微生物学报 Acta Microbiologica Sinica 54(10):1178 - 1184; 4 October 2014 ISSN 0001 - 6209; CN 11 - 1995/Q http://journals.im.ac.cn/actamicrocn doi: 10.13343/j.cnki.wsxb.2014.10.010

北京棒杆菌 AS1.299 高丝氨酸脱氢酶突变体 L200F/D215K 的 异源表达及酶学性质

申术霞^{1,2},朱运明^{1,2},闵伟红^{1,2*},方丽^{1,2},许金坤^{1,2} ¹吉林农业大学食品科学与工程学院,吉林长春 130118 ²小麦和玉米深加工国家工程实验室,吉林长春 130118

摘要:【目的】对北京棒杆菌 Corynebacterium pekinense 高丝氨酸脱氢酶 (homoserine dehydrogenase, HSD) 进行 空间结构改造从而获得优良性能新酶。【方法】利用定点突变技术构建 HSD 双突变体 L200F/D215A、 L200F/D215E、L200F/D215G 和 L200F/D215K,并将其转入大肠杆菌 E. coli BL21 中进行高效表达,选取催 化效率最高的双突变体 L200F/D215K 与双突变前的 L200F 进行动力学和酶学性质比较。【结果】HSD 双突 变体 L200F/D215K 的 Vmax 为 36.92 U/mg,较 L200F 提高 1.24 倍;最适反应温度为 37℃,较 L200F 提高 2℃;最适反应 pH 为 7.5,与 L200F 经验值相同;最适温度下的半衰期为 4.16 h,较 L200F 提高 1.12 倍; L200F/D215K 和 L200F 对有机溶剂和金属离子均表现出较好的抗性。【结论】HSD 通过空间结构改造活力 得到提高,并且其酶学性质得到优化。本研究有助于认识 HSD 突变体的酶学性质,为其新酶的研发利用提 供有力依据。

关键词:北京棒杆菌,高丝氨酸脱氢酶,异源表达,酶学性质 中图分类号:Q814 文章编号:0001-6209(2014)10-1178-07

天冬氨酸族氨基酸(赖氨酸、苏氨酸、蛋氨酸)是动物和人体的必需氨基酸,可由微生物利用前体物质-天冬氨酸经一系列代谢途径合成^[1-2]。高丝氨酸脱氢酶(HSD)参与天冬氨酸族氨基酸合成途径的第三步反应,也是首个分支酶,在 NAD 或 NADP 的参与下将天冬氨酸半醛还原为高丝氨酸^[3-4],对苏氨酸和蛋氨酸的合成起到重要作用。

HSD 在不同微生物中具有不同的生物学功能。 在大肠杆菌中,HSD 具有天冬氨酸激酶和高丝氨酸 脱氢酶两种酶活力,而在酵母中仅具有高丝氨酸脱 氢酶活力^[5-6]。目前关于 HSD 晶体结构报道的主 要来源于 Saccharomyces cerevisiae(1EBF)和 Thiobacillus Denitrificans(3MTJ),其中关于1EBF 晶 体结构解析的研究报道比较透彻^[7]。结构解析显 示,1EBF 为二聚体^[7],每个单体由核苷酸结合区 域、二聚化区域和底物结合区域三部分组成,其中 D214、E208 和 Wat460 有助于与底物的连接,K223 是活性中心的亲核残基,与周围残基 F173、D219、 V227 形成氢键(图1-A)。K223 向底物 L-ASA(L天

基金项目:吉林省自然基金项目(20130101139JC);国家科技支撑项目(2012BAD37B05)

^{*} 通信作者。E-mail:minwh2000@163.com

作者简介:申术霞(1989-),女,河北保定,硕士研究生,研究方向为发酵微生物的选育与代谢调控。E-mail:shenshuxia333@163.com 收稿日期:2013-12-10;修回日期:2014-02-23

进行亲和催化反应。 通过对 TEBF 和 3 MIJ 的至间 结构拟合发现, 两者的碳框架基本吻合, 见图 1-B, 1EBF 中的 K223 和 D219 分别对应于 3 MTJ 中的 K204 和 D200。

图 1. HSD 的 3D 结构图

Figure 1. 3D structure of HSD. A: The polar contacts of K223 in 1EBF, the dotted line stands for the polar contacts. B: Green is 1EBF, red is MTJ, the cyan is a Modelling crystal structure of HSD of *Corynebacterium pekinense* by Homology Modeling.

