

铁载体偶联抗生素连接体优化的研究进展

王园园,刘正,郭嘉亮*

佛山大学 医学部, 广东 佛山 528225

王园园, 刘正, 郭嘉亮. 铁载体偶联抗生素连接体优化的研究进展[J]. 微生物学报, 2024, 64(11): 4134-4152. WANG Yuanyuan, LIU Zheng, GUO Jialiang. Research advances of linkers in the design of siderophore-antibiotic conjugates[J]. Acta Microbiologica Sinica, 2024, 64(11): 4134-4152.

摘 要:由于抗生素的滥用,细菌耐药性问题日益严峻。细菌耐药性特别是革兰氏阴性菌耐药性 已经成为主要公共卫生威胁之一。将细菌分泌的铁载体分子与抗生素偶联,利用细菌的铁摄取系 统将抗生素转运至细菌细胞内,从而增强药效或者扩大抗菌谱,称之为"特洛伊木马"策略。2019 年,头孢地尔(cefiderocol)作为第一个铁载体-抗生素偶联药物被批准上市,引起研究人员对"特洛 伊木马"分子抗生素策略的广泛关注。目前铁载体-抗生素偶联物的设计大都是考虑连接不同作用 机制的抗生素或不同种类的铁载体,而缺乏对中间连接体的研究。本综述将归纳总结文献中不同 连接体对偶联物抗菌活性的影响,可为新型抗菌药物研发、解决临床耐药问题提供参考。

关键词:细菌耐药;铁载体-抗生素偶联物;连接体;"特洛伊木马"策略

Research advances of linkers in the design of siderophore-antibiotic conjugates

WANG Yuanyuan, LIU Zheng, GUO Jialiang^{*}

School of Medicine, Foshan University, Foshan 528225, Guangdong, China

Abstract: Escalating resistance of pathogens, especially Gram-negative bacteria, to antibiotics has become a public health problem arousing worldwide concern because of the abuse of antibiotics. The "Trojan Horse" strategy emerges as a promising approach to the development

*Corresponding author. E-mail: janalguo@126.com

资助项目: 国家自然科学基金(82373835, 82173781, 82304313)

This work was supported by the National Natural Science Foundation of China (82373835, 82173781, 82304313).

Received: 2024-06-27; Accepted: 2024-08-30; Published online: 2024-09-05

of new antibacterial agents. This strategy improves the antibacterial activity or broadens the antibacterial spectrum of antibiotics by using the siderophore-mediated bacterial iron transport system. In 2019, cefiderocol as the first siderophore-antibiotic conjugate was approved for marketing, which has garnered wide attention of scientists in this field. Currently, researchers mainly focus on siderophores or utilizing antibiotics with different mechanisms and ignoring linkers in the design of agents based on the "Trojan Horse" strategy. This review will summarize the impact of different linkers of conjugates on antibacterial activity, which could provide reference for the development of new antibacterial drugs and combating bacterial resistance. **Keywords:** bacterial resistance; siderophore-antibiotic conjugate; linker; "Trojan Horse" strategy

抗生素耐药性是一个全球性的公共卫生问 题, 它对人类健康构成了巨大的威胁。随着抗生 素的不合理使用,细菌逐渐产生耐药性,甚至是 对多种不同类型的抗生素产生交叉耐药,这会导 致一些原本易于治疗的感染变得难以控制[1-2]。 日益严峻的抗生素耐药性也引起全球的发病率 与死亡率发生显著变化^[2]。如果抗生素耐药性问 题仍无法得到有效解决,预计 2050年,全球每 年将有1000万人死于抗生素耐药菌感染[3-4],超 过癌症的死亡人数,成为全球人类死亡的主要原 因之一,造成的直接经济损失将超10万亿美元。 2023年11月20日,全国细菌耐药监测网总结 了从 2 000 所成员单位上报的关于 2022 年细菌 耐药的检测数据,并发布了《2022 年全国细菌 耐药监测报告》^[5],报告指出,2021年10月至 2022年10月主要临床分离菌种分布(n=4 928 509) 中, 革兰氏阳性菌占 28.5%, 革兰氏阴性菌占 71.5%, 前5位分别是: 大肠埃希菌、肺炎克雷 伯菌、金黄色葡萄球菌、铜绿假单胞菌和鲍曼不 动杆菌。此外, 2024 年 5 月, 世界卫生组织 (https://www.who.int)更新了 2024 年细菌类重点 病原体目录(2024 WHO BPPL)^[6],纳入了 15 种 耐药细菌,依照重要性分为关键、高度和中度优 先级;其中,关键优先级包括鲍曼不动杆菌和肠 杆菌。从以上分析,我们发现革兰氏阴性菌的耐 药问题尤为突出。

革兰氏阴性菌对临床常用抗生素的耐药性 之所以比阳性菌更为严重,这与阴性菌细胞壁特 殊的双膜结构密切相关^[7]。相比于革兰氏阳性 菌,革兰氏阴性细菌细胞壁的外层周质还有一层 外膜,这使得它们对许多抗生素的通透性降低, 因而对一些临床常用的抗生素(如 β-内酰胺类抗 生素)天然耐药^[8-9]。革兰氏阴性菌的外膜属于其 细胞壁的一部分,主要由脂多糖、磷脂以及外膜 蛋白所构成^[2]。脂多糖位于革兰氏阴性菌细胞壁 的最外层,是一层较厚的类脂多糖类物质,包含 类脂、多糖等。其中,类脂为革兰氏阴性菌致病 物质内毒素的物质基础。外膜蛋白是嵌入脂多糖 和磷脂层外膜上的蛋白,种类多达20多种。其 中的脂蛋白具有使外膜层与细胞内壁肽聚糖层 紧密相连的功能,此外,孔蛋白能够控制某些物 质进入外膜^[10]。革兰氏阴性菌独特的双膜结构 作为一种渗透屏障,阻碍部分抗菌药物进入细菌 细胞内,保护细胞免受破坏,从而提供给细菌耐 药性保护[11]。革兰氏阴性菌细胞壁双膜结构具有 一定的特殊性和复杂性,这也是阴性菌产生耐药 的重要机制之一。

铁是大多数生命体所必需的营养物质,对于 维持正常生命活动发挥着至关重要的作用。在生 理条件(pH 7.4)下,每个细菌细胞分裂需要 Fe³⁺ 大约 10⁻⁵ mol/L,而人血清中以 Fe³⁺形式存在的 浓度仅大约为 10⁻²⁴ mol/L^[12]。因此,部分细菌为 了从外环境中获取足够的铁,分泌铁载体分子去 螯合宿主环境中的铁离子从而形成铁载体与铁 离子复合物,经细菌细胞铁载体蛋白识别,将铁 与铁载体分子(如亚铁血红素)复合物转运至细 胞质,再在铁还原酶的作用下释放出铁离子供细 菌利用和储存^[13]。细菌通过此种铁摄取机制, 能够从外环境中获取足够的铁离子,以适应宿主 环境并调控细胞内铁离子浓度的变化,满足细菌 生长需要。铁载体对铁离子的强螯合能力使其成 为新型药物研发的热点,例如一些天然的铁载 体-抗生素偶联物已被证实可以通过特定的铁转 运系统进入目标细菌,进而发挥作用^[9]。

