Lactobacillus exopolysaccharide:gene clusters for synthesis and structure-activity relationship
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [102]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Intestinal microflora homeostasis plays a crucial role in maintaining human health. As a guard of the natural intestinal microflora, probiotics improve the microecological balance in the host. Lactobacillus is a representative of intestinal probiotics. The exopolysaccharide (EPS) synthesized by Lactobacillus can optimize the intestinal microecology by promoting the growth of other probiotics in the intestine. Moreover, EPS is praised for anti-tumor, antioxidant, cholesterol-lowering, blood pressure-lowering, and immunity-enhancing activities. This article reviews the research progress in the genetics, biological activities, structure-activity relationship of Lactobacillus EPS in recent years.

    Reference
    [1] XU XF, XU PP, MA C, TANG J, ZHANG XW. Gut microbiota, host health, and polysaccharides[J]. Biotechnology Advances, 2013, 31(2):318-337.
    [2] SAA P, URRUTIA A, SILVA-ANDRADE C, MARTÍN AJ, GARRIDO D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome[J]. Computational and Structural Biotechnology Journal, 2021, 20:79-89.
    [3] Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity[J]. Current Opinion in Microbiology, 2017, 35:8-15.
    [4] Altamirano Á, Saa PA, Garrido D. Inferring composition and function of the human gut microbiome in time and space:a review of genome-scale metabolic modelling tools[J]. Computational and Structural Biotechnology Journal, 2020, 18:3897-3904.
    [5] LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(4):223-237.
    [6] Garbacz K. Anticancer activity of lactic acid bacteria[J]. Seminars in Cancer Biology, 2022, 86:356-366.
    [7] OLEKSY M, KLEWICKA E. Exopolysaccharides produced by Lactobacillus sp.:biosynthesis and applications[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(3):450-462.
    [8] Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria:perspectives and challenges[J]. Trends in Biotechnology, 2003, 21(6):269-274.
    [9] ANWAR MA, KRALJ S, PIQUÉ AV, LEEMHUIS H, van der MAAREL MJEC, DIJKHUIZEN L. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains:characterization of three novel fructansucrase enzymes and their fructan products[J]. Microbiology (Reading, England), 2010, 156(Pt 4):1264-1274.
    [10] CÔTÉ GL, SKORY CD. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118[J]. Applied Microbiology and Biotechnology, 2012, 93(6):2387-2394.
    [11] GUPTA P, DIWAN B. Bacterial exopolysaccharide mediated heavy metal removal:a review on biosynthesis, mechanism and remediation strategies[J]. Biotechnology Reports, 2017, 13:58-71.
    [12] ZANNINI E, WATERS DM, COFFEY A, ARENDT EK. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides[J]. Applied Microbiology and Biotechnology, 2016, 100(3):1121-1135.
    [13] SCHMID J, SIEBER V, REHM B. Bacterial exopolysaccharides:biosynthesis pathways and engineering strategies[J]. Frontiers in Microbiology, 2015, 6:496.
    [14] ZEIDAN AA, POULSEN VK, JANZEN T, BULDO P, DERKX PMF, ØREGAARD G, NEVES AR. Polysaccharide production by lactic acid bacteria:from genes to industrial applications[J]. FEMS Microbiology Reviews, 2017, 41(supp_1):S168-S200.
    [15] ISLAM ST, LAM JS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway[J]. Canadian Journal of Microbiology, 2014, 60(11):697-716.
    [16] 李敏. 乳酸乳球菌乳酸亚种IMAU11823胞外多糖结构及eps基因簇转录分析[D]. 呼和浩特:内蒙古农业大学硕士学位论文. LI M. Structure of extracellular polysaccharide and transcription analysis of eps gene cluster of Lactococcus lactis subsp. lactis IMAU11823[D]. Hohhot:Master's Thesis of Inner Mongolia Agricultural University (in Chinese).
