌氧细菌 BGC 的表达宿主^[20]。2021 年 Liu 等对 Schlegelella brevitalea DSM 7029 菌株进行了系

统的改良,使其成为了优良的革兰氏阴性宿主 底盘^[21]。这些丰富多样的底盘菌株为表达各种 来源的 BGC 以及获得结构新颖的活性天然产 物提供了多样的选择。

为了建立统一的高质量大片段基因组的制备方法,高效地获得目标天然产物BGC,本研究尝试利用低熔点琼脂糖包埋法辅以ExoCET介导的DNA片段线性线性重组技术克隆目标BGC。利用该方法,首先克隆得到30.0 kb林可霉素完整的生物合成基因簇(lincomycin biosynthetic gene cluster, *lmb*-BGC)。同时,在新型野野村氏菌WYY166^T中也成功克隆了2个核糖体肽类化合物的BGC,长度分别为34.1 kb和16.0 kb。最终,在天蓝色链霉菌M1252中实现了林可霉素的异源合成。本研究将通用型的高质量基因组制备方法与ExoCET 基因簇克隆技术进行了有效的整合,为BGC的克隆提供了一种新方法。

1 材料与方法

1.1 材料

1.1.1 主要生化试剂和仪器

生化试剂:有机试剂(甲醇、乙醇、异丙醇 和氯仿)购自上海国药集团化学试剂股份有限 公司;色谱级甲醇购自上海阿拉丁生化科技股 份有限公司;抗生素购自 Sigma 公司;限制性 内切酶购自赛默飞世尔科技有限公司;DNA 连 接酶和高保真 DNA 聚合酶购自南京诺唯赞科 技有限公司;林可霉素标准品购自上海麦克林 生化科技有限公司;所有 PCR 引物由上海擎科 生物科技有限公司;所有 PCR 引物由上海擎科 生物科技有限公司合成。仪器:PCR 仪, Eppendorf 公司;电泳仪天能 EPS-300,上海天 能公司;旋转蒸发仪 R-210, BUCHI 公司;超 高效液相色谱-飞行时间质谱 HPLC 1290-MS 6230,安捷伦科技有限公司;生化培养箱 LRH-250A, 韶关市泰宏医疗器械有限公司; 恒 温振荡摇床 ZQZY-70BS, 上海知楚仪器有限公 司; 电转仪, Eppendorf 公司; 凝胶成像系统, Bio-Rad 公司。

1.1.2 菌株和质粒

本文中所涉及的菌株和质粒见表1。

1.1.3 培养基及试剂

LB 培养基^[19]; YPD 培养基^[28]; R3 固体培 养基^[29]; 2× YT、MS 培养基、TSBY 培养基、 R5 固体培养基和 YEME 培养基参考文献[30]。 TE25S: 0.3 mol/L 蔗糖, 25 mmol/L EDTA, 25 mmol/L Tris; NDS: 0.5 mol/L EDTA, 10 mmol/L Tris; 1% SDS; TE10: 1 mmol/L EDTA, 10 mmol/L Tris。分别调节 pH 至 8.0, 115 °C 灭菌 15 min 备用。灭菌后分别向 TE25S 和 TE10 加入溶菌酶(终浓度为 2 mg/mL)及蛋白 酶 K (终浓度为 2 mg/mL)。

1.1.4 引物

本文中所涉及的引物见表 2。

1.2 低熔点琼脂糖包埋法制备放线菌基因 组 DNA

从培养基上挑取 S. lincolnensis NRRL2936 以及 N. nitratireducens WYY166^T菌株,分别接 种于 50 mL YEME 培养基中,30 °C、220 r/min, 分别培养 24 h 和 48 h。12 000 r/min 离心 15 min, 弃上清,将菌体悬浮于 25 mL 10.3%蔗糖溶液 中,12 000 r/min 离心 15 min,重悬,重复 1 次, 将菌体重新悬浮于 25 mL TE25S 中。计算菌体 量 OD₆₀₀=2.0-8.0 包埋样品,分别取 5 mL 的菌 液于 12 mL 离心管中,42 °C 保温,融化 2%低 熔点琼脂糖,50 °C 保温。将菌液与低熔点琼脂 糖等体积混合均匀后,倒入琼脂块制备模具中, 室温凝固 35 min。将含有样品的胶块推入 5 mL 含有 2 mg/mL 溶菌酶的 TE25S 溶液中,37 °C 保温 2 h。弃去 TE25S 溶液,加入 5 mL NDS 溶液(含有 2 mg/mL 蛋白酶 K),50 °C 保温 48 h,期间补加 1 次蛋白酶 K。弃去 NDS 溶液,加入

20 mL TE10, 室温下轻摇 1 h, 重复该步骤 3 次。 最后加入 10 mL 的 TE10 使胶块完全浸没, 放 入 4 °C 冰箱中长期保存。

表1 本文所涉及的菌株和质粒以及其特征和来源

T 1 1 1	a 1	1 1 1		1.1 *	1 . • .• 1	• •
Table I	Strains and i	nlasmids jised	in this study	v and their c	haracteristics and	origins
I uoi v I	Strumb und	plubillub ubeu	in this stat	y und then o	nulueteribties und	origino