本实验主要对北京棒杆菌中的 HSD 进行研究, 通过多重序列比对发现,1EBF 与北京棒杆菌中 HSD 的同源性只有 27%,无法满足同源建模的要 求。因此选择与北京棒杆菌中 HSD 序列同源性为 40% 的 3MTJ 为模板进行同源建模。3MTJ 中的 K204 为 HSD 催化活性位点,D200 为与其具有极性 作用的重要残基,分别对应于北京棒杆菌中的 K219 和 D215(图 2-A),D215 完全保守。

本实验对北京棒杆菌 HSD 的研究中,在 L200F (其比酶活为野生型的 1.30 倍)成功构建的基础 上,将与活性中心催化残基 K219 氢键相连的 D215 作为突变位点进行双突变,并在大肠杆菌中进行了 高效表达,以提高 HSD 的酶活,选取酶催化效率最 高的双突变体进行酶学性质表征。

图 2. 北京棒杆菌中 HSD 的同源序列比对和极性作用图 Figure 2. Homologous alignment and polar contacts of HSD in Corynebacterium pekinense. A: the abbreviations are as follows. C. PE, Corynebacterium pekinense; C. GL, Corynebacterium glutamicum; C. EF, Corynebacterium efficiens; T. OT, Turicella otitidis; R. RU, Rhodococcus ruber; T. DE, Thiobacillus denitrificans; S. CE, Saccharomyces cerevisiae. The homology were 99%, 84%, 70%, 61%, 40%, 27%, respectively. B: D215 polar contacts of HSD of Corynebacterium pekinense by Homology Modeling, the dotted line stands for the polar contacts.

1 材料和方法

1.1 试验材料

1.1.1 菌种:北京棒杆菌 AS1.299 购自中科院微 生物所;大肠杆菌 *E. coli*(DH5α和 BL21)由实验室 保存。

1.1.2 质粒: pET28a-L200F 质粒由本实验室构 建¹⁸。

1.1.3 工具酶和生化试剂:LA DNA 长链酶购自 TaKaRa 公司;其它化学试剂均为国产分析纯。

1.1.4 培养基:大肠杆菌培养基 LB,参照文献 [9] 配制。

1.2 定点突变

以含有目的基因 HSD 的质粒 pET28a-L200F 为 模板,对 HSD 中 D215 进行定点突变。表一列出所 使用的引物和产生的相对应的突变体,下划线处为 突变碱基。PCR 反应条件为:93℃ 4 min;94℃ 1 min,56℃ 1 min,72℃ 10 min,18 个循环后;72℃ 20 min,扩增得到含有载体序列和基因序列的线性 片段,加入 DpnI 酶消化除去模板,消化产物转化到 E. coli DH5α 感受态细胞中,挑取卡那霉素阳性菌, 验证目的基因是否存在,送去上海生工测序。

表1. 定点突变引物

Table 1. Primers for site-directed mutagenesis

mutants	primer sequense $(5 \rightarrow 3)$
D215A	CTTGGATGCGGC <u>AGC</u> ATGGCCTTCGACGTCTGC
	CGAAGGCCAT <u>GCT</u> GCCGCATCCAAGGCTGCAATTTTG
D215E	CTTGGATGCGGCTTCATGGCCTTCGACGTCTG
	CGAAGGCCAT <u>GAA</u> GCCGCATCCAAGGCTGCAATTTTGG
D215G	CTTGGATGCGGC <u>ACC</u> ATGGCCTTCGACGTCTG
	CGAAGGCCAT <u>GGT</u> GCCGCATCCAAGGCTGCAATTTTG
D215K	CCTTGGATGCGGC <u>TTT</u> ATGGCCTTCGACGTCTGCAG
	CGAAGGCCAT <u>AAA</u> GCCGCATCCAAGGCTGCAATTTTG