    [17] 童良琴, 曲亚军, 陈敏. 乳酸菌胞外多糖的研究进展[J]. 中国生物工程杂志, 2015, 35(11):85-91. TONG LQ, QU YJ, CHEN M. Research advance on exopolysaccharides synthesized by lactic acid bacteria[J]. China Biotechnology, 2015, 35(11):85-91 (in Chinese).
    [18] Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria:structure, bioactivity and associations:a review[J]. Carbohydrate Polymers, 2019, 207:317-332.
    [19] CUI YH, JIANG X, HAO MY, QU XJ, HU T. New advances in exopolysaccharides production of Streptococcus thermophilus[J]. Archives of Microbiology, 2017, 199(6):799-809.
    [20] ALE EC, ROJAS MF, REINHEIMER JA, BINETTI AG. Lactobacillus fermentum:could EPS production ability be responsible for functional properties?[J]. Food Microbiology, 2020, 90:103465.
    [21] DAN T, FUKUDA K, SUGAI-BANNAI M, TAKAKUWA N, MOTOSHIMA H, URASHIMA T. Characterization and expression analysis of the exopolysaccharide gene cluster in Lactobacillus fermentum TDS030603[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(12):2656-2664.
    [22] HUANG Z, ZHOU XY, STANTON C, ROSS RP, ZHAO JX, ZHANG H, YANG B, CHEN W. Comparative genomics and specific functional characteristics analysis of Lactobacillus acidophilus[J]. Microorganisms, 2021, 9(9):1992.
    [23] LEBEER S, VERHOEVEN TLA, FRANCIUS G, SCHOOFS G, LAMBRICHTS I, DUFRÊNE Y, VANDERLEYDEN J, de KEERSMAECKER SCJ. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase[J]. Applied and Environmental Microbiology, 2009, 75(11):3554-3563.
    [24] PÉANT B, LAPOINTE G, GILBERT C, ATLAN D, WARD P, ROY D. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus[J]. Microbiology, 2005, 151(6):1839-1851.
    [25] VASTANO V, PERRONE F, MARASCO R, SACCO M, MUSCARIELLO L. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum[J]. Archives of Microbiology, 2016, 198(3):295-300.
    [26] DEO D, DAVRAY D, KULKARNI R. A diverse repertoire of exopolysaccharide biosynthesis gene clusters in Lactobacillus revealed by comparative analysis in 106 sequenced genomes[J]. Microorganisms, 2019, 7(10):444.
    [27] REMUS DM, van KRANENBURG R, van SWAM II, TAVERNE N, BONGERS RS, WELS M, WELLS JM, BRON PA, KLEEREBEZEM M. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling[J]. Microbial Cell Factories, 2012, 11(1):1-10.
    [28] ZIVKOVIC M, MILJKOVIC M, RUAS-MADIEDO P, STRAHINIC I, TOLINACKI M, GOLIC N, KOJIC M. Exopolysaccharide production and ropy phenotype are determined by two gene clusters in putative probiotic strain Lactobacillus paraplantarum BGCG11[J]. Applied and Environmental Microbiology, 2015, 81(4):1387-1396.
    [29] 何余堂, 潘孝明. 植物多糖的结构与活性研究进展[J]. 食品科学, 2010, 31(17):493-496. HE YT, PAN XM. Biological activity and structure of plant polysaccharides[J]. Food Science, 2010, 31(17):493-496 (in Chinese).
    [30] SALAMA Y, CHENNAOUI M, SYLLA A, MOUNTADAR M, RIHANI M, ASSOBHEI O. Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems:a review[J]. Desalination and Water Treatment, 2016, 57(35):16220-16237.
    [31] Zhang Z, Wang F, Wang M, Ma L, Ye H, Zeng X. A comparative study of the neutral and acidic polysaccharides from Allium macrostemon Bunge[J]. Carbohydrate Polymers, 2015, 117:980-987.
    [32] Liu Z, Zhang Z, Qiu L, Zhang F, Xu X, Wei H, Tao X. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04[J]. Journal of Dairy Science, 2017, 100(9):6895-6905.
