微生物学报 Acta Microbiologica Sinica 55(7):826-833; 4 July 2015 ISSN 0001-6209; CN 11-1995/Q http://journals.im.ac.cn/actamicrocn doi: 10.13343/j.cnki.wsxb.20150064

适于蛹虫草遗传多样性研究的线粒体分子标记的筛选

张永杰¹,郭丽宏¹,张姝¹,刘杏忠² ¹山西大学生命科学学院,山西太原 030006 ²中国科学院微生物研究所,真菌学国家重点实验室,北京 100101

摘要:【目的】从蛹虫草线粒体 DNA 中寻找适于遗传多样性研究的分子标记。【方法】通过 PCR 扩增和序列分析,比较了 20 个蛹虫草菌株在 12 个线粒体 DNA 片段和 3 个细胞核 DNA 片段上的序列变异。【结果】 蛹虫草在线粒体 DNA 上的变异水平高于核 DNA,主要表现为线粒体基因内含子的插入缺失多样性和较多 的碱基变异位点。不同线粒体 DNA 片段的变异水平也有差异,而且内含子蛋白比外显子编码的蛋白质更易 发生氨基酸的改变。增加使用的分子标记数目,其所揭示的遗传多样性程度也在逐渐提高。【结论】我们依 次推荐 nad3-cox2、cox2-nad5、cox2、cox3、cob 和 cox1 这 6 个线粒体 DNA 位点用于今后蛹虫草遗传多样性或群 体遗传结构的分析。

关键词:蛹虫草,线粒体 DNA,分子标记,遗传多样性 中图分类号:Q933 文章编号:0001-6209(2015)07-0826-08

蛹虫草[Cordyceps sinensis (L.) Link]是虫草属 的模式种,主要寄生阔叶林或混交林地表土层中鳞 翅目昆虫的蛹或幼虫。作为世界广布种,蛹虫草是 目前研究最多的虫草之一。作为一种重要的真菌资 源,蛹虫草富含多种生物活性物质(如虫草素和多 糖),其丰富的化学成分同时也体现出广泛的生理 活性,包括抗菌、抗病毒、抗肿瘤、抗氧化、抗炎和免 疫调节等^[14],因此,具有极高的医疗保健功效和经 济价值。与冬虫夏草菌相比,蛹虫草菌生长较快、容 易人工培养产生子实体,因而人们常把蛹虫草作为 冬虫夏草的替代品开发利用。

除在人工栽培和药理作用方面的兴趣外,科研

人员近年来还从基因组学^[5]、转录组学^[6-7]和蛋白质组学^[7]的角度对蛹虫草进行研究。然而,蛹虫草种内遗传多样性的研究非常少,由于缺乏高效的分子标记其群体遗传结构尚不清晰。蛹虫草菌虽然具有广泛的地理分布和多样的寄主范围^[8],但从已有的报道看,其遗传分化程度尚不及仅在青藏高原分布的冬虫夏草高。例如,英国、中国、日本、韩国和挪威来源的蛹虫草菌株在 nrDNA ITS(细胞核核糖体 DNA 内转录间隔区)序列间的遗传距离小于0.01^[9],而从中国的西藏、青海、四川、云南来源的冬虫夏草菌在 nrDNA ITS 序列间的遗传距离就可能达到0.04^[10]。研究蛹虫草的群体遗传结构需要寻找

作者简介:张永杰(1979-),男,山西临汾人,副教授,研究方向为微生物进化生物学。E-mail:zhangyj2008@sxu.edu.cn

收稿日期:2015-02-03;修回日期:2015-03-18

基金项目:国家自然科学基金(81102759,31140013);教育部高等学校博士学科点专项科研基金(20101401120007);山西省青年科技基金 (2014021030-2)

其他的分子标记。最近,蛹虫草的线粒体基因组序 列已经发表^[11],这为从线粒体基因组中筛选蛹虫草 的分子标记提供了良好的契机。

线粒体基因组具有自己特定的基因组成、遗传 密码和复制方式,是研究物种起源与进化的有力工 具^[12]。与核基因组相比,线粒体基因组具有分子量 小、序列变异相对迅速等特点^[13],因此,更适于区分 亲缘关系较近的物种,探究较近发生的进化事件。 实际上,在进化生物学领域,线粒体 DNA 已被广泛 用于 理解 重要的进化事件^[14-15]和作为群体遗 传^[16-17]或区分物种^[18-20]的分子标记。

为了筛选蛹虫草适宜的分子标记,本文使用一 组不同来源的蛹虫草菌株比较其在12个线粒体 DNA 片段和 3 个细胞核 DNA 片段中的变异情况。 我们最终找出 6 个变异相对较大的线粒体 DNA 片 段,可望用于今后蛹虫草遗传多样性或群体遗传结 构的分析。