1.3 目的蛋白的诱导表达、纯化和检测

将重组质粒 pET28a-L200F/D215A、pET28a-L200F/D215E、 pET28a-L200F/D215G、 pET28a-L200F/D215K 转化到 *E. coli* BL21 感受态细胞中, 挑取卡那霉素阳性转化株,在LB液体培养基中培养(卡那霉素,50 µg/mL),至菌体 OD_{600} 值为 0.6 - 0.8 时,添加 IPTG 至终浓度 1 mmol/L,28℃过夜诱导培养,4℃、8000×g 离心 10 min,去上清,菌体用 10 - 13 mL PBS (pH7.4)重悬,超声破碎 12 - 14 min,4℃、8000×g 离心 10 min,重组蛋白粗酶液 经镍柱纯化,目的蛋白通过 SDS-PAGE 蛋白电泳进 行检测。

1.4 HSD 酶活力测定及动力学分析

每 10 min 催化形成 1 μ mol NADPH 所需要的酶 量定义为一个酶活单位, HSD 酶活性及动力学的测 定参照文献 [10]。反应体系: 100 mmol/L 的 Tris-HCl(7.5)、10 mmol/L 的 MgCl₂、80 mmol/L 的 KCl、 1.2 mmol/L 的 NADP⁺、20 mmol/L 的高丝氨酸、 0.1 mL纯化后的酶液,总体积为 5 mL。37℃水浴 10 min后检测 NADPH 在 340 nm 吸光值的改变,利 用考马斯亮蓝法 (Bradford)测定纯化后的酶液的蛋 白含量,计算比酶活 U/mg。每组 3 个平行。

1.5 HSD 最适 pH 和最适温度测定

测定不同 pH(5.5、6.0、6.5、7.0、7.5、8.0、8.5、 9.0、9.5) Tris-HCl 缓冲液对酶活力的影响,将最高 酶活定义为100%,每组3个平行;测定反应体系在 不同温度(25、28、30、33、35、37、40、45、50℃)处理后 的酶活,将最高酶活定义为100%,每组3个平行。

1.6 HSD 热稳定性测定

将 HSD 于最适反应温度下水浴保温,每隔1h 测定其酶活力,将0h下相对酶活定义为100%,每 组3个平行。

1.7 有机溶剂和金属离子影响的测定

以高丝氨酸为底物,分别测定体积分数为1%、 5%、10%和20%的乙醇、甲醇、乙腈、甘油、二甲基 亚砜对酶活力的影响,将不添加有机溶剂的相对酶 活定义为100%,每组3个平行。分别测定终浓度 为1 mmol/L、10 mmol/L、20 mmol/L、40 mmol/L 的 K⁺、Na⁺、Mg²⁺、Ca²⁺、Mn²⁺、Co²⁺、Zn²⁺、Ni²⁺对酶活 力的影响,将不添加金属离子的相对酶活定义为 100%,每组3个平行。

2 结果和分析

2.1 重组菌株的构建

重组菌株的构建见图3。

图 3. 突变体的琼脂糖凝胶电泳

Figure 3. Agarose gel electrophoresis of mutants. A: the results of reverse Overlap extension PCR mutant products: M. DNA mark; lane 1. pET28a -L200F/D215A; lane 2. pET28a -L200F/D215E; lane 3. pET28a -L200F/D215G; lane 4. pET28a -L200F/D215K. B: target gene. M. DNA mark; lane 1. HSD.

