2010, 50(4):431-437.
摘要:摘要:上百年来细菌一直被认为是地球氨氧化过程的主要驱动者,2005年海洋中分离到迄今唯一的非极端环境泉古菌,发现其氧化氨态氮获得能源生长,是氨氧化古菌。氨氧化古菌和细菌对地球氨氧化过程的相对贡献率,是目前全球氮循环研究最重要的微生物生态学问题之一。已有的证据表明古菌在海洋氨氧化过程中发挥了重要作用,细菌则是土壤氨氧化过程的主要驱动者。本文重点探讨了原位自然环境下氨氧化古菌的生态学研究进展。
2016, 56(1):8-18.DOI: 10.13343/j.cnki.wsxb.20150134CSTR: 32112.14.j.AMS.20150134
摘要:厌氧氨氧化(Anammox)是微生物和环境领域的研究热点之一。厌氧氨氧化菌(AnAOB)是Anammox的功能载体。不同于大部分原核微生物, AnAOB具有独特的细胞器——厌氧氨氧化体,它是进行Anammox代谢的场所。研究厌氧氨氧化体有助于探明厌氧氨氧化菌的代谢特性。本文综述了厌氧氨氧化体的组成、结构与功能,以期为从事Anammox研究的同行提供参考。
2023, 63(9):3321-3334.DOI: 10.13343/j.cnki.wsxb.20220933CSTR: 32112.14.j.AMS.20220933
摘要:氧化亚氮(nitrous oxide, N2O)排放量的持续增加对全球生态平衡造成了严重的威胁。微生物N2O排放占主要来源。其中,好氧氨氧化过程是氨在有氧的条件下氧化为亚硝酸盐,其直接或间接地影响着全球产生N2O与释放量。氨氧化古菌(ammonia-oxidizing archaea, AOA)、氨氧化细菌(ammonia-oxidizing bacteria, AOB)、全程氨氧化菌(complete ammonia oxidization, Comammox)和异养氨氧化菌(heterotrophic ammonium oxidizing bacteria, HAOB)是氨氧化过程中主要的参与者,明确这四类微生物N2O产生的机制对缓解全球N2O排放是必要的。本文综述了AOA、AOB、Comammox和HAOB在好氧氨氧化过程中驱动的N2O产生途径,并结合酶学分析了一些关键酶在N2O产生途径中的作用。本文旨在为调控生物N2O排放提供理论基础。
2022, 62(1):119-130.DOI: 10.13343/j.cnki.wsxb.20210150CSTR: 32112.14.j.AMS.20210150
摘要:氨氧化微生物介导土壤中铵态氮的氧化,是土壤硝化作用的第一步。【目的】在大型隧道工程影响的岩溶区,了解氨氧化微生物对土壤含水率和营养环境变化的响应对于研究隧道建设引起的生态环境改变和氮循环过程变化都有十分重要的意义。【方法】本研究以重庆市北碚区中梁山龙凤槽谷为例,对比受隧道影响的龙凤槽谷和不受隧道影响的龙车槽谷中4种土地利用方式(荒草地、竹林地、混交林以及菜园地)下的土壤中,3种氨氧化微生物(氨氧化细菌AOB、氨氧化古菌AOA、亚硝酸盐氧化细菌CMX)的丰度变化,结合土壤含水量、pH以及土壤营养元素等的变化,分析隧道建设引起的可培养氨氧化微生物数量变化及其过程机理。【结果】结果发现:①由于隧道开挖揭露了地下含水层,导致地下水位下降、土壤含水率降低、pH值升高、硝态氮含量增加、隧道影响区AOA、AOB和CMX丰度显著低于非隧道影响区,后者数量分别是前者的4.8、4.4和3.9倍;②受岩溶区碱性土壤环境和地下水以及可溶物极易漏失的影响,铵态氮等底物浓度并不是氨氧化细菌的主要影响因素,AOA丰度与土壤含水率和土壤酸碱缓冲性能呈正相关(P<0.01),CMX和AOB丰度都与土壤硝态氮含量呈极其显著的负相关(P<0.05),AOB丰度还与土壤的pH值呈负相关(P<0.05)。【结论】本研究揭示了岩溶区土壤理化性质中的含水率和pH是影响3种氨氧化微生物丰度的主要因子,隧道建设引起的地下水漏失和土壤有效水分降低是引起氨氧化微生物含量下降的主要原因,一定程度上改变了隧道建设影响区的硝化过程,但影响程度和更多微生物参与的氮循环过程改变还需要进一步详细的研究。
2020, 60(9):1972-1984.DOI: 10.13343/j.cnki.wsxb.20200334CSTR: 32112.14.j.AMS.20200334
摘要:氮生物地球化学循环是地球物质循环的重要枢纽,是决定陆地生态系统生产力水平、水资源安全、温室气体生成排放的关键过程。氮循环是由微生物介导的一系列复杂过程,不同形态、价态氮化合物的转化分别由相应的功能微生物驱动完成。随着厌氧氨氧化、完全氨氧化等新型氮转化过程的相继报道和发现更新了人们对氮循环的认识。本文综述了陆地和淡水生态系统中厌氧氨氧化(anammox)、硝酸盐异化还原为铵(DNRA)、完全氨氧化(comammox)等新型氮循环过程的发生机制、热区分布及环境效应,并总结了这三种氮循环的相互关系。
2011, 51(1):83-90.