目前,抗菌药物的研发大多聚焦于对已知化 合物的改造或者优化,然而细菌耐药性的问题依 然是一个严峻的挑战。因此,研发新靶标和新作 用机制的抗菌剂对于克服细菌耐药性十分重要。 基于细菌特有的铁获取机制,科学家提出了"特 洛伊木马"分子抗生素策略^[9],将铁载体分子与 临床使用的抗生素偶联,借助细菌铁摄取系统将 抗生素递送至细胞内,从而突破细菌的渗透屏 障,杀死细菌(图 1)。这种策略的主要目标在于 促使抗生素进入细菌细胞,特别是阴性菌,增加 细胞内药物浓度,从而增强抗菌活性或者扩大抗 菌谱。2019 年,第一个铁载体偶联抗生素药物 头孢地尔(cefiderocol,图 1)被美国食品药品监 督管理局(Food and Drug Administration, FDA)批 准上市。头孢地尔的成功上市证实了"特洛伊木 马"分子抗生素策略作为一种新型抗耐药菌抗生 素研究的可行性。

"特洛伊木马"分子抗生素由3个部分组成: 铁载体、连接体和抗菌剂。偶联物结构中的铁载 体对于细菌的洗择性尤为重要,抗菌剂对药物靶 点至关重要,而中间连接体对偶联物能否裂解释 放药物起着关键作用(图 1)。因此,这3个组成 部分在偶联物的设计中都需要综合考虑,进行系 统地选择和优化,以便在药物转运和释放方面达 到最优的抗菌作用。我们对已报道的铁载体-抗 生素偶联物的研究文献进行归纳总结,偶联物发 挥抗菌作用既有成功的典范也有失败的例子。大 部分偶联物的设计都是考虑连接不同类型的抗 生素。如何选择最合适的连接体,关乎偶联物进 入细菌细胞内能否释放出母体抗生素,目前还 无此类分子设计的指引。本综述归纳总结了已 报道文献中不同连接体对抗菌效果的影响,为 新型铁载体-抗生素偶联物的设计提供重要的 参考价值。

Figure 1 "Trojan Horse" strategy and the structure of cefiderocol.

1 铁载体-抗生素偶联物

在"特洛伊木马"分子抗生素设计中应考虑 每一组分对抗菌作用的影响。已报道的天然铁载 体-抗生素偶联物有阿波霉素(albomycin)、 salmycins (图 2)等^[14-15],它们的结构中通过酰胺 键或酯键将铁载体分子与抗生素进行连接。例 如,阿波霉素主要是由三异羟肟酸型铁载体和硫 代核糖嘧啶抗菌剂部分通过酰胺键相连接而形 成的。在大肠杆菌(*Escherichia coli*)内,阿波霉 素利用细菌铁摄取系统将偶联物穿过外膜、周质 和内膜进而转运至细胞质^[16]。在细胞质中,阿 波霉素经肽酶裂解释放抗菌剂^[17],研究结果表 明阿波霉素对 *Escherichia coli* 的抗菌活性是氨 苄西林的 100 倍。与阿波霉素不同的是, salmycins 通过酯键将铁载体与抗菌部分进行连接。 Salmycins 能够通过铁还原引发的分子内环化释 放出蛋白合成抑制剂氨基糖苷^[18],它对金黄色 葡萄球菌(*Staphylococcus aureus*)和肺炎链球菌 (*Streptococcus pneumoniae*)表现出很强的抗菌活 性(MIC=10 nmol/L)^[19]。这些天然铁载体-抗生素 偶联物通过酰胺键或酯键将二者连接起来,利用 细菌的铁摄取系统将抗生素递送到细胞内的作 用靶点,从而发挥较强的抗菌作用。

2 铁载体分子

铁载体是微生物或植物合成并分泌的一类 能够螯合铁离子的低分子量化合物,对铁离子具 有强螯合力,能帮助微生物摄取铁,在微生物生 存和生长中具有重要作用。截至目前,已知的

图 2 天然的铁载体-抗生素偶联物的抗生素释放机制

Figure 2 Antibiotics released from natural siderophore-antibiotic conjugate.

具有独特结构的铁载体有 600 余种被收录在铁 载体信息数据库中。这些铁载体主要由细菌产 生,其次是真菌和植物。铁载体按照来源主要分 为两大类,分别是天然铁载体和人工合成类铁载 体。天然铁载体是由自然界中的生物自行合成并 分泌而来的。例如在细菌中,革兰氏阴性菌铜绿 假单胞菌(Pseudomonas aeruginosa)分泌的荧光 嗜铁素 (pyoverdine, 3)和螯铁蛋白 (pyochelin, 4)^[20-21],大肠杆菌分泌的肠杆菌素(enterobactin, 5)^[22],革兰氏阳性菌金黄色葡萄球菌(Staphylococcus aureus)分泌的葡萄铁蛋白(staphyloferrin, 6)^[23], 以及从果蝇红酵母菌 (Rhodotorula pilimanae) 中提取出来的红酵母酸^[24] (rhodotorulic acid, 7) 和镰刀菌(*Fusarium roseum*)产生的一种线型 fusarinine B (8)^[25]铁载体(图 3)等。这些天然铁 载体乃是生物在漫长的进化进程中形成的适应 机制,用于在铁含量有限的环境里以极高的亲 和力同三价铁离子结合形成螯合物,被细菌膜 特异性铁载体受体蛋白识别并递送至胞内,以 此竞争和获取铁资源。此种铁摄取机制在微生 物的生存、繁衍以及与环境的相互作用中发挥 着至关重要的作用。人工合成类铁载体则是通 过化学合成方法,模拟天然铁载体的结构和功 能设计合成的。

图 3 天然铁载体的结构

在对微生物代谢产物的研究中,天然铁载体 具有高度多样化的结构。依照铁螯合功能基团的 化学性质,天然铁载体能够分为三大类(异羟肟 酸型、儿茶酚型和 α-羟基羧酸型),还有类似儿 茶酚结构的羟基吡啶酮型(图 4)。异羟肟酸型铁 载体具有独特的化学结构和强大的铁螯合能力。 例如,去铁胺(desferrioxamine)就是一种典型的 异羟肟酸型铁载体[15]。它在许多微生物中都有 存在,能够有效地从环境中摄取铁元素,以满足 微生物的生长和代谢需求。儿茶酚型铁载体的结 构中包含儿茶酚基团,这使其具备了与铁离子紧 密结合的能力。肠杆菌素是儿茶酚型铁载体的代 表之一。它在肠道细菌中发挥着关键作用,帮助 细菌在铁含量有限的环境中获取铁。α-羟基羧酸 型铁载体通过其特殊的 α-羟基羧酸基团来螯合 铁离子[15]。例如,柠檬酸就属于这一类型。虽 然它不是微生物特有的铁载体,但在一些微生物 的铁摄取过程中也可能起到一定的辅助作用。对 于实验室人工合成的铁载体,合成类铁载体的常 见结构主要以异羟肟酸、儿茶酚、α-羟基羧酸还 有类儿茶酚结构的羟基吡啶酮作为主要的骨架 构成,这为后续的药物研发提供了基础。异羟肟 酸型结构具有独特的化学性质和强大的铁螯合 能力,儿茶酚型结构中的儿茶酚基团使其能够与 铁离子紧密结合[16];α-羟基羧酸型结构通过其特 殊的 α-羟基羧酸基团来螯合铁离子; 而羟基吡 啶酮作为类儿茶酚结构,也表现出对铁离子的螯 合能力^[15]。这些结构特点使得合成类铁载体能 够有效地与铁离子结合,帮助微生物摄取铁元 素,在微生物的生存和生长中发挥重要作用。需 要注意的是,铁载体的具体结构和性质可能会因 微生物种类、环境条件等因素而有所不同。