由图 3 可知,突变体全质粒 PCR 反应后经核酸 电泳验证,pET-28a 质粒大小为 5400 bp,HSD 目的 基因大小为 1700 bp(图 3-B),从而得到 7100 bp的 重组片段(见图 3-A)。将突变质粒转化到 E. coli DH5α感受态细胞中,活化卡那霉素阳性克隆子,经 上海生物公司测序表明突变成功。

2.2 突变蛋白的诱导表达

对经镍柱纯化后的双突变体进行 SDS-PAGE 及 Western blot 验证,结果如图 4 所示。

图 4. 纯化后的 L200F 和突变体的 10%的 SDS-PAGE 验证

Figure 4. 10% SDS-PAGE of the purified L200F and mutants. M: protein marker; lane 1: L200F; lane 2: mutant L200F/D215A; lane 3: mutant L200F/D215E; lane 4: mutant L200F/D215G; lane 5: mutant L200F/D215K; lane 6: the result of Western blot.

L200F和双突变体经镍柱纯化后均获得单一条带,分子量约为62kDa左右,与理论值相符,这表明L200F和双突变体都表达纯化成功。

2.3 L200F 和突变体的酶动力学研究

动力学曲线拟合如图5所示。

图 5. L200F 和突变体的动力学结果

Figure 5. Danamics of L200F and mutants.

由上图得知,动力学数据符合 Hill 方程 $V = \frac{V_{max}[S]}{K + [S]^n}$,双突变体 L200F/D215A、L200F/D215E、L200F/D215G 和 L200F/D215K 的 V_{max} 分别为L200F 的 78.13%,97.88%,88.24% 和 124.39%; K_m 分别为 L200F 的 80.58%,88.28%,81.50% 和 91.26%。L200F/D215K 表现出特有的动力学特

征,它具有较大的 V_{max}和较小的 K_m,说明双突变体

L200F/D215K 的催化效率提高。双突变体 L200F/ D215K 的 *V*_{max}为 36.92 U/mg, L200F 的 *V*_{max}为 29.68 U/mg,较 L200F 提高 1.24 倍。L200F/D215K 较 L200F 的 *K*_m 值有所降低,表明酶与底物的亲和力 增大。

2.4 突变体 L200F/D215K 的最适 pH 值和温度

不同 pH 和不同温度对 HSD 酶活力的影响曲线 见图 6。

图 6. 不同 pH 和温度对 L200F 和 L200F/D215K 活力的影响

Figure 6. The effect of different temperature and pH on the activity of L200F and L200F/D215K. A: stands for the effect of different pH; B: stands for the effect of different temperature.

图 6-A 表明两者的最适反应 pH 均为 7.5,强酸 和强碱环境下酶活力都较低。酸碱度会催化酶的活 性中心,根据模拟的晶体结构发现,D215 突变成 K 后,可能引入的正电荷并没有改变活性中心可解离 基团的 pKa,因此两者对不同 pH 的反映趋势相 似^[11]。由图 6-B 得知,与 L200F 相比,突变株 L200F/D215K 的最适反应温度由 35℃ 提高到 37℃。这可能是突变使酶的结构更加紧凑,从而使 酶的最适反应温度提高。

2.5 突变体 L200F/D215K 的热稳定性

图 7 为 L200F/D215K 和 L200F 在各自最适反应温度下的酶热失活曲线。

图 7. L200F 和 L200F/D215K 热稳定性

Figure 7. The curve of thermal inactivation of L200F and the mutant L200F/D215K.