Strains and plasmid	Description	Sources or references	
Strains			
Escherichia coli DH10B	lacZ, recA, $\triangle M15$	Gibco BRL	
<i>E. coli</i> ET12567/pUZ8002	$recE, dcm^{-}, dam^{-}, hsdS, Cm^{r}, Tet^{r}, Str^{r}, Km^{r}$	[22]	
GB05-dir	GB2005, P_{BAD} - <i>ETgA</i> (<i>recE</i> , <i>recT</i> , <i>redy</i> and <i>recA</i>)	[10]	
GB08	GB05, $\Delta lacZ$, P _{BAD} - $\alpha\beta\gamma A$ (red γ , red β , red α and rec A)	[23]	
Nonomuraea nitratireducens WYY166 ^T	Wild-type producer for nioblantin and nitblantin	[24]	
Streptomyces lincolnensis NRRL2936	Wild-type producer for lincomycin	[25]	
Streptomyces coelicolor M1252	Strain M1152 carrying two artificial $\Phi C31$ -attB sites	[18]	
MJX01	S. coelicolor M1252 with the plasmid pJQK702	This work	
MJX02	S. coelicolor M1252 with the plasmid pJQK704	This work	
MJX04	S. coelicolor M1252 with the plasmid pJQK711	This work	
MJX05	S. coelicolor M1252 with pSET152	This work	
Bacillus subtilis 168	Indicator strain used for bioassay	This work	
Bacillus cereus B4264	Indicator strain used for bioassay	This work	
Candida albicans	Indicator strain used for bioassay	This work	
Sarcina lutea NCTC2665	Indicator strain used for bioassay	This work	
Saccharomyces cerevisiae	Indicator strain used for bioassay	This work	
Plasmids			
pBluescript SK(+)	<i>lacZ, bla, ori</i> (f1), <i>ori</i> (pUC)	[26]	
p15A-cm-ccdB	Ori (p15A), chl, ccdB	[11]	
pSET152	attP, int, oriT, aac(3)IV, Apr	[27]	
pJQK701	Plasmid with p15A and the <i>lmb</i> BGC	This work	
pJQK702	Plasmid with p15A, attP, int, oriT, Apr and the lmb BGC	This work	
pJQK703	Plasmid with p15A and the <i>niob</i> BGC	This work	
pJQK704	Plasmid with p15A, attP, int, oriT, Apr and the niob BGC	This work	
pJQK710	Plasmid with p15A and the <i>nitb</i> BGC	This work	
pJQK711	Plasmid with p15A, attP, int, oriT, Apr and the nitb BGC	This work	

表 2 研究中所用引物及其序列

 Table 2
 Primers and their sequences used in the study

Primers	Sequence $(5' \rightarrow 3')$
Linco-p15A-HAL-F	<u>GAAACGGCGCCAATTGTTCCACTGAGCTCCGGCTTCGATGGAAGCATGCGTCCACCA</u>
	<u>CCATAACTGTGTTGTCGGGAAGG</u> cccagcccgcctaatgagcg
Linco-p15A-HAL-R	AAGGACAACCCGTCGAAGACCGGCGTCTCGTCGGGCCAGGAGAAGGAGAGAGA
	<u>GCAGACAATACTCGCGTCAGCCAT</u> tctgacctcctggttatgtgt
Linco-152-HAL-F	ATCCATGGTTAGCCCTCCCACACATAACCAGGAGGTCAGAgaagatcetttgatetttte
Linco-152-HAL-R	<u>GAGAAGGAGAGATTGGTGCAGACAATACTCGCGTCAGCCAT</u> cgatctttgtagaaaccatc
Linco-p15A-verif-F2	CTGTGAGTGTTGTGAGGAACC
Linco-p15A-verif-R2	TGTTGCTGAGGTCGTCGTA
Niob-p15A-HAL-F	TAAGCTT <u>GCAGCGAGCTCAAGTCCGCGATCAGGTGCTTGCCGCACTGCGATAACCAA</u>
	CAGCACGACAACCGGTCACCTTTGTAACcccagcccgcctaatgagcg
Niob-p15A-HAL-R	AAAGCTTCTCGCTGAGATAGTGAGCGATCCTCCGCTGCACGGGCGACAGCCTCCGGC
	CATCCAGCAGCACCCCAGCCCACCGTGAT tctgacctcctggttatgtg
Niob-152-HAL-F	ATCCATGGTTAGCCCTCCCACACATAACCAGGAGGTCAGAgaagatcetttgatetttte
Niob-152-HAL-R	CGATCTGGTCGATGCGCTCGCTACGCCGGATCGCCGGGTAGcgatctttgtagaaaccat
Niob-p15A-verif-F3	GCTCCGCAACGAACTCAAG
Niob-p15A-verif-R3	CACGCCATCTTCAACGACAG
Nitb-p15A-HAL-F	CGCAAAAGCTATCAAGTGGGCAAAGGTCTTCTGGAGCGCGAACTCCATGATCTCGCA
	CTGCATACGACGCCGCGAATTCGcccagcccgcctaatgagcg
Nitb-p15A-HAL-R	<u>GTGAGCGCTGTACATGCCCTGATGCTCGTCGGGTCGTGTGCCCTGGGGCGGGAGCTG</u>
	<u>GCAACTCTGCGCGGACGAATTCT</u> aatctgacctcctggttatg
Nitb-152-HAL-F	CCATGG <u>ATCCATGGTTAGCCCTCCCACACATAACCAGGAGGTCAGA</u> ttgaagatcctttgatctttt
NI'41 150 HAL D	
Nitb-152-HAL-R	GCG1GC1AGG1CG1CGGGAGCGGC1GAC1CGC1GG11CA1 caattgaacteececagtee
Nitb-p15A-verif-F3	CACCTACCGAGGATCGAACGC
Nitb-p15A-verif-R3	CCTACGAGCCGCAACTGACG
Apr-F	TGTCATCAGCGGTGGAGTG
Apr-R	GTCGTGTTGGCATCGTGTC

The underscore uppercase letters indicate the homologous arms, and the lowercase letters indicate the carrier fragments.