3 稳定的连接体

3.1 酰胺键

2013 年, Wencewicz 等^[26]将三异羟肟酸型 铁载体与环丙沙星通过酰胺键连接得到偶联 13 (图 5), 在抗菌实验中, 偶联物 13 对革兰氏阳性 菌 Staphylococcus aureus (MIC=1.00 µmol/L)表 现出与母药环丙沙星(MIC=0.50 umol/L)相似的 抗菌活性;然而偶联物 13 对肺炎克雷伯菌 (Klebsiella pneumoniae)、鲍曼不动杆菌(Acinetobacter baumannii), Pseudomonas aeruginosa, Escherichia coli 等革兰氏阴性菌近乎失效(MIC≥128 µmol/L); 这些结果暗示了三羟肟酸型铁载体可被 Staphylococcus aureus 的铁载体蛋白识别并转运 至细胞内,但三异羟肟酸型铁载体似乎难以被革 兰氏阴性菌识别。随后, Wencewicz 等又设计了 儿茶酚-异羟肟酸混合型铁载体与环丙沙星偶 联物得到化合物 14^[27];遗憾的是,偶联物 14 对 7 种测试菌株几乎均未表现出抗菌活性 (MIC>128 µmol/L)。这暗示着儿茶酚-异羟肟酸 混合型铁载体可能不能被细菌识别,或者由于铁 载体体积过大阻碍了抗生素弹头与靶蛋白结合,

图 4 载铁体螯合铁官能团结构单元

Figure 4 Structural units of iron complexes and functional groups.

图 5 人工合成类铁载体-抗生素偶联物 13-23 Figure 5 The artificial siderophore-antibiotic conjugates 13-23.

从而造成活性丧失。相似地,2019年,Pandey 等^[28]设计了三异羟肟酸型铁载体-环丙沙星偶联 物15和16;它们对*Escherichia coli*表现出优异 的抗菌活性(15,MIC=0.97 μmol/L;16,MIC= 0.23 μmol/L),与环丙沙星相当(MIC=0.23 μmol/L), 进一步研究发现了富铁环境会显著抑制偶联物 的抗菌活性(MIC>64 μmol/L)。这些结果证明了 富铁环境会抑制细菌对铁载体的转运,也间接表 明三异羟肟酸-环丙沙星偶联物15和16可被 *Escherichia coli*外膜铁载体蛋白识别并转运至 细胞内,从而发挥强的抗菌作用。2018年, Neumann等^[22]报道了 *Escherichia coli* 分泌的天 然铁载体肠杆菌素与环丙沙星通过酰胺键连接 得到偶联物 17,并初步研究了不同类型的连接 体对偶联物抗菌效果的影响;偶联物 17 对 2 种 致病性 *Escherichia coli* 表现出与环丙沙星相似 的抗菌活性(MIC=0.10 μmol/L)。后续的抗菌机 制研究表明偶联物 17 可被致病性 *Escherichia coli* 外膜铁载体转运蛋白 FepA 识别和转运,并 借助肠杆菌素转运系统将偶联物转运至胞内,从 而发挥优异的抗菌活性[22]。

2023 年,本课题组^[29]报道了羟基吡啶酮类 铁载体偶联环丙沙星得到了偶联物18-23,并考 察了不同的连接位点及连接体的长度对偶联物 抗菌活性的影响;结果表明,偶联物 20 对 Pseudomonas aeruginosa ATCC 27853 (MIC= 0.86 µmol/L) Pseudomonas aeruginosa PAO1 (MIC=0.43 µmol/L) Escherichia coli (MIC= 0.03 µmol/L) Klebsiella pneumoniae (MIC= 1.72 µmol/L) 和 Staphylococcus aureus (MIC= 3.44 µmol/L)的抗菌活性达到了与环丙沙星相当 的效果;此外, 偶联物 20 对 4 株多药耐药 Pseudomonas aeruginosa (FB、1167、1121 和 1129) 也表现出较好的抗菌作用;除了 Pseudomonas aeruginosa ATCC 27853 , Pseudomonas aeruginosa PAO1、Escherichia coli 和 Klebsiella pneumoniae, 偶联物 20 对其他测试菌株的抗菌活性是环丙沙 星的 1/2; 抗菌活性微弱降低可能归因于将羟基 吡啶酮作为铁载体连接到环丙沙星,改变了细菌 对原药环丙沙星的吸收方式,导致进入细胞内的 药物浓度降低;然而,当把偶联位点转移到羟基 吡啶酮的 N-1 位得到偶联物 19, 它对测试菌株 的抗菌活性是 20 的 1/7-1/2。这些结果表明, 羟 基吡啶酮作为铁载体的理化性质微弱变化会影 响偶联物的抗菌活性,这归因于羟基吡啶酮作为 铁载体结构的微小变化可能会干扰小分子与铁 载体蛋白间的相互作用,或者减少偶联物经铁载 体介导的吸收;此外,我们也考察了烷基链连接 体的长度对活性的影响,结果发现,无论偶联位 点在羟基吡啶酮的 C-6 还是 C-2 位, 随着烷基链 的延长, 抗菌活性逐渐减弱(如 20 vs. 21 vs. 22); 令人意外的是, 偶联物 23 包含 6 个碳长的连接 体几乎完全丧失活性,这表明连接体的柔性太 强,可能会导致偶联物结构高度折叠,空间结构 变大,致使无法通过蛋白通道,阻碍抗菌剂与靶

蛋白的结合。综合分析,不同的细菌分泌不同的 铁载体,有不同的铁载体吸收和转运机制。在低 铁环境下,不同的细菌分泌和识别特定的铁载体 分子来获取足够的铁离子以满足细菌生长的需 求。将铁载体分子引入到环丙沙星可能改变了抗 菌剂的吸收机制,因而导致偶联物对不同的致病 菌表现出不同水平的抗菌活性。