    [33] CAGGIANIELLO G, KLEEREBEZEM M, SPANO G. Exopolysaccharides produced by lactic acid bacteria:from health-promoting benefits to stress tolerance mechanisms[J]. Applied Microbiology and Biotechnology, 2016, 100(9):3877-3886.
    [34] 邸维, 张兰威, 易华西, 韩雪. 乳酸菌胞外多糖结构及其功能多样性的研究进展[J]. 中国乳品工业, 2017, 45(5):32-37. DI W, ZHANG LW, YI HX, HAN X. Research advances on structure and diversity function of exopolysaccharides produced by lactic acid bacteria[J]. China Dairy Industry, 2017, 45(5):32-37 (in Chinese).
    [35] RUAS-MADIEDO P, HUGENHOLTZ J, ZOON P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria[J]. International Dairy Journal, 2002, 12(2/3):163-171.
    [36] CASTRO-BRAVO N, WELLS JM, MARGOLLES A, RUAS-MADIEDO P. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment[J]. Frontiers in Microbiology, 2018, 9:2426.
    [37] GANGOITI MV, PUERTAS AI, HAMET MF, PERUZZO PJ, LLAMAS MG, MEDRANO M, PRIETO A, DUEÑAS MT, ABRAHAM AG. Lactobacillus plantarum CIDCA 8327:an α-glucan producing-strain isolated from kefir grains[J]. Carbohydrate Polymers, 2017, 170:52-59.
    [38] DERTLI E, COLQUHOUN IJ, CÔTÉ GL, LE GALL G, NARBAD A. Structural analysis of the α-d-glucan produced by the sourdough isolate Lactobacillus brevis E25[J]. Food Chemistry, 2018, 242:45-52.
    [39] ZAROUR K, LLAMAS MG, PRIETO A, RÚAS-MADIEDO P, TERESA DUEÑAS M, de PALENCIA PF, AZNAR R, KIHAL M, LÓPEZ P. Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria[J]. Carbohydrate Polymers, 2017, 174:646-657.
    [40] Knirel YA, van CM. Bacterial Exopolysaccharides, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering[M]. Amsterdam:Elsevier, 2021.
    [41] GARAI-IBABE G, TERESA DUEÑAS M, IRASTORZA A, SIERRA-FILARDI E, LAURA WERNING M, LÓPEZ P, CORBÍ AL, FERNÁNDEZ de PALENCIA P. Naturally occurring 2-substituted (1,3)-β-d-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods[J]. Bioresource Technology, 2010, 101(23):9254-9263.
    [42] FRAUNHOFER ME, GEISSLER AJ, WEFERS D, BUNZEL M, JAKOB F, VOGEL RF. Characterization of β-glucan formation by Lactobacillus brevis TMW 1.2112 isolated from slimy spoiled beer[J]. International Journal of Biological Macromolecules, 2018, 107:874-881.
    [43] van HIJUM SAFT, BONTING K, van der MAAREL MJEC, DIJKHUIZEN L. Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced[J]. FEMS Microbiology Letters, 2001, 205(2):323-328.
    [44] van HIJUM SA, van GEEL-SCHUTTEN GH, RAHAOUI H, van der MAAREL MJEC, DIJKHUIZEN L. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides[J]. Applied and Environmental Microbiology, 2002, 68(9):4390-4398.
    [45] SHAHID M, RAJOKA R. Lactobacillus exopolysaccharides:new perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health[J]. Trends in Food Science & Technology, 2020, 103:36-48.
    [46] FAGUNWA O, AHMED HI, SADIQ S, HUMPHREYS PN, MCLAY N, LAWS AP. Isolation and characterization of a novel exopolysaccharide secreted by Lactobacillus mucosae VG1[J]. Carbohydrate Research, 2019, 484:107781.
    [47] Du B, Yang Y, Bian Z, Xu B. Molecular weight and helix conformation determine intestinal anti-inflammatory effects of exopolysaccharide from Schizophyllum commune[J]. Carbohydrate Polymers, 2017, 172:68-77.
    [48] Du R, Xing H, Yang Y, Jiang H, Zhou Z, Han Y. Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut[J]. Carbohydrate Polymers, 2017, 174:409-416.