1.3 限制性内切酶对琼脂糖凝胶块的消化 与大片段 DNA 的回收

称取约 500 mg 琼脂糖凝胶块置于 1.5 mL EP 管中,将其浸泡在无菌水稀释的 1×酶切缓 冲液中,每隔 2 h 换 1 次酶切缓冲液,换洗 2 次后加入 500 μL 酶切缓冲液,再添加 5 μL 相 应的酶切酶,放入 4 ℃ 冰箱 0.5 h 后,于 37 ℃ 酶切 3-4 h。酶切结束后,将 EP 管中的酶切缓 冲液吸出,并置于 70 ℃ 水浴锅中 10 min 至胶 完全融化,再放入 42 ℃ 水浴锅中处理 10 min。 加入 5 μL 琼脂糖酶(0.5 U/μL),置于 42 ℃ 水浴锅 中处理 5 h。琼脂糖完全消化后,加入 1/10 体积的 3 mol/L NaOAc, 冰上处理 15 min, 10 000 r/min 离心 10 min, 取上清于新的 1.5 mL EP 管中。 向 EP 管中加入等体积的异丙醇,轻柔混匀至液 体澄清,冰浴处理 15 min, 10 000 r/min 冷冻离 心 10 min, 去上清, 75%酒精洗涤 2 次, 烘干 后加入 15 μL ddH₂O 进行溶解,测定 DNA 浓度, 待用。

1.4 克隆载体和异源表达载体片段的制备 1.4.1 克隆载体的制备

分别利用 Linco-p15A-HAL-F/R、Niob-p15A-HAL-F/R 和 Nitb-p15A-HAL-F/R 引物对,以 p15A-cm-ccdB 为模板分别进行 PCR 扩增, PCR

反应体系: 95 ℃ 10 min; 95 ℃ 30 s, 58 ℃ 30 s, 72 ℃ 1.5 min, 30 个循环; 72 ℃ 10 min; 4 ℃ 10 min。获得含有与目标 BGC 具有 80 bp 同源 臂的 p15A 线性化片段,回收线性化片段, -30 ℃ 保存待用。

1.4.2 异源表达载体片段的制备

通过 PCR 的方式, 分别以 Linco-152-HAL-F/R、Niob-152-HAL-F/R 和 Nitb-152-HAL-F/R 为引物, 以 pSET152 为模板进行扩增, PCR 反 应体系: 95 °C 10 min; 95 °C 30 s, 58 °C 30 s, 72 °C 4 min, 30 个循环; 72 °C 10 min; 4 °C 10 min。获得了两端分别含有 40 bp 同源臂、 *oriT*、整合酶、*attP* 整合位点和安普霉素抗性基 因元件的 4.5 kb 的 DNA 片段, 利用胶回收的方 式回收 DNA, -30 °C 保存待用。

1.5 大片段目标基因簇与克隆载体的体外 预处理^[11]

将回收的大片段 DNA 和 p15A 克隆载体的 2 个线性化片段通过 T4 DNA 聚合酶处理,反 应体系:线性化的 DNA 片段,10 μg; p15A-cm-Linear,200 ng; NEBuffer 2.1,2 μL; T4 DNA 聚合酶,0.13 μL; ddH₂O 补齐至 20 μL。 反应条件:25 °C,60 min;75 °C,20 min;50 °C, 30 min; 4 °C,5 min。将获得的 20 μL 产物脱 盐后待用。

1.6 利用 RecET 介导的重组系统克隆目标 生物合成基因簇

制备菌株 GB05-dir^[11]电转感受态细胞,将 30 μL GB05-dir 菌株接种于 1.3 mL LB 培养基 中,950 r/min、37 °C 培养 2 h,加入 35 μL 10% L-阿拉伯糖诱导 40 min。用无菌水洗涤细胞 3 次,将感受态细胞与 20 μL 脱盐产物轻轻混 合,并加入至预冷的 1 mm 电转杯中,1 800 V 电压下电击 5 ms,迅速向电转杯中加入 1 mL 预 冷的 LB 培养基重悬细胞,并将悬浮细胞转移 至新的 EP 管中,950 r/min、37 ℃ 孵育 90 min。 最后,将预培养的菌液均匀涂布在含有氯霉素 的 LB 固体培养基中培养过夜。挑取单克隆分 别利用 Linco-p15A-verif-F2/R2、Niob-p15Averif-F3/R3 和 Nitb-p15A-verif-F3/R3 引物对对 克隆进行 PCR 初步筛选,选择正确的克隆。提 取质粒,并进行酶切验证。

1.7 基因克隆和整合型质粒的构建

将接合转移所必需的 DNA 元件(含有整合 酶基因、attP 整合位点、oriT 以及安普霉素抗 性基因)通过 λ-Red 介导的 DNA 线性环形重组 整合到重组质粒中^[10]。首先,将 pJQK701、 pJQK703 和 pJQK710 重组质粒电转至 GB08 菌 株(含有 λ-Red 重组系统)中。其次,制备含有 pJQK701、pJQK703 和 pJQK710 重组质粒的电 转感受态细胞 GB08, 加入 35 µL 10% L-阿拉伯 糖诱导 40 min。将含有 40 bp 同源臂的 pSET152 线性片段与感受态细胞轻轻混合后转移至预冷 的 1 mm 电转杯中, 1 800 V 电压, 电击时间 5 ms, 迅速向电转杯中加入 1 mL 预冷的 LB 培 养基重悬细胞,将悬浮细胞转移至 1.5 mL EP 管中, 950 r/min、37 °C 培养 60 min, 向预培养 细胞中加入 20 µL 50 mg/mL 安普霉素抗生素, 均匀涂布在 LB 固体培养基上,培养过夜以筛 选正确的重组质粒 pJQK702、pJQK704 和 pJQK711,对筛选到的克隆进行 PCR 以及酶切 验证。

1.8 两亲本介导的大肠杆菌与链霉菌跨属 接合转移^[31]