3.2 三氮唑和醚

2012 年, Zheng 等^[30]将肠杆菌素与万古霉 素通过三氮唑-聚乙二醇(polyethylene glycol, PEG)进行连接得到偶联物 24 (图 6),成功地将 万古霉素的抗菌谱扩大到了革兰氏阴性菌 (Escherichia coli, Pseudomonas aeruginosa: MIC<10 µmol/L);进一步的转运机制研究表明, 偶联物 24 可被 Escherichia coli 和 Pseudomonas aeruginosa 铁载体转运系统识别。然而,与偶联 物17结构相似,此团队也设计了将天然铁载体 肠杆菌素与环丙沙星通过 PEG 进行连接而得到 偶联物 25^[22]; 然而, 25 对 Escherichia coli 几乎 无抑制作用,这与偶联物7的抗菌作用截然相 反;作者猜测,尽管偶联物 25 可借助 Escherichia coli 肠杆菌素转运系统被递送至细胞内, 然而 PEG 类连接体阻碍了环丙沙星弹头与靶蛋白的 结合,从而丧失了抗菌活性。与偶联物 24 的连 接体相似, Pinkert 等^[31]报道了人工合成类铁载 体三儿茶酚经三氮唑-PEG 连接体与氨苄西林偶 联得到 26; 偶联物 26 对 Escherichia coli 的抗菌 活性(MIC=0.81 µmol/L)是母体抗生素氨苄西林 (MIC=19 µmol/L)的 23 倍; 尽管 26 对 Staphylococcus aureus 和 Acinetobacter baumannii (MIC>64 µmol/L)仅表现出微弱的抑制作用,但 它的抗菌活性仍约是氨苄西林(MIC>183 umol/L)的 3 倍;此外,该团队也设计了将三氮唑-PEG 连 接体替换为三氮唑得到偶联物 27; 令人惊喜的 是,三氮唑连接体偶联物 27 对 Escherichia coli

Ö

29

28

ő

Figure 6 The artificial siderophore-antibiotic conjugates 24–29.

(MIC≤0.09 µmol/L)、*Staphylococcus aureus* (MIC=0.12 µmol/L)和 *Acinetobacter baumannii* (MIC≤0.09 µmol/L)均表现更强的抑制作用,是 氨苄西林的 250 倍;进一步的转运机制研究表 明,偶联物 27 可被 *Escherichia coli* 细胞外膜铁 载体转运蛋白 FepA、CirA 和 Fiu 识别。此外, 我们团队也考察连接体的分子柔性对抗菌活性 的影响,将酰胺连接体换成刚性更强的三氮唑基 团得到偶联物 28 和 29^[29];然而,三氮唑偶联物 对所有测试菌株的抗菌活性都大幅降低。这表明 连接体需要保持一定的柔性才能满足抗菌剂弹 头更好地与靶蛋白结合。

3.3 吡咯烷内胺盐

日本盐野义公司研发的头孢地尔(30)于 2019年被美国 FDA 批准上市,其由单儿茶酚型 铁载体通过吡咯烷鎓基团与头孢类抗生素偶联。 头孢地尔的抗生素部分化学结构与头孢他啶类 似,由一个典型的 β-内酰胺环与二氢噻嗪环组 成(图 7)。有研究在 C-7 位侧链中引入羧基丙氧基 亚氨基,使得头孢地尔对β-内酰胺酶的稳定性增 强,并提高了对革兰氏阴性菌的抗菌活性^[32];中 间连接体选择了吡咯烷鎓基团,这让偶联物具有 两性离子特性,水溶性提升,提高了药物分子穿 透革兰氏阴性菌外膜的能力,使其不易被水解, 增强稳定性。此外,日本盐野义公司研发也发现 了偶联物 31,儿茶酚型铁载体通过吡咯烷内胺 盐与抗生素连接,借助细菌铁离子吸收系统,增 强其对革兰氏阴性菌的抗菌作用[33]。

4 可裂解的连接体

4.1 酯键

2014年, Fardeau 等^[34]合成了将三儿茶酚型铁 载体通过可水解的酯键与环丙沙星相连接得到偶 联物 32-35 (图 8); 偶联物 32 对 Pseudomonas aeruginosa 呈现出适中的抗菌活性(MIC=8 µg/mL), 但偶联物 35 即使在高浓度(128 μg/mL)条件下仍 然未表现出抗菌作用;而且,这4个偶联物的抗 菌活性都远差于环丙沙星;作者猜测可能是由于 偶联物进入细胞内只能发生部分水解, 抗生素不 能被完全释放出来,从而导致抗菌活性比母体抗 生素有所降低。Rivault 等^[35]报道了以螯铁蛋白作 为铁载体通过亚甲基二氧基酯与诺氟沙星偶联得 到 36 和 37; 初步的抗菌活性测试结果显示, 不稳 定连接基团的偶联物 36 和 37 对 Pseudomonas aeruginosa 仅呈现出与诺氟沙星相似的抑制作用: 作者猜测可能是由于酯基连接体易受酯酶破坏,导 致偶联物在细胞外可能已经被酯酶水解破坏,提 前释放出母体抗生素, 仅余少量的偶联物借助细 菌铁摄取系统被转运至细胞内发挥抗菌作用[36],因 而偶联物仅表现出与母体抗生素相似的抗菌活性。

2015 年, Zheng 等^[37]设计并合成了以不稳 定的(酰氧基)烷基酯作为连接体,将肠杆菌素铁 载体与环丙沙星相连接得到偶联物 38 (图 8),旨 在探究连接基团对抗菌效果的影响。他们之前

图 7 人工合成类铁载体-抗生素偶联物 30 和 31

Figure 7 The artificial siderophore-antibiotic conjugates 30 and 31.

图 8 人工合成类铁载体-抗生素偶联物 32-38

Figure 8 The artificial siderophore-antibiotic conjugates **32–38**.

的研究发现,(酰氧基)烷基酯在溶液中难以长时间稳定存在^[38],因此通过改变连接体周围的取 代基类型,增大空间位阻,增强稳定性,减少药物的破坏;偶联物 38 对 Escherichia coli K-12 和 H1876的 MIC 达到了 1.00 μmol/L;而且,偶联 物 38 在细菌培养液中可保持结构稳定,只检测 到了 1%的(酰氧基)烷基连接体的降解产物。

4.2 三甲基锁

2015年, Ji 等^[39-40]报道了以"三甲基锁"作为 连接体的异羟肟酸-环丙沙星偶联物 **39**和 **40**(图 9);"三甲基锁"属于一种邻羟基肉桂酸衍生物, 其结构上 3 个甲基彼此之间的位阻会促使其进 行内酯化,进而转变成二氢香豆素;细菌铁代谢 的还原途径激活偶联物释放抗生素的过程,偶联 物螯合的三价铁被还原成二价铁,"三甲基锁" 的核心骨架由醌还原为酚,并进一步内酯化,以 此释放出药物,发挥抗菌作用(图 10);研究结果 表明偶联物 39 与具有稳定连接体的偶联物 13 对 Pseudomonas aeruginosa 和 Escherichia coli 的抗菌活性相当,但都弱于母药环丙沙星;这 些结果暗示偶联物的连接体还需要进一步地 优化,以提高药物的释放效率。在此之前,该 课题组也验证了酯酶可裂解三甲基锁连接体, 偶联物 40 依然呈现出比环丙沙星更弱的抗菌 作用^[41]。

4.3 二硫键

Neumann 等^[42]设计了以二硫键作为连接体 将肠杆菌素铁载体与环丙沙星偶联得到 41 (图 11),继续探索连接基团的稳定性对偶联物抗菌 活性的影响;结果显示,偶联物 41 仅对部分 *Escherichia coli* 表现出较好的抗菌效果(MIC= 0.1 μmol/L),是环丙沙星的(MIC=0.01 μmol/L) 1/10;作者猜测偶联物 **41** 在进入细菌细胞前就

已经被还原裂解,从而释放出环丙沙星,所以二 硫键在铁载体-抗生素偶联物的设计中不宜被广 泛应用。

图 9 人工合成类铁载体-抗生素偶联物 39 和 40 Figure 9 The artificial siderophore-antibiotic conjugates 39 and 40.