    [49] Scherbinina SI, Frank M, Toukach PV. Carbohydrate structure database oligosaccharide conformation tool[J]. Glycobiology, 2022, 32(6):460-468.
    [50] DUNCAN PI, AITIO O, HEISKANEN A, NIEMELÄ R, SAARINEN J, HELIN J, PORTA N, FIAUX M, MOËNNOZ D, GOLLIARD M, CHERBUT C, BERROCAL R, AUSTIN S, SPRENGER N. Structure and function of bovine whey derived oligosaccharides showing synbiotic epithelial barrier protective properties[J]. Nutrients, 2020, 12(7):2007.
    [51] GLENDINNING L, FREE A. Supra-organismal interactions in the human intestine[J]. Frontiers in Cellular and Infection Microbiology, 2014, 4:47.
    [52] SODERHOLM AT, PEDICORD VA. Intestinal epithelial cells:at the interface of the microbiota and mucosal immunity[J]. Immunology, 2019, 158(4):267-280.
    [53] OLSZAK T, NEVES JF, DOWDS CM, BAKER K, GLICKMAN J, DAVIDSON NO, LIN CS, JOBIN C, BRAND S, SOTLAR K, WADA K, KATAYAMA K, NAKAJIMA A, MIZUGUCHI H, KAWASAKI K, NAGATA K, MÜLLER W, SNAPPER SB, SCHREIBER S, KASER A, et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10[J]. Nature, 2014, 509(7501):497-502.
    [54] 梁增澜, 李超, 王艳萍. 乳酸菌胞外多糖免疫活性的研究进展[J]. 食品与发酵工业, 2018, 44(2):266-272. LIANG ZL, LI C, WANG YP. Research progressing of immune regulatory activity of exopolysaccharides synthesized by lactic acid bacterium[J]. Food and Fermentation Industries, 2018, 44(2):266-272 (in Chinese).
    [55] CHU H, MAZMANIAN SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis[J]. Nature Immunology, 2013, 14(7):668-675.
    [56] Sellge G, Kufer TA. PRR-signaling pathways:learning from microbial tactics[J]. Seminars in Immunology, 2015, 27(2):75-84.
    [57] LEE K, KIM HJ, KIM SA, PARK SD, SHIM JJ, LEE JL. Exopolysaccharide from Lactobacillus plantarum HY7714 protects against skin aging through skin-gut axis communication[J]. Molecules, 2021, 26(6):1651.
    [58] TANIGUCHI K, KARIN M. NF-κB, inflammation, immunity and cancer:coming of age[J]. Nature Reviews Immunology, 2018, 18(5):309-324.
    [59] EL GHANY KA, ELHAFEZ EA, HAMOUDA RA, MAHROUS H, ALLAH H AHMED F, HAMZA HA. Evaluation of antioxidant and antitumor activities of Lactobacillus acidophilus bacteria isolated from Egyptian infants[J]. International Journal of Pharmacology, 2014, 10(5):282-288.
    [60] DILNA SV, SURYA H, ASWATHY RG, VARSHA KK, SAKTHIKUMAR DN, PANDEY A, NAMPOOTHIRI KM. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4[J]. LWT-Food Science and Technology, 2015, 64(2):1179-1186.
    [61] Wu J, Zhang Y, Ye L, Wang C. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro:a review[J]. Carbohydrate Polymers, 2021, 253:117308.
    [62] ISMAIL B, NAMPOOTHIRI KM. Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food[J]. Journal of Food Science and Technology, 2014, 51(12):4012-4018.
    [63] 邱琳, 辛现良, 耿美玉. 多糖构效关系研究进展[J]. 现代生物医学进展, 2009, 9(9):1764-1768. Qiu L, Xin XL, Geng MY. Advances in the structure-function relationships of polysaccharides[J]. Progress in Modern Biomedicine. 2009, 9(9):1764-1768 (in Chinese).