1 材料和方法

1.1 蛹虫草菌株培养及 DNA 提取

本研究使用 20 个不同来源的蛹虫草菌株(表 1)。这些菌株接种到铺有玻璃纸的 PDA(马铃薯葡 萄糖琼脂)培养基平板中央,在 25℃黑暗培养 10 d, 收集菌丝体后用 CTAB(十六烷基三甲基溴化铵)法 提取基因组 DNA^[21]。

表1. 本研究使用的蛹虫草菌株及序列登录号

Table 1. Cordyceps militaris isolates and accession numbers of DNA fragments used in this study

Isolate		GenBank accession No.					
	Source	Mitochondrial DNA	nrDNA ITS	MAT1-1-1	MAT1-2-1		
V26-16	Company	KP722511	KP721236	_	KP721273		
V26-17	Company	KP719097	KP721237	KP721256	—		
V40-4	Company	KP722512	KP721238	KP721257			
V40-5	Company	KP722501	KP721239	—	KP721274		
СМ09-9-24	Panjin, Liaoning, China	KP722496	KP721240	KP721258	KP721275		
СМ09-31-28	Panjin, Liaoning, China	KP722513	KP721241	—	KP721276		
CM552	Benxi, Liaoning, China	KP722502	KP721242	KP721259	KP721277		
CM556	Sichuan, China	KP722503	KP721243	KP721260	KP721278		
CM494	Sichuan, China	KP722504	KP721244	KP721261	KP721279		
СМА	Jinzhou, Liaoning, China	KP722497	KP721245	KP721262	_		
CM01	Unknown	KP719096	KP721246	KP721263	_		
CM02	Unknown	KP722508	KP721247	KP721264	_		
CM05	Unknown	KP722509	KP721248	KP721265	_		
CM06	Unknown	KP722500	KP721249	KP721266	KP721280		
CM07	Unknown	KP722498	KP721250	KP721267	_		
CM08	Unknown	KP722510	KP721251	KP721268	_		
F01	Unknown	KP722499	KP721252	KP721269	KP721281		
F02	Unknown	KP722505	KP721253	KP721270	_		
F03	Unknown	KP722506	KP721254	KP721271	_		
CMB	Unknown	KP722507	KP721255	KP721272	_		

1.2 候选基因片段的扩增和测序

本研究比较了不同蛹虫草菌株在 12 个线粒体 DNA 片段和 3 个细胞核 DNA 片段序列上的差异。这 12 个线粒体 DNA 片段是在比较 3 个蛹虫草菌株的完 整线粒体基因组序列的基础上找出的(另文发表)。 PCR 扩增体系(50 µL)包括 10 µL PCR 水,25 µL 2 × PCR buffer for KOD FX,10 µL 2 mmol/L dNTP, 1.5 μL 正、反向引物,1 μL KOD FX(1 U/μL)和1 μL DNA。各片段扩增的引物序列、退火温度和预期 扩增片段长度见表2。扩增产物由北京诺赛基因 组研究中心有限公司利用 PCR 引物进行测序;如 遇较长片段用 PCR 引物双向测序仍无法测通时, 则在已有序列基础上设计新的测序引物,直至完 全测通。

表 2. 本研究使用的引物及扩增条件

Table 2. Primer sequences and amplification conditions used in this study

Р	Primer	Primer sequence $(5' \rightarrow 3')$	Annealing	Expected	Note	
Fragment	name		temperature ∕℃	size/kb		
cob	cob-F	ATAGTACCCAAGCTAGTGCGT	53-50	1.6/2.9	Mitochondrial DNA fragment	
	cob-R	TTTAAGATAATGGAGGAATCGAACC				
cox1	cox1-F3	GGATGTTACGCACGCCTATT	54-51	2.0/3.0	Same as above	
	cox1-R6	GAAGTATTAAGCTCTGCCATTGAG				
cox2	cox2-F	GATGGAGGTGGGTGTGCTAT	55-52	0.95/2.0	Same as above	
	cox2-R	CATTCGTAGTGTCTTGTTCTACCAT				
cox3	cox3-F1	TGTTCGATTCATTTTAGAAACCAT	53-49	1.0/2.3	Same as above	
	cox3-R1	GTGGAACGCTATTGTTTTACCTTT				
rnl-i1	rnl-i1F1	TAAAGTTAGACCCGAAGCCTAGT	54-50	0.3/1.5	Same as above	
	rnl-i1R1	TTTGCCATTCCGAGTCTACAT				
rnl-i2	rnl-i2F1	AAATTGGGGAATCGTGAAG	52-49	0.3/1.5	Same as above	
	rnl-i2R1	TGGACAAGGTTTCGGTATATTG				
rnl-i3	rnl-i3F1	TTCGGGATAAGTAGGGCTCAT	55-52	0.4/1.3	Same as above	
	rnl-i3R1	AGCTGCATAGGGTCTTCTCG				
rnl-i4	rnl-i4F1	GCAGGGCATAGGATCACAAG	54-51	0.4/2.2	Same as above	
	rnl-i4R1	AACAGGGCATATAAACAACAGGT				
rns-cox3	rns-F2	AAATAGATGTCGGTTCGATGCT	53-49	0.5/1.2	Same as above	
	cox3-R2	TCTTGAAAATGGCTTCTTGTTG				
cox2-nad5	cox2-F1	GATTCAGATTTAGAAGATGGTGGATT	54-50	1.5	Same as above	
	nad5-R2	ACCTACTTGTGAACTTTTAGCCATT				
nad3-cox2	nad3-F1	TAACTGCAGGGTTTGTATTCG	53-49	0.9	Same as above	
	cox2-R3	TCTATTAATCCTTCCATTTGTGGAG				
cox3-trnS	cox3-F2	GCCGGTATTTTATATTGACATTTTG	53-49	1.3	Same as above	
	trnS-R1	TCGAACGGATGCAGGTTTAT				
MAT1-1-1	MAT1-F1	AGCACAACCTTTCCTGTTCG	54-51	1.7	Nuclear DNA fragment	
	MAT1-R1	CCTGAGTGTTGCCATCTAATTTC				
MAT1-2-1	MAT2-F1	CTCCATTTCCTCCAGCATTC	53-50	1.1	Same as above	
	MAT2-R1	TCTCATCCAGCTACGCCTCT				
THE DNA ITS	ITS5	GGAAGTAAAAGTCGTAACAAGG	54	0.6	Same as above	
nrdna 115	ITS4	TCCTCCGCTTATTGATATGC				