Figure 10 "Trimethyl lock" derived siderophore-antibiotic conjugates.

图 11 人工合成类铁载体-抗生素偶联物 41

Figure 11 The artificial siderophore-antibiotic conjugates 41.

4.4 头孢菌素

Liu 等^[43]和 Schalk^[44]设计了以头孢菌素作为 连接体将双儿茶酚型铁载体与噁唑烷酮连接得 到偶联物 42 (图 12);其设计思路为以头孢菌素 作为连接基团,进入细胞内可由青霉素结合蛋白 或 β-内酰胺酶裂解,从而将噁唑烷酮类抗生素 释放出来,提高噁唑烷酮的抗菌活性,乃至扩大 抗菌谱;抗菌实验结果也证实了作者的猜想,偶联 物 42 的抗菌活性是头孢菌素或单独的铁载体-噁 唑烷酮偶联物的 125 倍,尤其是在高表达 β-内酰 胺酶的 Acinetobacter baumannii 仍呈现出出色的 抗菌活性(MIC=6.00 μmol/L);此外,偶联物 42 和 铁载体-头孢菌素偶联物对 Acinetobacter baumannii 表现出相似的抗菌作用(MIC=0.40 μmol/L);这些 结构暗示了偶联物 42 和铁载体-头孢菌素偶联物 的抗菌活性均归因于抗生素弹头头孢菌素;随后, 又构建 β-内酰胺酶过表达的 Acinetobacter baumannii 进行抗菌活性检测,以验证作者的猜 想;实验结果表明,铁载体-头孢菌素偶联物对 β-内酰胺酶过表达菌株呈现出明显的耐药性 (MIC>50 μmol/L),但偶联物 42 对 β-内酰胺酶过 表达菌株依然表现出较强的抗菌作用(MIC= 6.00 μmol/L)。以上结果验证了作者的猜想,也 为研究人员拓宽了新的思路,指出了新的方向。

图 12 人工合成类铁载体-抗生素偶联物 42

Figure 12 The artificial siderophore-antibiotic conjugate **42**.

5 总结与展望

细菌的耐药性,特别是革兰氏阴性菌所表现 出的耐药性,对人类的健康带来了极为严重的威 胁,急切需要研发出新型抗生素来克服细菌耐药 性。目前抗生素的研发大都是对已有抗生素的结 构进行优化或改良,通常耐药性会很快发生。"特 洛伊木马"分子抗生素策略作为一种崭新作用模 式的抗生素,在实验及临床方面都收获了一定的 成效,具备非常大的研发潜力和十分广阔的应用 前景。"特洛伊木马"分子抗生素将铁载体与临床 常用的抗生素偶联,借助细菌铁载体摄取系统将 抗生素递送至细胞内,增加药物浓度,从而增强 药效或扩大抗菌谱。"特洛伊木马"分子抗生素由 3个部分构成:铁载体(结构式中的黑色部分)、 连接基团(结构式中的红色部分)以及抗生素(结 构式中的蓝色部分)。在偶联物分子的设计过程 中,应当全方位考虑这3个组成部分中的每一个 组分对抗菌效果带来的影响,开展系统的选择和 优化工作,以便在膜渗透和抗生素释放方面实现 最优的抗菌活性。然而,这些部分的选择与优化 存在一定的难度。正因为如此,截至目前,成功 的"特洛伊木马"分子抗生素依旧寥寥无几。我们 对已有的铁载体-抗生素偶联物研究文献进行了 较全面的调研,研究人员在铁载体-抗生素偶联 物的设计时多集中于抗生素的选择。按照铁载体 偶联抗生素的原药作用机制进行了归类和分析, 我们发现作用于细菌细胞周质靶标的抗生素 (如作用于细菌细胞壁的 β-内酰胺类抗生素和 作用于细胞膜的达托霉素)与铁载体偶联能大 幅提升对革兰氏阴性菌的抗菌效果,有较好的 增效作用^[31,45-47], 偶联物 24、27 和 30 就是最好 的例子(表 1); 然而, 作用于细胞质内靶标的抗 生素(如作用于核糖体的恶唑烷酮类和作用于 DNA 螺旋酶的氟喹诺酮类)抗菌活性均未明显 提高,甚至失效^[22,26,28-29,48],偶联物 14、25 和 35 就是代表性化合物(表 1)。这种限制的关键原 因可能是,抗生素偶联的铁载体与细菌自身分泌 的天然铁载体的结构存在差异,细菌细胞外膜上 的铁载体转运蛋白对这两种铁载体的转运选择 性存在差异,使得携带抗生素的铁载体绝大部分 被带入周质,只有少量或无铁载体偶联抗生素再 次跨过内膜被递送至细胞质。因此,对于革兰氏 阴性菌而言,大部分铁载体-抗生素偶联物只能 够被递送至周质,与周质中靶蛋白作用。

铁载体-抗生素偶联物发展的另一项难点在 于寻找合适的连接基团。在新型药物的研发设想 中,理想的连接基团不但需要在细胞外部的条件 (比如面对复杂的体液环境)及在铁吸收系统的 主动转运过程中能保持结构稳定,并且在偶联物 进入细菌细胞内部能够促使铁载体-抗生素偶联 物裂解,释放出母体抗生素。通过总结铁载体-氟喹诺酮类抗生素偶联物的研究(表 1),发现连 接体对喹诺酮类偶联物的抗菌活性尤为重要。大 部分不稳定的连接基团偶联物在细胞外可能就 已经被水解破坏,未进入细胞内而过早地释放出 药物,如偶联物 32-35 和 41。然而稳定的连接 体可使偶联物在体内、体外及转运过程中相对更 稳定,不易受环境破坏,进入细菌内后才释放或 不释放药物,从而提高偶联物在细菌细胞内的药 物浓度,发挥较好的抗菌效果,如偶联物 16、 17 和 20。然而,若连接基团过于稳定,便会增 加抗生素释放的难度,还需要进行更进一步的优 化改良。Liu 等^[43]和 Schalk^[44]有关铁载体-噁唑 烷酮类偶联物的研究成果为我们提供了成功的 案例, β-内酰胺类抗生素(42)也能够成为一种理 想的连接基团(表 1),应用到其他以周质为靶点的 抗生素的铁载体-抗生素偶联物中。对于偶联周质 靶点的抗生素,稳定的连接体(如酰胺)对于偶联 物发挥优秀的抗菌作用更为适宜; 而对于偶联胞