    [64] HAMURO J, YAMASHITA Y, OHSAKA Y, MAEDA YY, CHIHARA G. Carboxymethylpachymaran, a new water soluble polysaccharide with marked antitumour activity[J]. Nature, 1971, 233(5320):486-488.
    [65] Yang JH, Du YM, Wen Y, Li TY, Hu L. Sulfation of Chinese lacquer polysaccharides in different solvents[J]. Carbohydrate Polymers, 2003, 52(4):397-403.
    [66] Li SQ, Shah NP. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275[J]. Food Chemistry, 2014, 165:262-270.
    [67] Di W, Zhang LW, Wang SM, Yi HX, Han X, Fan RB, Zhang YC. Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk[J]. Carbohydrate Polymers, 2017, 171:307-315.
    [68] LI W, TANG Wz, JI J, XIA Xd, RUI X, CHEN Xh, JIANG M, ZHOU Jz, DONG Ms. Characterization of a novel polysaccharide with anti-colon cancer activity from Lactobacillus helveticus MB2-1[J]. Carbohydrate Research, 2015, 411:6-14.
    [69] LOOIJESTEIJN PJ, van CASTEREN WHM, TUINIER R, DOESWIJK-VORAGEN CHL, HUGENHOLTZ J. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures[J]. Journal of Applied Microbiology, 2000, 89(1):116-122.
    [70] HarounB M, Refaat BM, El-Menoufy HA, Amin HA, El-Waseif AA. Structure analysis and antitumor activity of the exopolysaccharide from probiotic Lactobacillus plantarum NRRL B-4496 in vitro and in vivo[J]. Journal of Applied Sciences Research. 2013:9(1):425-434
    [71] 刘宇, 孟祥晨. 乳酸菌胞外多糖及其抗肿瘤活性[J]. 中国乳品工业, 2008, 36(1):39-43. LIU Y, MENG XC. Expolysaccharides produced by lactic acid bacteria and their anti-tumor activity[J]. China Dairy Industry, 2008, 36(1):39-43 (in Chinese).
    [72] 刘滔. 产胞外多糖乳酸菌的筛选及其多糖的结构和体外功能的研究[D]. 雅安:四川农业大学硕士学位论文, 2019. LIU T. Screening of lactic acid bacteria producing extracellular polysaccharide and study on the structure and in vitro function of polysaccharide[D]. Yaan:Master's Thesis of Sichuan Agricultural University, 2019. (in Chinese).
    [73] 缪凤. 枸杞多糖酶提、分离纯化及抗氧化和免疫活性研究[D]. 扬州:扬州大学硕士学位论文, 2021. MIAO F. Study on enzymatic extraction, separation and purification, antioxidant and immune activities of Lycium barbarum polysaccharide[D]. Yangzhou:Master's Thesis of Yangzhou University, 2021 (in Chinese).
    [74] 郭琦. 枸杞多糖的提取、分离纯化、溶液性质及其结构的初步研究[D]. 西安:陕西师范大学硕士学位论文, 2012. GUO Q. Extraction, purification, solution properties and structure of Lycium barbarum polysaccharide[D]. Xi'an:Master's Thesis of Shaanxi Normal University 2012 (in Chinese).
    [75] 梁小飞, 张芳, 姜胤秀, 刘梦秋, 郭盛, 钱大玮, 段金廒. 枸杞多糖构-效关系研究进展与展望[J]. 中国中药杂志, 2023, 48(9):2387-2395. LIANG XF, ZHANG F, JIANG YX, LIU MQ, GUO S, QIAN DW, DUAN JIN'AO. Structure-activity relationship of Lycium barbarum polysaccharides[J]. China Journal of Chinese Materia Medica, 2023, 48(9):2387-2395 (in Chinese).
    [76] 谢渟, 肖春, 王涓, 黄龙花, 吴清平. 灰树花活性多糖构效关系研究进展[J]. 微生物学通报, 2022, 49(8):3401-3419. XIE T, XIAO C, WANG J, HUANG LH, WU QP. Advances in structure-activity relationship of polysaccharides from Grifola frondosa[J]. Microbiology China, 2022, 49(8):3401-3419 (in Chinese).