摘要:摘要:【目的】研究自然界中的氨氧化微生物对于理解全球氮元素循环至关重要,而人们对于人工坝体对氨氧化微生物种群生态的影响还知之甚少。本工作旨在分析三峡大坝两侧水体中浮游和附着在颗粒表面的氨氧化微生物种群构成的多样性,并试图分析其潜在的控制因素。【方法】在靠近三峡坝体的上游水体及下游水体中各选取1个取样点,在取样点现场测量水体理化参数并收集生物量,采用氨氧化功能基因的mRNA逆转录产物构建克隆文库等技术分析样品中氨氧化微生物种群的多样性。【结果】坝下水体中浊度、溶氧量和氧化还原电位略高于坝上水体。坝体两侧的氨
2015, 55(7):882-891.DOI: 10.13343/j.cnki.wsxb.20140535CSTR: 32112.14.j.AMS.20140535
摘要:摘要:【目的】从污水处理系统中富集培养氨氧化古菌,鉴定其系统发育地位,进行初步的形态观察以及生长和代谢特性研究。【方法】使用添加抗生素的自养培养基,通过连续传代的方法富集培养氨氧化古菌,使用多种分子生物学方法检验富集纯度和古菌单一性,鉴定其系统发育地位;通过扫描电镜观察菌体基本形态;利用生长和代谢曲线计算相关性质参数。【结果】氨氧化古菌HJ-2b富集培养成功,在体系中的纯度达到93%;经16S rRNA基因鉴定属于亚硝化球菌(Nitrososphaera)属,与Nitrososphaera sp. JG1 相似度为100%,但功能基因amoA的相似度仅为72%;HJ-2b细胞呈杆状,其最大比增长速率为0.43 d-1,最大比氨氧化速率为3.9 fmol/(cell·d)。【结论】HJ-2b富集物来源于污水处理系统,对于研究氨氧化古菌在该系统中的存在条件及其在污水脱氮方面的贡献有重要意义。
2020, 60(6):1130-1147.DOI: 10.13343/j.cnki.wsxb.20200010CSTR: 32112.14.j.AMS.20200010
摘要:海洋氮循环在地球元素循环中充当着必不可少的角色。海洋氮循环是由一系列氧化还原反应构成的生物化学过程。固氮作用和氮同化作用为生态系统提供了生物可用氮(铵盐)。硝化作用可进一步将铵盐氧化为硝酸盐,硝酸盐又可以通过反硝化作用转化为氮气。整个氮循环实现了海洋中不同含氮无机盐间的转换。微生物是海洋氮循环的重要驱动者,海洋氮循环的研究可以帮助理解海洋生物与地球环境相互作用及协同演化的机制,从而更好地保护地球生态环境。随着氮循环关键微生物基因组尺度代谢网络模型的发表,研究者可以利用代谢网络模型来研究不同氮循环过程的效率、环境因子对氮循环过程的影响以及解析氮循环及生物网络的内在机理等,从而帮助人们更深入地研究海洋氮转化机制。本文主要综述了海洋氮循环过程中各个转化过程的主要微生物,以及基因组尺度代谢网络模型在分析氮循环中的应用。
2010, 50(1):132-136.
摘要:摘要:【目的】研究热泉中的氨氧化菌对于理解全球氮循环作用至关重要,而人们对于热泉中环境条件对氨氧化菌丰度分布的影响还知之甚少。本研究旨在研究云南热泉中氨氧化菌的丰度以及热泉环境因子(例如:温度、氨浓度及pH等)对氨氧化菌丰度的影响。【方法】在所选取的热泉中,采集沉积物、菌席或泉华样品。使用RNA逆转录、定量聚合酶链式反应及荧光原位杂交等技术对样品中各微生物种群进行定量分析。【结果】所选取的热泉沉积物、菌席或泉华中微生物总量大约为108~109细胞/g。其中,氨氧化古菌(AOA)占样品中微生物总量的0.02~1.32%,而氨氧化细菌数量低于检测下限。地球化学参数和AOA相对丰度的相关性统计分析显示,氨氧化古菌相对丰度值与NH3 、NO2-、NO3-浓度和温度等具有统计学意义上的相关性,而其与Fe2+和及盐度无统计学意义上的相关性。【结论】在所调查的热泉中,氨氧化微生物种群主要由AOA组成,AOA在热泉中的氨氧化生物地球化学过程中起着重要作用。热泉中多个环境因子一起控制着AOA丰度在不同热泉中的分布特征,而某些环境因子,如盐度-和Fe2+浓度,可能不是控制AOA分布特征的关键因素。
2009, 49(3):281-286.
摘要:摘要:细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应。厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群。而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右。由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响。另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础。