Conjugate	Siderophore	Linker	Antibiotic	MIC of conjugates (µmol/L)	MIC of antibiotics (µmol/L)
13 ^[26]	Linear tris-hydroxamate	Amide	Ciprofloxacin	Staphylococcus aureus SG 511, 1.00;	Staphylococcus aureus SG 511, 0.50;
				<i>Klebsiella pneumoniae</i> ATCC 700603, >128:	<i>Klebsiella pneumoniae</i> ATCC 700603, 0.25:
				Acinetobacter baumannii ATCC 17961. >128:	Acinetobacter baumannii ATCC 17961, 0.25:
				Pseudomonas aeruginosa	Pseudomonas aeruginosa
				ATCC 27853, >128	ATCC 27853, 0.13
14 ^[27]	bis-catechol-			Staphylococcus aureus SG 511, >128;	<i>Staphylococcus aureus</i> SG 511, 0.50;
				<i>Klebsiella pneumoniae</i> ATCC 700603, >128;	<i>Klebsiella pneumoniae</i> ATCC 700603, 0.25;
				Acinetobacter baumannii ATCC 17961, >128;	Acinetobacter baumannii ATCC 17961, 0.25;
				Pseudomonas aeruginosa ATCC 27853, >128	<i>Pseudomonas aeruginosa</i> ATCC 27853, 0.13
15 ^[28]	Linear tris-hydroxamate			Escherichia coli, 0.97	Escherichia coli, 0.23
16 ^[28]	Non-linear			Escherichia coli, 0.23	
17 ^[22]	Enterobactin			Escherichia coli UTI89. 0.10:	Escherichia coli UTI89, 0.10:
17	Enterobaetin			<i>Escherichia coli</i> CFT073, 0.10;	<i>Escherichia coli</i> CFT073, 0.10;
				Escherichia coli K-12, >10;	Escherichia coli K-12, 0.10;
				Escherichia coli B, >10	Escherichia coli B, 0.10
20 ^[29]	Hydroxypyridone			<i>Pseudomonas aeruginosa</i> ATCC 27853, 0.86;	<i>Pseudomonas aeruginosa</i> ATCC 27853, 0.75;
				Pseudomonas aeruginosa	Pseudomonas aeruginosa
				PAO1, 0.43;	PAO1, 0.38;
				<i>Escherichia coli</i> ATCC 25922, 0.03;	<i>Escherichia coli</i> ATCC 25922, 0.02;
				<i>Klebsiella pneumoniae</i> ATCC 700603, 1.72;	<i>Klebsiella pneumoniae</i> ATCC 700603, 1.51;
				Staphylococcus aureus ATCC 25923, 3.44	Staphylococcus aureus ATCC 25923, 1.51
24 ^[30]	Enterobactin	Triazole-ether	Vancomycin	Escherichia coli, <10;	Escherichia coli, >10;
				Pseudomonas aeruginosa, <10	Pseudomonas aeruginosa: >10
25 ^[22]	Enterobactin	Ether	Ciprofloxacin	Escherichia coli UTI89, >10;	Escherichia coli UTI89, 0.10;
				<i>Escherichia coli</i> CFT073, >10;	Escherichia coli CFT073, 0.1;
				Escherichia coli K-12, >10;	Escherichia coli K-12, 0.10;
				Escherichia coli B, >10	Escherichia coli B, 0.10
26 ^[31]	tris-catechol	Triazole-ether	Ampicillin	Escherichia coli, 0.81;	Escherichia coli, 19;
				<i>Staphylococcus aureus</i> , >64;	Staphylococcus aureus, >183;
27 ^[31]	tris-catechol	Triazole		Acinetobacter baumannii, >64	Acinetobacter baumannii, >183
				Escherichia coli, MIC≤0.09;	
				Suppylococcus aureus, MIC=0 12.	
				Acinetobacter haumannii	
				MIC<0.09	

表1 铁载体-抗生素偶联物结构与抗菌活性

Table 1 The structure and antibacterial activities of siderophore-antibiotic conjugates

					(续表 1)
Conjugate	Siderophore	Linker	Antibiotic	MIC of conjugates (µmol/L)	MIC of antibiotics (µmol/L)
28 ^[29]	Hydroxypyridone	Triazole	Ciprofloxacin	Pseudomonas aeruginosa	Pseudomonas aeruginosa ATCC
				ATCC 27853, 108;	27853, 0.75;
				Pseudomonas aeruginosa	Pseudomonas aeruginosa
				PAO1, 27.05;	PAO1, 0.38;
				Escherichia coli ATCC 25922,	Escherichia coli ATCC 25922,
				3.38;	0.02;
				Klebsiella pneumoniae ATCC	Klebsiella pneumoniae ATCC
				700603, >200;	700603, 1.51;
				Staphylococcus aureus ATCC	Staphylococcus aureus ATCC
				25923, >200	25923, 1.51
30 ^[32]	Catechol	Pyrrolidinium	Ceftazidime	Pseudomonas aeruginosa	Pseudomonas aeruginosa
[24]		_		PAO1, 0.13 μg/mL	PAO1, 0.50 μg/mL
32 ^[34]	tris-catechol	Ester	Ciprofloxacin	Pseudomonas aeruginosa	Pseudomonas aeruginosa DSM
				DSM 1117, 8 μg/mL;	1117, 0.25 μg/mL;
				Pseudomonas aeruginosa AM	Pseudomonas aeruginosa AM
		-		85, >128 μg/mL;	85, 16 μg/mL
35[50]	tris-catechol	Ester		Pseudomonas aeruginosa	
				DSM 1117, >128 μg/mL;	
				Pseudomonas aeruginosa AM	
a a[37]				85, >128 μg/mL	
38[37]	Enterobactin	(Acyloxy)alkyl		Escherichia coli K-12, 1.00;	Escherichia coli K-12, 0.10;
[20]	T ·	ester		Escherichia coli H18/6, 1.00	Escherichia coli H18/6, 0.10
39	Linear tris-hydroxamate	Trimethyl lock		Pseudomonas aeruginosa	<i>Pseudomonas aeruginosa</i> AICC
				AICC 2/853, 2.00;	27853, 0.13;
				<i>Escherichia coli</i> AICC 25922,	<i>Escherichia coli</i> AICC 25922,
					<0.02;
				Actinetobacter baumannit	17961 0.25:
				Klabsialla province	1/901, 0.25, Vlabsiella preumoniae 700602
				700603 16	Neosiena preumontae 700005,
41 ^[42]	Enterobactin	Disulfide		Fscharichia coli UTI89 >10	Escharichia coli UTI89 0 10:
	Enterobaetin	Disuillae		Escherichia coli CET073 >10:	Escherichia coli CET073 0 10:
				Escherichia coli $K-12 > 10$.	Escherichia coli K-12 0 10:
				Escherichia coli B 0 10	Escherichia coli B 0.01
42 ^[43]	his-catechol	Cenhalosporin	Oxazolidinone	Acinetohacter haumannii	Acinetobacter haumannii ATCC
		Cephalosporm	Oxuzonumone	ATCC 17978 0 40	17978 >50 [.]
				Acinetobacter baumannii	Acinetobacter baumannii ATCC
				ATCC 17978 pNT255_0 40.	17978 nNT255. >50
				Acinetobacter baumannii	Acinetobacter baumannii ATCC
				ATCC 17978 pNT255: ADC-1	17978 pNT255: ADC-1, >50
				6.00	