    [77] ASKER MMS, AHMED YM, RAMADAN MF. Chemical characteristics and antioxidant activity of exopolysaccharide fractions from Microbacterium terregens[J]. Carbohydrate Polymers, 2009, 77(3):563-567.
    [78] 陈静, 李巧珍, 宋春艳, 章炉军, 尚晓冬, 辜运富. 香菇多糖提取纯化、生物活性及构效关系研究进展[J]. 上海农业学报, 2021, 37(5):144-150. CHEN J, LI QZ, SONG CY, ZHANG LJ, SHANG XD, GU YF. Lentinan:a review on the isolation and purification, bioactivities and structure-activity relationship[J]. Acta Agriculturae Shanghai, 2021, 37(5):144-150 (in Chinese).
    [79] Shao L, Wu Z, Zhang H, Chen W, Ai L, Guo B. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5[J]. Carbohydrate Polymers, 2014, 107:51-56.
    [80] Surayot U,Wang JG,Seesuriyachan P,Kuntiya A,Tabarsa M,Lee Y,Kim JK,Park W,You S. Exopolysaccharides from lactic acid bacteria:structural analysis, molecular weight effect on immunomodulation[J]. International Journal of Biological Macromolecules, 2014. 68:233-40.
    [81] 艾连中. 干酪乳杆菌LC2W胞外多糖制备、功能及结构的研究[D]. 无锡:江南大学博士学位论文, 2007. AI LZ. Study on preparation, function and structure of exopolysaccharides from Lactobacillus Casei LC2W[D]. Wuxi:Doctoral Dissertation of Jiangnan University, 2007 (in Chinese).
    [82] 纪鹃. 瑞士乳杆菌MB2-1胞外多糖制备、结构和生理功能的研究[D]. 南京:南京农业大学硕士学位论文, 2014. JI J. Preparation, structure and physiological function of extracellular polysaccharide from Lactobacillus helveticus MB2-1[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2014 (in Chinese).
    [83] Wang X, Xu M, Xu D, Ma K, Zhang C, Wang G, Dong M, Li W. Structural and prebiotic activity analysis of the polysaccharide produced by Lactobacillus helveticus SNA12[J]. Carbohydrate Polymers, 2022, 296:119971.
    [84] ELLEN SANDERS M, MERENSTEIN DJ, REID G, GIBSON GR, RASTALL RA. Probiotics and prebiotics in intestinal health and disease:from biology to the clinic[J]. Nature Reviews Gastroenterology & Hepatology, 2019, 16(10):605-616.
    [85] VERA C, ILLANES A, GUERRERO C. Enzymatic production of prebiotic oligosaccharides[J]. Current Opinion in Food Science, 2021, 37:160-170.
    [86] Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms:a review on the structural characteristics, antitumor mechanisms and immunomodulating activities[J]. Carbohydrate Research, 2016, 424:30-41.
    [87] Sheng K, Wang C, Chen B, Kang M, Wang M, Liu K, Wang M. Recent advances in polysaccharides from Lentinus edodes (Berk.):isolation, structures and bioactivities[J]. Food Chemistry, 2021, 358:129883.
    [88] VIVARELLI S, SALEMI R, CANDIDO S, FALZONE L, SANTAGATI M, STEFANI S, TORINO F, BANNA GL, TONINI G, LIBRA M. Gut microbiota and cancer:from pathogenesis to therapy[J]. Cancers, 2019, 11(1):38.
    [89] 索超, 曲晓军, 崔艳华. 乳酸菌胞外多糖研究进展[J]. 中国乳品工业, 2017, 45(11):32-36. SUO C, QU XJ, CUI YH. Research advances in extracellular polysaccharide produced by lactic acid bacteria[J]. China Dairy Industry, 2017, 45(11):32-36 (in Chinese).
    [90] Yang J, Du Y, Huang R, Wan Y, Li T. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides[J]. International Journal of Biological Macromolecules, 2002, 31(1/2/3):55-62.