将目标质粒通过电转化的方式导入到大肠 杆菌 ET12567/pUZ8002 中,37 °C 培养过夜。 活化好的菌株以 10%的接种量转接到新鲜的 LB 培养基中,37 °C、220 r/min 培养 3 h, 12 000 r/min 离心,并用无抗 LB 洗涤 2 次作为 接合转移供体备用。划取新鲜 S. ceolicolor M1252 菌株于无菌水中,用1 mL TES 试剂洗 涤链霉菌 2 次后加入 500 μL TES 重悬,将重悬 液置于 50 °C 水浴锅中热激 10 min 后,加入 500 μL 2× YT 培养基和 5 μL 1 mol/L CaCl₂溶液,并置 于 37 °C、950 r/min 摇床中进行孢子萌发 2.5 h。 最后将供体大肠杆菌和受体菌 *S. ceolicolor* M1252 混合后,均匀涂布在 MS 培养基上,吹 干后放入 30 °C 培养箱培养 15 h,用 40 μg/mL 萘啶酮酸和 50 μg/mL 安普霉素抗生素覆盖,倒 置于 30 °C 培养箱中培养 5–7 d 后可以观察到接 合子。提取接合子基因组进行 PCR 验证以确保 生物合成基因簇整合在宿主菌的基因组上,以 此获得含有目标基因簇的突变株。

1.9 重组菌株的发酵及化合物检测

将重组菌株划取到新鲜的 MS 固体培养基 上培养 5 d,其次用棉签将突变株从 MS 培养基 划取至固体发酵培养基上,30 °C 培养 7 d。用 无菌手术刀将培养基划块,加入等体积的甲醇 溶液浸泡琼脂块,超声处理 30 min 后离心,将 上清液进行减压浓缩以获得提取物,用 1 mL 的 甲醇溶解浓缩产物。最后,样品用 0.22 μm 有机 相滤膜过滤后,即可用 UPLC-ESI-MS 进行分析。

1.10 UPLC-ESI-MS 检测

色谱柱为 Agilent SB-C₁₈色谱柱(150×4.6 mm, 粒径 5 μm); 流动相 A 为 0.1%甲酸水,流动相 B 为甲醇,流速为 0.4 mL/min; 柱温为 40 °C,进 样体积为 20 μL; 液相色谱的洗脱方法: 0-25 min,5%-60% B;25-45 min,60%-100% B; 45-53 min, 100% B; 53-54 min, 100%-5% B; 54-60 min 5% B。电离源:电喷雾离子源(ESI), 正离子模式,离子化电压 4 000 V,雾化气压力 35 psi,干燥气流量为 8 L/min,离子源温度 320 °C,脱溶剂气流量为 11 L/min,脱溶剂气 温度为 350 °C。

1.11 发酵产物的生物活性分析

将指示菌枯草芽孢杆菌 168、蜡状芽孢杆 菌 B4264、白色念珠菌和藤黄八叠球菌 NCTC2665 接种于新鲜的 LB 培养基中培养过 夜,以1‰的接种量接种于 1%的融化 LB 固体 培养基中,轻轻晃动摇匀,倒入平板中;将啤 酒酵母接种于新鲜的 YPD 液体培养基中过夜 培养,以1‰的接种量接种于 1%的融化 YPD 固体培养基中。在含有指示菌的 LB 或 YPD 的 固体培养基上放置灭菌的牛津杯,向牛津杯中 加入提取发酵液,正置培养在 37 ℃ 或 30 ℃ 的 培养箱中,15 h 后观察抑菌圈的形成情况。

2 结果与分析

2.1 菌丝体低熔点琼脂糖包埋块的制备与 酶切消化

本研究选取 S. lincolnensis NRRL2936 菌株 作为研究材料,建立了低熔点琼脂糖包埋菌丝 体的制备方法。首先,制备含有链霉菌 NRRL2936 的琼脂糖凝胶块,将其放至含有 TE25S 缓冲液的离心管中。然后,利用溶菌酶 以及蛋白酶 K 对琼脂块依次进行处理,再通过 TE10 缓冲液充分洗涤琼脂块,以此获得了仅保 留完整基因组 DNA 的透明琼脂糖凝胶块,存放 于 TE10 缓冲液中 4 °C 保存。

通过对菌株 NRRL2936 染色体的全基因组 (GenBank: NZ_CP022744.1)序列分析显示,利 用 EcoR V 对基因组进行酶切可以获得 30.0 kb 包含完整林可霉素生物合成基因簇(*lmb*-BGC) 的 DNA 片段(其中包含 25 个结构基因^[32]、2 个 抗性基因^[33]和 1 个调控基因 *lmbU*^[34],图 1)。 取含有 NRRL2936 基因组的琼脂糖凝胶块,利 用 EcoR V 限制性内切酶进行酶切处理,最后通 过醇沉法回收总 DNA,定量后置于-80 °C 保存。

图 1 菌株 S. lincolnensis NRRL2936 中林可霉素的生物合成基因簇 Figure 1 The *lmb*-BGC in S. lincolnensis NRRL2936.

2.2 利用 ExoCET 技术克隆林可霉素 BGC 利用 ExoCET 技术,将 T4 DNA 聚合酶介 导的线性片段的体外退火与 RecET 介导的 DNA 线性线性重组技术相结合,从而提高了 RecET 介导的同源重组效率。首先,通过 PCR 扩增获得两端分别含有 80 bp 同源臂的 p15A 载 体片段。然后,利用 T4 DNA 聚合酶对 DNA 片 段与 p15A 载体进行体外反应,反应结束后进 行脱盐。将脱盐后的产物电转至 GB05-dir 感受态细胞中(图 2A),通过氯霉素抗生素筛选获得结合重组子,重组子利用 PCR 初步筛选,选取正确的克隆。提取质粒,利用 Xho I 和 Bgl II 进行双酶切验证(预期条带为 17 133、7 581、4 197、1 872、856、282 bp)(图 2B)。最后,获得含有林可霉素 BGC 的重组质粒,命名为pJQK701。

图 2 利用 ExoCET 方法抓取林可霉素生物合成基因簇的示意图(A)以及质粒 pJQK701 的酶切验证图谱(B) Figure 2 Schematic diagram of capturing *lmb*-BGC using ExoCET method (A) and the validation of pJQK701 by *Xho* I and *Bgl* II digestion (B).