质靶点的抗生素,连接体的选择需要兼顾其稳定 性和可裂解性,以达到偶联物在细胞外环境和转 运过程中能保持稳定,进入细胞质可被特异性 裂解释放出母体抗生素,从而达到增强抗菌效 果的目的。综上所述,"特洛伊木马"分子偶联 物的3个组成部分,即铁载体、连接体和抗生素, 在设计偶联物的过程中,除了要对铁载体和抗生 素进行考虑外,选择合适的连接体关乎偶联物在 转运过程中能否稳定存在以及母体抗生素能否 从偶联物中释放,同样对偶联物发挥抗菌作用也 起着至关重要的作用,值得进一步关注及探索。

作者利益冲突公开声明

作者声明没有任何可能会影响本文所报告 工作的已知经济利益或个人关系。

参考文献

- COLLABORATORS AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
- [2] TACCONELLI E, CARRARA E, SAVOLDI A, HARBARTH S, MENDELSON M, MONNET DL, PULCINI C, KAHLMETER G, KLUYTMANS J, CARMELI Y, OUELLETTE M, OUTTERSON K, PATEL J, CAVALERI M, COX EM, HOUCHENS CR, GRAYSON ML, HANSEN P, SINGH N, THEURETZBACHER U, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. The Lancet Infectious Diseases, 2018, 18(3): 318-327.
- [3] AHMED SK, HUSSEIN S, QURBANI K, IBRAHIM RH, FAREEQ A, ALI MAHMOOD K, MOHAMED MG. Antimicrobial resistance: impacts, challenges, and future prospects[J]. Journal of Medicine, Surgery, and Public Health, 2024, 2: 100081.
- [4] OKEKE IN, de KRAKER MEA, van BOECKEL TP, KUMAR CK, SCHMITT H, GALES AC, BERTAGNOLIO S, SHARLAND M, LAXMINARAYAN R. The scope of the antimicrobial resistance challenge[J]. The Lancet, 2024, 403(10442): 2426-2438.
- [5] 全国细菌耐药监测网. 2022 年全国细菌耐药监测报告(简要版)[EB/OL]. [2024-02-02]. http://www.carss.cn.
- [6] World Health Organization. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance[EB/OL]. [2024-04-15]. https://www.who.int.
- [7] CEBRIÁN R, BELMONTE-RECHE E, PIROTA V, de JONG A, MORALES JC, FRECCERO M, DORIA F,

KUIPERS OP. G-quadruplex DNA as a target in pathogenic bacteria: efficacy of an extended naphthalene diimide ligand and its mode of action[J]. Journal of Medicinal Chemistry, 2022, 65(6): 4752-4766.

- [8] 吕鹏,张京莉,赵泓,王运红,马芬芬,张玉,黄怡 菲. 多重耐药铜绿假单胞菌感染治疗药物研究进展[J]. 中国医院药学杂志,2024,44(6):720-725. LYU P, ZHANG J, ZHAO H, WANG Y, MA F, ZHANG Y, HUANG Y. Research advances of antibiotics on multidrug-resistant *Pseudomonas aeruginosa* infections[J]. Chinese Journal of Hospital Pharmacy, 2024, 44(6): 720-725 (in Chinese).
 [9] 韦玮,陈琦. 多重耐药假单胞菌属细菌对碳青霉烯
- [9] 韦玮, 陈琦. 多重兩约假単胞園属细園对俠育每烯 类和氨基糖苷类抗生素耐药的分子机制研究[J]. 医 学临床研究, 2024, 41(2): 230-232, 236.
 WEI W, CHEN Q. Molecular mechanism study on the resistance of multidrug-resistant *Pseudomonas* to carbapenems and aminoglycosides antibiotics[J]. Journal of Clinical Research, 2024, 41(2): 230-232, 236 (in Chinese).
- [10] WANDERSMAN C, DELEPELAIRE P. Bacterial iron sources: from siderophores to hemophores[J]. Annual Review of Microbiology, 2004, 58: 611-647.
- [11] MIETHKE M, MARAHIEL MA. Siderophore-based iron acquisition and pathogen control[J]. Microbiology and Molecular Biology Reviews, 2007, 71(3): 413-451.
- [12] SCHAIBLE UE, KAUFMANN SHE. Correction: iron and microbial infection[J]. Nature Reviews Microbiology, 2005, 3(3): 270.
- [13] BRAUN V. Iron uptake mechanisms and their regulation in pathogenic bacteria[J]. International Journal of Medical Microbiology, 2001, 291(2): 67-79.
- [14] GÓRSKA A, SLODERBACH A, MARSZAŁŁ MP. Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse' strategy[J]. Trends in Pharmacological Sciences, 2014, 35(9): 442-449.
- [15] 刘君,侯劲松,孟影,缪志颖,林静,陈卫民. 铁载 体分子偶联抗生素药物研究进展[J]. 有机化学,2020, 40(10): 3026-3043.
 LIU J, HOU JS, MENG Y, MIAO ZY, LIN J, CHEN WM. Research progress of antibiotics conjugated with siderophores[J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3026-3043 (in Chinese).
- [16] LIN ZH, XU XB, ZHAO S, YANG XH, GUO J, ZHANG Q, JING CM, CHEN S, HE Y. Total synthesis and antimicrobial evaluation of natural albomycins against clinical pathogens[J]. Nature Communications, 2018, 9(1): 3445.