    [91] 刘俊. 多粘类芽孢杆菌胞外多糖的发酵条件、结构、化学修饰及其抗氧化活性的研究[D]. 南京:南京农业大学博士学位论文, 2010. LIU J. Study on fermentation conditions, structure, chemical modification and antioxidant activity of paecilomyces polymyxa extracellular polysaccharide[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2010 (in Chinese).
    [92] TSIAPALI E, WHALEY S, KALBFLEISCH J, ENSLEY HE, BROWDER IW, WILLIAMS DL. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity[J]. Free Radical Biology & Medicine, 2001, 30(4):393-402.
    [93] AL KASSAA I, HOBER D, HAMZE M, CHIHIB NE, DRIDER D. Antiviral potential of lactic acid bacteria and their bacteriocins[J]. Probiotics and Antimicrobial Proteins, 2014, 6(3):177-185.
    [94] Liu J, Luo JG, Ye H, Sun Y, Lu ZX, Zeng XX. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3[J]. Carbohydrate Polymers, 2009, 78(2):275-281.
    [95] Garcia-Vello P, Sharma G, Speciale I, Molinaro A, Im SH, de Castro C. Structural features and immunological perception of the cell surface glycans of Lactobacillus plantarum:a novel rhamnose-rich polysaccharide and teichoic acids[J]. Carbohydrate Polymers, 2020, 233:115857.
    [96] Zhao BT, Zhang J, Yao J, Song S, Yin ZX, Gao QY. Selenylation modification can enhance antioxidant activity of Potentilla anserinab L. polysaccharide[J]. International Journal of Biological Macromolecules, 2013, 58:320-328
    [97] Wang C, Gong Y, Lin Y, Shen J, Wang DA. A novel gellan gel-based microcarrier for anchorage-dependent cell delivery[J]. Acta Biomaterialia, 2008. 4(5):1226-1234.
    [98] 刘鹭, 潘道东, 丁琳, 曾小群. 硒化乳酸菌胞外多糖对小鼠腹腔巨噬细胞及肿瘤细胞内游离Ca2+的影响[J]. 食品科学, 2014, 35(1):250-253. LIU L, PAN DD, DING L, ZENG XQ. Effect of selenium-modified exopolysaccharide from Lactococcus lactis subsp. lactis on[Ca2+] in mouse macrophages and cancer cells[J]. Food Science, 2014, 35(1):250-253 (in Chinese).
    [99] 邵丽. 产胞外多糖乳杆菌的筛选及其多糖的分离、结构和生物活性研究[D]. 无锡:江南大学博士学位论文, 2014. Shao L. Screening of exopolysaccharide-producing Lactobacilli and separation, structure and bioactivities of exopolysaccharide[D]. Wuxi:Doctoral Dissertation of Jiangnan University, 2014 (in Chinese).
    [100] Kitazawa H, Ishii Y, Uemura J, Kawai Y, Saito T, Kaneko T, Noda K, Itoh T. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus Delbrueckii ssp. Bulgaricus[J]. Food Microbiology, 2000, 17(1):109-118.
    [101] 刘昭曦, 王禄山, 陈敏. 肠道菌群多糖利用及代谢[J]. 微生物学报, 2021, 61(7):1816-1828. LIU ZX, WANG LS, CHEN M. Glycan utilization and metabolism by gut microbiota[J]. Acta Microbiologica Sinica, 2021, 61(7):1816-1828 (in Chinese).
    [102] LI K, LIU XY, ZHANG XL, LIU ZX, YU Y, ZHAO JY, WANG LS, KONG Y, CHEN M. Identification microbial glycans substructure associate with disease and species[J]. Carbohydrate Polymers, 2021, 273:118595.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

SHI Jinming, CHEN Qiuyu, LIU Zhaoxi, LIU Shuangjiang, CHEN Min. Lactobacillus exopolysaccharide:gene clusters for synthesis and structure-activity relationship. [J]. Acta Microbiologica Sinica, 2023, 63(9): 3482-3499

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 31,2023
  • Revised:June 28,2023
  • Online: August 29,2023
  • Published: September 04,2023
Article QR Code