热稳定性与蛋白结构中的二硫键的引入和盐桥 的形成、带电侧链和螺旋偶极子的疏水堆积及芳香 族氨基酸有利的相互作用有关^[12]。由图 7 得知, L200F/D215K的热稳定性与对照 L200F 没有太大 差异,两者的反应趋势相似,热失活半衰期分别为 4.16h和3.71h,热处理时间达到6h之后 L200F/ D215K的酶活力迅速降低。这可能是由于 D215K 的突变,使 HSD 空间结构局部发生了轻微改变产生 的^[13]。

2.6 有机溶剂和金属离子对突变体 L200F/D215K 酶活力的影响

有机溶剂对酶活力的影响见表2。

由表 2 可知, L200F 和 L200F/D215K 的酶活在 乙醇浓度为 1% 时达到最高,随着乙醇浓度的增大 酶活降低。甲醇、乙腈、和二甲基亚砜随着浓度的升 高,对 L200F 和 L200F/D215K 酶活的抑制作用增 强;在相同浓度下, L200F/D215K 的相对活性较 L200F 更低,说明 L200F/D215K 受到更明显的抑制 作用。5% 的甘油促进了酶活,对其未有相关报道, 待以后进一步研究和报道。

金属离子对酶活力的影响见表3。

表 2. 有机试剂对	L200F	和 L200F	/D215K	的影响
------------	-------	---------	--------	-----

Table 2.	The effect	t of organie	e solvent or	n L200F a	nd mutant	L200F/D215K	

· 1 .	L200F relative activity/%				L200F/D215K relative activity/%			
organic solvents	1 (V/V)	5 (V/V)	10 (V/V)	20 (V/V)	1 (V/V)	5 (V/V)	10(V/V)	20 (V/V)
control	100	100	100	100	100	100	100	100
ethanol	110.07	74.57	62	49.29	125	80.85	68.15	45.54
methanol	92.06	79.21	66.48	61.37	73.75	68.68	63.24	42.86
acetonitrile	84.39	75.25	68.47	66.21	83.71	75.15	62.65	43.85
glycerol	97.89	111.32	85.92	71.81	89.29	120.18	87.35	72.28
dimethyl sulfoxide	90.88	87.51	73.23	71.88	86.09	68.68	59.52	57.14

表 3. 金属离子对 L200F 和 L200F/D215K 的影响

Table 3. The effect of metal ions on L200F and the L200F/D215K mutant enzyme

	L200F relative activity/%				L200F/D215K relative activity/%			
metal lons	1 mmol / L	10mmol/L	20mmol/L	40mmol/L	1 mmol / L	10mmol/L	20mmol/L	40mmol/L
control	100	100	100	100	100	100	100	100
K *	73.28	86.05	80.62	64.83	78.33	59.11	56.92	52.22
Mg ² +	104.41	121.51	90. 67	80.88	108.03	89.52	76.32	51.21
Ca ² +	85.76	78.98	69.25	59.63	78.33	65.8	62.66	41.51
Na *	89.92	81.74	79.1	73.13	82.44	66.71	47.35	44.77
Mn ² +	87.21	117.13	107.33	104.34	92.61	131.02	126.81	119.58
Cu ² +	79.41	89.41	95.35	ND	53.13	76.89	83.76	93.47
Zn ² +	81.74	ND	ND	ND	85.79	ND	ND	ND
Ni ^{2 +}	87.73	75.97	71.32	51.68	83.2	73.84	72.16	50

ND, Not detected.

L200F蛋白在 Mg^{2+} 浓度为 10 mmol/L 时酶活 达到最高,之后随着 Mg^{2+} 浓度的升高而降低, L200F/D215K蛋白在 Mg^{2+} 浓度为1 mmol/L 时酶活 最高。L200F和 L200F/D215K蛋白在 Mn^{2+} 浓度为 1 mmol/L 时其活性均受到抑制;当 Mn^{2+} 离子浓度 到达 10 mmol/L 时,其对酶的促进作用达到最高,随 着 Mn^{2+} 浓度的继续增高激活作用逐步降低。在 K⁺ 浓度分别为 10、20 和 40 mmol/L 时,L200F/D215K 蛋白的相对活性比 L200F 明显更低,说明 L200F/ D215K蛋白在相同 K⁺浓度下受到更明显的抑制作 用。其他几个金属离子 Na⁺、Ca²⁺、Co²⁺、Zn²⁺、Ni²⁺ 也有类似情况。