2.3 野野村氏菌 WYY166^T 中 2 个核糖体 肽类生物合成基因簇的克隆

菌株 WYY166^T 是我们前期研究中分离得 到的一株野野村氏菌属的新菌株^[24],该菌株染 色体中含有较多新颖的天然产物 BGC。通过对 菌株染色体中 BGC 的分析,我们选择了 2 个核 糖体肽类 (ribosomally synthesized and posttranslationally modified peptides, RiPPs)化合物 nioblantin 和 nitblantin 的生物合成基因簇 (*niob*-BGC 和 *nitb*-BGC)作为研究对象(图 3,表 3 和表 4)。其中,*niob* 可以利用 *Mun* I和 *Eco*R V 双酶切获得 34.1 kb 的完整基因簇片段,而 *nitb* 可以通过 *Eco*R I 单酶切获得 16.0 kb 的完整基 因簇片段。我们利用已经建立的低熔点琼脂 糖包埋法,获得了含有菌株 WYY166^T的琼脂 糖块。

利用低熔点琼脂糖包埋辅助的 ExoCET 技术,分别对 2 个目标 BGC 进行定向克隆(图 4A, 4C)。然后,分别提取质粒进行酶切验证,成功与 p15A 质粒重组的 niob 用 Nhe I 和 Not I 进行酶切,得到的预期条带为 11 575、8 034、5 028、4 257、4 028、1 933 和 1 125 bp,选择正确的克隆命名为 pJQK703 (图 4B)。含有 nitb 的重组

质粒使用 Sal I 酶切,可以获得预期大小为 6441、4873、4583、1539、252 和 201 bp 的 条带,正确的克隆命名为 pJQK710 (图 4D)。

2.4 生物合成基因簇异源表达质粒的改造

通过琼脂糖凝胶辅助 ExoCET 技术成功获 得的林可霉素以及 2 个新颖核糖体类化合物的 BGC 重组质粒以 p15A 为载体,其还缺少整合 酶编码基因以及 $\Phi C31$ -attP 整合位点,无法直 接整合至链霉菌中进行表达。因此,利用λ-Red 介导的 DNA 线性环形重组技术对重组质粒进 行改造。首先,将这些含有目标 BGC 的质粒分 别电转至 GB08 菌株中,再将两端含有 40 bp 同源臂的 pSET152 线性片段通过电转的方式重 组至含有目标生物合成基因簇的质粒中。以此 分别获得质粒 pJQK702 (含有 lmb)、pJQK704 (含有 niob)和 pJQK711 (含有 nitb) (图 5A, 5C 和 5E)。其中, 质粒 pJQK702 用 Xho I 和 Bgl II 双酶切(图 5B)、pJQK704 利用 EcoR I、Hind Ⅲ和 Ssp I 三酶切(图 5D)以及 pJQK711 使用 Sal I 单酶切(图 5F)分别进行验证,均获得了预期 的 DNA 片段,得到了所有正确的 BGCs 异源表 达质粒,为目标 BGCs 在异源宿主中进行基因 组整合表达做好了准备。

图 3 野野村氏菌 WYY166^T 中 2 个新颖核糖体类化合物生物合成基因簇 Figure 3 The biosynthetic gene clusters of *niob* and *nitb* in *N. nitratireducens* WYY166^T.

Genes	aa	Proposed function	Identical aa/%	Similar protein
T1	249	ABC transporter permease	92	WP_132330719.1
T2	317	ABC-2 type transport system ATP-binding protein	92	MBB5777970.1
R2	192	PadR family transcriptional regulator	82	WP_192790664.1
B1	228	SDR family oxidoreductase	90	WP_185071470.1
P1	403	Allantoate amidohydrolase	100	WP_194244173.1
B2	440	Formimidoylglutamate deiminase	100	WP_153261453.1
В3	382	Imidazolonepropionase	100	WP_153261454.1
1	313	Sigma-70 family RNA polymerase sigma factor	98	WP_103955882.1
2	392	Oxidoreductase	73	WP_170222994.1
3	266	DivIVA domain-containing protein	100	WP_153261455.1
4	145	Hypothetical protein	46	WP_138666046.1
P2	305	CPBP family intramembrane metalloprotease	49	WP_179747983.1
Т3	305	ATP-binding cassette domain-containing protein	99	TMR36822.1
5	252	ABC transporter permease	46	WP_055507900.1
C1	373	Class IV lanthionine synthetase subunit LxmK	100	WP_153261456.1
C2	324	Hypothetical protein	54	WP_128433866.1
6	106	Transposase	63	WP_128433865.1
T4	277	ABC transporter ATP-binding protein	70	WP_128433864.1
Т5	276	ABC transporter permease	62	WP_181449702.1
B4	328	LLM class flavin-dependent oxidoreductase	60	WP_128433863.1
В5	202	Flavoprotein	99	WP_139628885.1
7	334	Hypothetical protein	100	WP_153261457.1
B6	247	Class I SAM-dependent methyltransferase	100	WP_153261458.1
8	86	Hypothetical protein	99	WP_139627772.1
A1	65	LxmA leader domain family RiPP	58	WP_031041759.1
Р3	421	Insulinase family protein	100	WP_139628883.1
P4	421	Insulinase family protein	100	WP_153261460.1
A2	70	LxmA leader domain family RiPP	56	WP_128433855.1
T6	288	ATP-binding cassette domain-containing protein	100	QFY06859.1
R3	194	TetR/AcrR family transcriptional regulator	92	WP_192790670.1
B7	267	Alpha/beta hydrolase	100	WP_153261462.1
9	256	MOSC domain-containing protein	100	KAB8197984.1
T7	308	ABC transporter substrate-binding protein	84	WP_206061054.1
T8	437	Ammonium transporter	100	WP_153261463.1
R4	112	P-II family nitrogen regulator	99	WP_192790675.1
10	741	[protein-PII] uridylyltransferase	100	WP 153261464.1