- [17] BRAUN V, PRAMANIK A, GWINNER T, KÖBERLE M, BOHN E. Sideromycins: tools and antibiotics[J]. Biometals, 2009, 22(1): 3-13.
- [18] ROOSENBERG JM 2nd, MILLER MJ. Total synthesis of the siderophore danoxamine[J]. The Journal of Organic Chemistry, 2000, 65(16): 4833-4838.
- [19] VÉRTESY L, ARETZ W, FEHLHABER HW, KOGLER H. Salmycin A–D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur[J]. Helvetica Chimica Acta, 1995, 78(1): 46-60.
- [20] BRAUD A, HANNAUER M, MISLIN GLA, SCHALK IJ. The *Pseudomonas aeruginosa* pyochelin-iron uptake pathway and its metal specificity[J]. Journal of Bacteriology, 2009, 191(11): 3517-3525.
- [21] GHSSEIN G, EZZEDDINE Z. A review of *Pseudomonas aeruginosa* metallophores: pyoverdine, pyochelin and pseudopaline[J]. Biology, 2022, 11(12): 1711.
- [22] NEUMANN W, SASSONE-CORSI M, RAFFATELLU M, NOLAN EM. Esterase-catalyzed siderophore hydrolysis activates an enterobactin-ciprofloxacin conjugate and confers targeted antibacterial activity[J]. Journal of the American Chemical Society, 2018, 140(15): 5193-5201.
- [23] BEASLEY FC, MAROLDA CL, CHEUNG J, BUAC S, HEINRICHS DE. Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence[J]. Infection and Immunity, 2011, 79(6): 2345-2355.
- [24] CARRANO CJ, RAYMOND KN. Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in *Rhodotorula pilimanae*[J]. Journal of Bacteriology, 1978, 136(1): 69-74.
- [25] SAYER JM, EMERY TF. Structures of the naturally occurring hydroxamic acids, fusarinines A and B[J]. Biochemistry, 1968, 7(1): 184-190.
- [26] WENCEWICZ TA, LONG TE, MÖLLMANN U, MILLER MJ. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target *Staphylococcus aureus*[J]. Bioconjugate Chemistry, 2013, 24(3): 473-486.
- [27] WENCEWICZ TA, MILLER MJ. Biscatecholatemonohydroxamate mixed ligand siderophorecarbacephalosporin conjugates are selective sideromycin

antibiotics that target *Acinetobacter baumannii*[J]. Journal of Medicinal Chemistry, 2013, 56(10): 4044-4052.

- [28] PANDEY A, SAVINO C, AHN SH, YANG ZY, van LANEN SG, BOROS E. Theranostic *Gallium* siderophore ciprofloxacin conjugate with broad spectrum antibiotic potency[J]. Journal of Medicinal Chemistry, 2019, 62(21): 9947-9960.
- [29] WANG YY, ZHANG XY, ZHONG XL, HUANG YJ, LIN J, CHEN WM. Design and synthesis of 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates as dual antibacterial and antibiofilm agents against *Pseudomonas aeruginosa*[J]. Journal of Medicinal Chemistry, 2023, 66(3): 2169-2193.
- [30] ZHENG TF, BULLOCK JL, NOLAN EM. Siderophore-mediated cargo delivery to the cytoplasm of *Escherichia coli* and *Pseudomonas aeruginosa*: syntheses of monofunctionalized enterobactin scaffolds and evaluation of Enterobactin-Cargo conjugate uptake[J]. Journal of the American Chemical Society, 2012, 134(44): 18388-18400.
- [31] PINKERT L, LAI YH, PEUKERT C, HOTOP SK, KARGE B, SCHULZE LM, GRUNENBERG J, BRÖNSTRUP M. Antibiotic conjugates with an artificial MECAM-based siderophore are potent agents against gram-positive and gram-negative bacterial pathogens[J]. Journal of Medicinal Chemistry, 2021, 64(20): 15440-15460.
- [32] ITO A, NISHIKAWA T, MATSUMOTO S, YOSHIZAWA H, SATO T, NAKAMURA R, TSUJI M, YAMANO Y. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against *Pseudomonas aeruginosa*[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(12): 7396-7401.
- [33] EL-LABABIDI RM, RIZK JG. Cefiderocol: a siderophore cephalosporin[J]. The Annals of Pharmacotherapy, 2020, 54(12): 1215-1231.
- [34] FARDEAU S, DASSONVILLE-KLIMPT A, AUDIC N, SASAKI A, PILLON M, BAUDRIN E, MULLIÉ C, SONNET P. Synthesis and antibacterial activity of catecholate-ciprofloxacin conjugates[J]. Bioorganic & Medicinal Chemistry, 2014, 22(15): 4049-4060.
- [35] RIVAULT F, LIÉBERT C, BURGER A, HOEGY F, ABDALLAH MA, SCHALK IJ, MISLIN GLA. Synthesis of pyochelin-norfloxacin conjugates[J]. Bioorganic & Medicinal Chemistry Letters, 2007, 17(3): 640-644.

- [36] HENNARD C, TRUONG QC, DESNOTTES JF, PARIS JM, MOREAU NJ, ABDALLAH MA. Synthesis and activities of pyoverdin-quinolone adducts: a prospective approach to a specific Therapy against *Pseudomonas aeruginosa*[J]. Journal of Medicinal Chemistry, 2001, 44(13): 2139-2151.
- [37] ZHENG TF, NOLAN EM. Evaluation of (acyloxy)alkyl ester linkers for antibiotic release from siderophore-antibiotic conjugates[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(21): 4987-4991.
- [38] GUPTA D, GUPTA SV, LEE KD, AMIDON GL. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers[J]. Molecular Pharmaceutics, 2009, 6(5): 1604-1611.
- [39] JI C, MILLER MJ. Chemical syntheses and *in vitro* antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers[J]. Bioorganic & Medicinal Chemistry, 2012, 20(12): 3828-3836.
- [40] JI C, MILLER MJ. Siderophore-fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity[J]. Biometals, 2015, 28(3): 541-551.
- [41] JI C, MILLER PA, MILLER MJ. Iron transport-mediated drug delivery: practical syntheses and *in vitro* antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity[J]. Journal of the American Chemical Society, 2012, 134(24): 9898-9901.
- [42] NEUMANN W, NOLAN EM. Evaluation of a reducible disulfide linker for siderophore-mediated

delivery of antibiotics[J]. Journal of Biological Inorganic Chemistry, 2018, 23(7): 1025-1036.

- [43] LIU R, MILLER PA, VAKULENKO SB, STEWART NK, BOGGESS WC, MILLER MJ. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a Gram-positive antibiotic[J]. Journal of Medicinal Chemistry, 2018, 61(9): 3845-3854.
- [44] SCHALK IJ. A Trojan-horse strategy including a bacterial suicide action for the efficient use of a specific gram-positive antibiotic on gram-negative bacteria[J]. Journal of Medicinal Chemistry, 2018, 61(9): 3842-3844.
- [45] HUANG YJ, ZANG YP, PENG LJ, YANG MH, LIN J, CHEN WM. Cajaninstilbene acid derivatives conjugated with siderophores of 3-hydroxypyridin-4(1H)-ones as novel antibacterial agents against Gram-negative bacteria based on the Trojan horse strategy[J]. European Journal of Medicinal Chemistry, 2024, 269: 116339.
- [46] HUANG YJ, ZHONG XL, ZANG YP, YANG MH, LIN J, CHEN WM. 3-hydroxy-pyridin-4(1H)-ones as siderophores mediated delivery of isobavachalcone enhances antibacterial activity against pathogenic *Pseudomonas aeruginosa*[J]. European Journal of Medicinal Chemistry, 2023, 257: 115454.
- [47] RAYNER B, VERDEROSA AD, FERRO V, BLASKOVICH MAT. Siderophore conjugates to combat antibiotic-resistant bacteria[J]. RSC Medicinal Chemistry, 2023, 14(5): 800-822.
- [48] PANDEY A, CAO MH, BOROS E. Tracking uptake and metabolism of xenometallomycins using a multi-isotope tagging strategy[J]. ACS Infectious Diseases, 2022, 8(4): 878-888.