3 讨论

本研究成功将突变体 L200F/D215A、L200F/ D215E、L200F/D215G 和 L200F/D215K 在 *E. coli* BL21 中进行高效表达。动力学研究结果表明,突变 体 L200F/D215K 的 *V*_{max}为 36.92 U/mg,较 L200F 提 高 1.24 倍,且与底物的亲和力增大;K219 为质子供 体,与其具有极性作用的 D215 牵制了亲核进攻, D215 突变成 K215 后氢键消失,空间阻碍的减少有 利于 K219 质子的亲核作用^[14],从而使酶活性提高。

对催化效率较高的 L200F/D215K 经酶学性质 表征显示:最适反应温度为 37℃,最适反应 pH 为 7.5;在最适条件下酶的热失活半衰期达到 4.16 h, 较 L200F 提高了 1.12 倍。D215 突变为 K 后,离子 键和电荷的改变导致 HSD 空间结构发生局部性调 整,L200F/D215K 与临近亚基间形成新的氢键,加 强了临近亚基间相互作用的效应,使酶的结构更加 紧凑,从而使酶的最适反应温度和热稳定性均得到 提高。

北京棒杆菌 HSD 基因在 E. coli BL21 中得到较 好的表达,构建了催化效率较高的突变株 L200F/ D215K,且酶学性质得到改善,其最适反应温度和热 稳定性均得到提高。HSD 是天冬氨酸族氨基酸合 成途径中的一关键酶,对蛋氨酸和苏氨酸的合成起 调控作用,通过对北京棒杆菌中 HSD 进行定点突变 以提高酶活力,在一定程度上起到了优化代谢途径 的作用,进而使蛋氨酸和苏氨酸获得高产成为可能。 本研究为今后对 HSD 酶催化机制的研究和高产蛋 氨酸、苏氨酸生产菌株的筛选提供了一定的依据。

参考文献

- Viola RE. The central enzymes of the aspartate family of amino acid biosynthesis. Accounts of Chemical Research, 2001, 34 (5): 339-349.
- [2] Azevedo R, Lancien M, Lea P. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 2006, 30 (2): 143-162.
- [3] Thomas D, Barbey R, Surdin-Kerjan Y. Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Letters, 1993, 323 (3): 289-293.
- [4] Cami B, Clepet C, Patte J. Evolutionary comparisons of three enzymes of the threonine biosynthetic pathway among several microbial species. *Biochimie*, 1993, 75 (6) : 487– 495.
- [5] Jacques SL, Ejim LJ, Wright GD. Homoserine dehydrogenase from Saccharomyces cerevisiae: kinetic mechanism and stereochemistry of hydride transfer. Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, 2001, 1544 (1): 42-54.
- [6] Parsot C, Cohen GN. Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. Journal of Biological Chemistry, 1988, 263 (29): 14654-14660.
- [7] Delabarre B, Thompson PR, Wright GD, Berghuis AM. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases. *Nature Structural and Molecular Biology*, 2000, 7 (3) : 238-244.
- [8]许金坤.北京棒杆菌 AS1. 299 高丝氨酸脱氢酶的定 点突变及酶学性质表征.吉林农业大学学位论文. 2013.
- [9] Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of L-methionine and branchedchain amino acids. *Metabolic Engineering*, 2012, 14(4): 449-457.
- [10] Xu JK, Min WH, Zhan DL, Fang L, Liu J, Shen SX, Guo YL. Food Science, 2013, 34 (007): 240-244. (in Chinese)
 许金坤,闵伟红,詹冬玲,方丽,刘嘉,申术霞,郭永玲. 北京棒杆菌 AS1. 299 高丝氨酸脱氢酶突变体 D206G 的酶学性质表征. 食品科学,2013,34 (007): 240-244.
- [11] Zhu GP, Luo D, Cai YF, Zhu XY, Teng MK, Wang YZ. Mutations of Q20L and G247D improved the specific-

activity and optimum pH of glucose isomerase. *Chinese Journal of Biotechnology*, 2000, 16(4): 469-473. (in Chinese)

朱国萍,罗丹,蔡云飞,朱学勇,滕脉坤,王玉珍. Q20L 及 G247D 定点突变对葡萄糖异构酶酶活和最适 pH 的改善. 生物工程学报,2000,16(4):469-473.