表 3 niob 生物合成基因簇编码蛋白的功能

 Table 3
 Proposed functions of proteins encoded by *niob* biosynthetic gene cluster

🖂 actamicro@im.ac.cn, 🕾 010-64807516

Table 4	Proposed functions of proteins encoded by <i>nitb</i> biosynthetic gene cluster				
Genes	aa	Proposed function	Identical aa/%	Similar protein	
D	134	Hypothetical protein	75	WP_093892002.1	
E	817	Methyltransferase, FxLD system	99	WP_138709493.1	
А	67	FxLD family lanthipeptide	100	WP_043615234.1	
В	1023	Lantibiotic dehydratase	99	WP_055483637.1	
С	410	Lanthionine synthetase C family protein	100	WP_043615228.1	
F	278	Methyltransferase	99	WP_055483639.1	
G	383	Hypothetical protein	100	WP_155344709.1	
Н	47	Hypothetical protein	None	None	
Ι	100	Site-specific integrase	95	WP 011595865.1	

nitb 生物合成基因簇编码蛋白的功能 表 4

n 1.0 . • c

Figure 4 Schematic diagram of capturing *niob* through agarose-embedded chromosome DNA assisting ExoCET technology (A) and the validation of pJQK703 by Nhe I and Not I digestion (B); schematic diagram of capturing *nitb* through agarose-embedded chromosome DNA assisting ExoCET technology (C) and the validation of pJOK710 by Sal I digestion (D).

2.5 生物合成基因簇在天蓝色链霉菌 M1252 中的异源表达

分别将质粒 pJQK702、pJQK704 和 pJQK711 电转至 E. coli ET12567/pUZ8002 中,同时将质粒 pSET152 也转化至 E. coli ET12567/pUZ8002 中作 为对照。然后,通过接合转移的方法分别将目标 质粒导入至天蓝色链霉菌 M1252 中,将获得的结 合子分别用相应的引物 Linco-p15A-verif-F2/R2、 Niob-p15A-verif-F3/R3、Nitb-p15A-verif-F3/R3 和 Apr-F/R 进行 PCR 验证,可以得到预期扩增目标 条带为 725 bp、692 bp、722 bp 和 481 bp (图 6)。 筛选得到正确接合子后,分别命名为 MJX01A-C (S. coelicolor M1252::pJQK702), MJX02A-C (S. coelicolor M1252::pJQK704) MJX04A-C (S. coelicolor M1252::pJQK711) 和 MJX05A-C (S. coelicolor M1252::pSET152)。将正确的菌株分别 进行扩大培养,收取孢子至含有20%甘油的菌种 管中冻存保藏。

图 5 λ-Red 介导的 DNA 线性环形重组示意图及酶切验证

Figure 5. Schematic diagram of λ -Red-mediated DNA recombination and verification of recombinant plasmids. A: schematic representation of the recombination of pJQK702; B: the validation of pJQK702 by *Xho* I and *Bgl* II digestion; C: schematic representation of the recombination of pJQK704; D: the validation of pJQK704 by *Eco*R I, *Hind* III and *Ssp* I digestion; E: schematic representation of the recombination of pJQK711; F: the validation of pJQK711 by *Sal* I digestion.

图 6 异源表达菌株的 PCR 验证结果

Figure 6 PCR analysis results of the recombinant strains for heterologous expression.

2.6 目标产物的质谱检测以及生物活性的 鉴定

将重组菌株 MJX01、MJX02、MJX04 以 及 MJX05 (S. coelicolor M1252::pSET152)在 MS 固体培养基上分别培养活化后,再转接至 R5 固体培养基上进行发酵。发酵完成后,制 备提取物的浓缩产物。抑菌测试结果显示,只 有菌株 MJX01 的发酵液对藤黄八叠球菌 NCTC2665 显示了较好的抑制活性(图 7C), MJX02、MJX04 以及 MJX05 在 5 种指示菌的 测试中均未获得抑制活性结果,该结果暗示了 林可霉素的 BGC 可能在 S. coelicolor M1252 中实现了表达。

接着,我们采用了 LC/MS 质谱分析的方法 进行了进一步确认。通过质谱检测,成功地在 11.6 min 获得了 *m/z* 为 407.2147 [M+H]⁺的质谱 信号(图 7A),与林可霉素 A 的分子量吻合 (图 7B)。但在菌株 MJX02 和 MJX04 中均未检 测到预测产物的信号峰,相关原因有待后续进 一步探索。

图 7 基因簇 Imb 在天蓝色链霉菌 M1252 中的异源表达分析结果

Figure 7 The results of heterologous expression of *lmb* in *S. coelicolor* M1252. A: the result of UPLC-ESI-MS analysis of lincomycin A in MJX01; B: the mass spectrometry result of lincomycin A; C: the inhibition estimation of MJX01 against *S. lutea* NCTC2665. 1: extract of the control strain MJX05; 2: extract of containing *lmb* cluster strain MJX01; 3: 50 µg lincomycin standard; 4: methanol.

3 讨论与结论

由于基因组测序技术和生物信息学分析方 法的不断发展,放线菌中沉默的生物合成基因 簇逐渐成为新颖化合物发现的巨大宝库^[2]。目 前,异源表达已经成为对沉默 BGC 进行激活和 发掘新颖化合物的主要策略^[3]。而如何高效定 向获得大片段生物合成基因簇是异源表达过程 中关键的一步。传统提取基因组的方法通过直 接对菌株进行破菌体处理,使得菌体 DNA 长期 暴露在外,在 DNA 提取过程中由于机械损伤 力,获得高质量 DNA 较为困难,影响了完整 BGC 克隆的效率。本研究结合低熔点琼脂糖凝 胶包埋技术,将放线菌基因组 DNA 包埋在低熔 点琼脂糖凝胶中,由于琼脂糖的固定作用,保 护了细菌染色体免受基因组提取过程中机械力 的破坏,从而可以实现完整染色体的获得。

同时,利用我们建立的琼脂糖包埋染色体 DNA 辅助的 ExoCET 技术,成功地捕获了 *lmb*-BGC 和菌株 WYY166^T 中 2 个新颖核糖体 肽类化合物的生物合成基因簇,将获得的重组 质粒经过改造后,在天蓝色链霉菌 M1252 中进 行了异源表达。最终,我们成功实现了林可霉 素生物合成基因簇的表达,其对藤黄八叠球菌 NCTC2665 有良好的抑制效果,并且通过 LC-MS 检测到林可霉素 A 的质谱信号。但是, 在检测羊毛硫肽类化合物异源表达菌株的发酵 产物过程中,我们均未获得目标化合物的信号。 可能存在3方面原因:第一,天然启动子对目 标产物基因表达的激活效果较差,后续我们考 虑通过将基因簇中天然的启动子替换为组成型 的强启动子,以此来提高功能基因的转录,进 而获得目标化合物^[4,35];第二,天蓝色链霉菌 M1252 宿主与菌株 WYY166^T的亲缘关系较远, 导致核糖体肽生物合成基因簇表达不兼容,后

期考虑选择稀有放线菌底盘宿主,再次进行异 源表达来获得目标产物^[36];第三,发酵条件依 然不合适,限制了2个基因簇的表达,可以通 过优化培养基和发酵方式或者添加诱导物来激 活两个目标基因簇的表达^[4,37]。

本研究利用低熔点琼脂糖包埋技术提高了 目的菌株的 DNA 制备质量,然后,通过采取 ExoCET 的方法精确抓取到目标生物合成基因 簇,这为发掘新颖化合物提供了一种参考思路, 也为在其他菌株中化合物的发现提供了借鉴。

参考文献

- Krause J. Applications and restrictions of integrated genomic and metabolomic screening: an accelerator for drug discovery from actinomycetes? *Molecules: Basel*, *Switzerland*, 2021, 26(18): 5450.
- [2] Onaka H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. *The Journal of Antibiotics*, 2017, 70(8): 865–870.
- [3] Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. *Natural Product Reports*, 2019, 36(10): 1412–1436.
- [4] Li X, Hu X, Sheng Y, Wang H, Tao M, Ou Y, Deng Z, Bai L, Kang Q. Adaptive optimization boosted the production of moenomycin A in the microbial chassis *Streptomyces albus* J1074. ACS Synthetic Biology, 2021, 10(9): 2210–2221.
- [5] 李兴, 韩舒婷, 马婧贤, 陶美凤, 康前进, 白林泉, 邓子新. 福林霉素生物合成基因簇的组装和异源表 达. 微生物学报, 2022, 62(1): 291–304.
 Li X, Han ST, Ma JX, Tao MF, Kang QJ, Bai LQ, Deng ZX. Assembly and heterologous expression of the pholipomycin biosynthetic gene cluster. *Acta Microbiologica Sinica*, 2022, 62(1): 291–304. (in Chinese)
- [6] Hopwood DA. Genetic engineering of Streptomyces to create hybrid antibiotics. Antibiotics: Basel, Switzerland, 1993, 4(5): 531–537.
- [7] Kouprina N, Larionov V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. *Nature Reviews Genetics*, 2006, 7(10): 805–812.

- [8] Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, Dorrestein PC, Moore BS. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. *PNAS*, 2014, 111(5): 1957–1962.
- [9] Tao WX, Chen L, Zhao CH, Wu J, Yan DZ, Deng ZX, Sun YH. *In vitro* packaging mediated one-step targeted cloning of natural product pathway. *ACS Synthetic Biology*, 2019, 8(9): 1991–1997.
- [10] Wang H, Li Z, Jia R, Hou Y, Yin J, Bian X, Li A, Muller R, Stewart AF, Fu J, Zhang Y. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. *Nature Protocols*, 2016, 11(7): 1175–1190.
- [11] Wang HL, Li Z, Jia RN, Yin J, Li AY, Xia LQ, Yin YL, Müller R, Fu J, Stewart AF, Zhang YM. ExoCET: exonuclease *in vitro* assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. *Nucleic Acids Research*, 2017, 46(5): e28.
- [12] 刘家栋,王革娇,罗美中. 阿维链霉菌 BAC 文库的 构建及分析. 华中农业大学学报, 2016, 35(5): 45-50. Liu JD, Wang GJ, Luo MZ. Construction and analysis of a BAC library of *Streptomyces avermitilis* genome. *Journal of Huazhong Agricultural University*, 2016, 35(5): 45-50. (in Chinese)
- [13] 董丹, 吴慧玲, 张涛涛, 刘伟成. 利迪链霉菌 A02 细菌人工染色体基因组文库的构建. 科技导报, 2013, 31(25): 53–57.
 Dong D, Wu HL, Zhang TT, Liu WC. Construction of bacterial artificial chromosome library of *Streptomyces lydicus* A02. *Science & Technology Review*, 2013, 31(25): 53–57. (in Chinese)
- [14] 徐玉松,高土玲,于昊,邓子新,贺新义.亚硝基胍 消除链霉菌 FR-008 的线性质粒. 微生物学通报, 2017,44(1):141-149.
 Xu YS, Gao TL, Yu H, Deng ZX, He XY. Curing linear plasmids by nitrosoguanidine in *Streptomyces* sp. FR-008. *Microbiology China*, 2017, 44(1): 141-149. (in Chinese)
- [15] Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. *Nature Communications*, 2015, 6: 8101.
- [16] Liang MD, Liu LS, Xu F, Zeng XQ, Wang RJ, Yang JL, Wang WS, Karthik L, Liu JK, Yang ZH, Zhu GL, Wang SL, Bai LQ, Tong YJ, Liu XT, Wu M, Zhang LX, Tan

GY. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach. *Nucleic Acids Research*, 2022, 50(6): 3581–3592.