- [12] Yang HM, Yao B, Fan YL. Recent advances in structures and relative enzyme properties of xylanase. *Chinese Journal of Biotechnology*, 2005, 21(1): 6-11. (in Chinese)
 杨浩萌,姚斌,范云六. 木聚糖酶分子结构与重要酶 学性质关系的研究进展. 生物工程学报,2005,21(1):
- [13] Yao T, Li HZ, Fang YW, Lu ZX, Wang SJ, Jiao YL, Liu S. Catalytic activity improvement of acid-stable alphaamylase from hyperthermophilic *Thermococcus siculi*

HJ21by site-directed mutagenesis. Food Science, 2011, 32(15): 148-152. (in Chinese) 姚婷,李华钟,房耀维,陆兆新,王淑军,焦豫良,刘

妹. 定点突变提高 Thermococcus siculi HJ21 高温酸性 α-淀粉酶的催化活性. 食品科学,2011,32(15):148-152.

[14] Yang HM, Bai YG, Li J, Luo HY, Wang YR, Wu NF, Fan YL, Yao B. N46D Mutagenesis of xylanase XYNB and enzymatic changes of expression product. *Chinese Journal of Biochemistry and Molecular Biology*, 2006, 22 (3): 204-211. (in Chinese)
杨浩萌,柏映国,李江,罗会颖,王亚茹,伍宁丰,范云 六,姚斌. 木聚糖酶 XYNB 的 N46D 突变、表达及酶学 性质变化. 中国生物化学与分子生物学报,2006,22 (3):204-211.

Heterologous expression and characterization of L200F/ D215K mutant of homoserine dehydrogenase from *Corynebacterium pekinense* AS1. 299

Shuxia Shen^{1,2}, Yunming Zhu^{1,2}, Weihong Min^{1,2*}, Li Fang^{1,2}, Jinkun Xu^{1,2} ¹ College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin Province, China ² National Engineering Laboratory on Wheat and Corn Further Processing, Changchun 130118, Jilin Province, China

Abstract: **[Objective]** To obtain a new homoserine dehydrogenase with better properties from *Corynebacterium pekinense* by the spatial structure transfromation. **[Methods]** Double mutants L200F/D215A, L200F/D215E, L200F/D215G and L200F/D215K were constructed by site-directed mutagenesis and expressed in *E. coli* BL21. L200F/D215K was characterized for its highest catalytic efficiency and compared with that of L200F. **[Results]** The V_{max} of L200F/D215K was 36.92 U/mg, 1.24 times as that of L200F. The optimum reaction temperature of L200F/D215K was 37°C, 2°C higher than that of L200F. The optimum pH of L200F/D215K was 7.5, the same as that of L200F. The half-life time of L200F/D215K under optimum temperature was 4.16 h and was 1.12 times as that of L200F. Both L200F/D215K and L200F had good resistance to organic solvents and metal ions. **[Conclusion]** Through the spatial structure transformation, the enzymology properties was optimized.

Keywords: Corynebacterium pekinense, homoserine dehydrogenase, heterologous expression, characterization

(本文责编:张晓丽)

6-11.

Supported by the Natural Science Foundation of Jilin Province (20130101139JC) and by the National Science and Technology Support Program (2012BAD37B05)

^{*} Corresponding author. E-mail: minwh2000@163.com

Received: 10 December 2013/Revised: 23 February 2014