- [17] Gomez-Escribano JP, Bibb MJ. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microbical Biotechnology, 2011, 4(2): 207–215.
- [18] Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. *Metabolic Engineering*, 2017, 40: 80–92.
- [19] Peng Q, Gao G, Lü J, Long Q, Chen X, Zhang F, Xu M, Liu K, Wang Y, Deng Z, Li Z, Tao M. Engineered Streptomyces lividans strains for optimal identification and expression of cryptic biosynthetic gene clusters. Frontiers in Microbiology, 2018, 9: 3042.
- [20] Hao T, Xie Z, Wang M, Liu L, Zhang Y, Wang W, Zhang Z, Zhao X, Li P, Guo Z, Gao S, Lou C, Zhang G, Merritt J, Horsman GP, Chen Y. An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. *Nature Communications*, 2019, 10(1): 3665.
- [21] Liu J, Zhou H, Yang Z, Wang X, Chen H, Zhong L, Zheng W, Niu W, Wang S, Ren X, Zhong G, Wang Y, Ding X, Müller R, Zhang Y, Bian XY. Rational construction of genome-reduced *Burkholderiales* chassis facilitates efficient heterologous production of natural products from Proteobacteria. *Nature Communications*, 2021, 12(1): 4347.
- [22] Paget MS, Chamberlin L, Atrih A, Foster SJ, Buttner MJ. Evidence that the extracytoplasmic function sigma factor sigma E is required for normal cell wall structure in *Streptomyces coelicolor* A3(2). *Journal of Bacteriology*, 1999, 181(1): 204–211.
- [23] Fu J, Teucher M, Anastassiadis K, Skarnes W, Stewart AF. A recombineering pipeline to make conditional targeting constructs. *Methods in Enzymology*, 2010, 477: 125–144.
- [24] Ou Y, Sheng Y, Hu X, Leng D, Huang J, Hu Z, Bai L, Deng Z, Kang Q, Wu Y. Nonomuraea nitratireducens sp. nov., a new actinobacterium isolated from Suaeda australis Moq. rhizosphere. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(9): 5026–5031.
- [25] Meng ST, Wu H, Wang L, Zhang BC, Bai LQ. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. *Applied*

Microbiology and Biotechnology, 2017, 101(13): 5341–5352.

- [26] Kang JS, Son BW, Choi HD, Yoon JH, Son WS. Dynamics of supercoiled and linear pBluescript II SK(+) phagemids probed with a long-lifetime metal-ligand complex. *Journal of Biochemistry and Molecular Biology*, 2005, 38(1): 104–110.
- [27] Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp.. *Gene*, 1992, 116(1): 43–49.
- [28] Corbacho I, Teixidó F, Velázquez R, Hernández LM, Olivero I. Standard YPD, even supplemented with extra nutrients, does not always compensate growth defects of *Saccharomyces cerevisiae* auxotrophic strains. *Antonie van Leeuwenhoek*, 2011, 99(3): 591–600.
- [29] Shima J, Hesketh A, Okamoto S, Kawamoto S, Ochi K. Induction of actinorhodin production by *rpsL* (encoding ribosomal protein S12) mutations that confer streptomycin resistance in *Streptomyces lividans* and *Streptomyces coelicolor* A3(2). *Journal of Bacteriology*, 1996, 178(24): 7276–7284.
- [30] Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical *Streptomyces* genetics. Colney: John Innes Fundation, 2000: 406–414.
- [31] Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical *Streptomyces* genetics. Colney: John Innes Fundation, 2000: 249–250.
- [32] Koběrská M, Kopecký J, Olšovská J, Jelínková M,

Ulanova D, Man P, Flieger M, Janata J. Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain *Streptomyces lincolnensis* ATCC 25466. *Folia Microbiologica*, 2008, 53(5): 395–401.

- [33] Zhang HZ, Schmidt H, Piepersberg W. Molecular cloning and characterization of two lincomycin-resistance genes, *lmrA* and *lmrB*, from *Streptomyces lincolnensis* 78-11. *Molecular Microbiology*, 1992, 6(15): 2147–2157.
- [34] Hou B, Lin Y, Wu H, Guo M, Petkovic H, Tao L, Zhu X, Ye J, Zhang H. The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in *Streptomyces lincolnensis*. Journal of Bacteriology, 2018, 200(2): e00447–e00417.
- [35] Sheng Y, Ou YX, Hu XJ, Deng ZX, Bai LQ, Kang QJ. Generation of tetramycin B derivative with improved pharmacological property based on pathway engineering. *Applied Microbiology and Biotechnology*, 2020, 104(6): 2561–2573.
- [36] Wagner N, Osswald C, Biener R, Schwartz D. Comparative analysis of transcriptional activities of heterologous promoters in the rare actinomycete *Actinoplanes friuliensis. Journal of Biotechnology*, 2009, 142(3/4): 200–204.
- [37] Scherlach K, Schuemann J, Dahse HM, Hertweck C. Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus *Aspergillus nidulans*. *The Journal of Antibiotics*, 2010, 63(7): 375–377.