For those DNA fragments with two annealing temperatures separated by a dash, PCR was first performed at a higher temperature for 5 cycles, then at a lower temperature for remaining cycles. Except primers ITS5/ITS4^[22], all primers in this table were designed by the authors.

1.3 序列分析

得到测序结果后,参照测序峰图去掉序列文件 两端不准确的碱基部分。对于较长的序列,使用 Vector NTI 11.0^[23]软件包中的 ContigExpress 模块将 多次测序结果拼接起来。将不同菌株同一基因片段 的序列放在一起,利用 MEGA 6.0^[24]软件中的 Muscle^[25]算法进行比对,统计碱基变异位点数。对 于含有内含子的 DNA 片段,分别比较外显子区和内 含子区的碱基变异。外显子序列和内含子 ORF 序 列利用遗传密码表 4 翻译成氨基酸,进而比较蛋白 质序列的差异。

利用 DnaSP 5. 10^[26]软件将蛹虫草菌株区分成 不同的等位基因或基因型。利用 MEGA 6.0 计算各 DNA 片段不同等位基因序列间的 K2P(Kimura-2parameter)遗传距离,对比对产生的 gap 按"成对删 除"(pairwise deletion)方式处理。利用 MultiLocus 1.3b^[27]绘制遗传多样性与分子标记数目之间的线 性关系。本研究所涉及序列的登录号见表1。

2 结果和分析

2.1 不同 DNA 片段的序列变异情况

我们成功从20个蛹虫草菌株中扩增出12个线 粒体 DNA 片段和 ITS 片段,并测得其序列。对于两 个交配型基因,我们只从17个菌株中扩增到 MAT1-1-1,从9个菌株中扩增到 MAT1-2-1;从6个菌株中 同时扩增到两种交配型基因(表1)。由于有或无内 含子,不同菌株在 cob、cox1、cox2、cox3、rnl-i1、rnl-i3 和 rnl-i4 的扩增产物大小上有明显差异;片段 rnl-i2 中虽然也存在内含子,但所有测试菌株都含有该内 含子。不同菌株在片段 rns-cox3 上存在两种不同长 度(402 bp 或 1095 bp)的序列,而且这两种序列在 中间的差异部分(174 bp vs. 862 bp)缺乏序列同源 性。在 rns-cox3 较长的序列中存在一个未知功能的 开放阅读框(327 bp),而在较短序列中没有该开放 阅读框。其他 DNA 片段如果存在序列长度差异,则 主要是由碱基的插入缺失突变造成的。

不同的蛹虫草菌株在 cob、cox1、cox2、cox2-

nad5、nad3-cox2 上存在较多的碱基变异位点,在 mli3 上没有碱基差异(表 3)。相对于线粒体 DNA 片 段,核 DNA 片段存在的变异位点非常少。两个交配 型基因(MAT1-1-1 和 MAT1-2-1)中虽然各有 2 个内 含子,但本研究并未发现有丢失其中任一内含子的 菌株。本研究的蛹虫草菌株在大部分线粒体 DNA 片段上可区分成 3 - 7 种不同的等位基因。综合分 析所有线粒体 DNA 片段,本研究使用的 20 个蛹虫 草菌株存在 9 种不同的线粒体基因型,最优势基因 型包含 6 个菌株。此外,根据最大遗传距离值,不同 等位 基因 的菌 株 在 片段 cox2、cox3、cox2-nad5 和 nad3-cox2 上较在其他片段上存在更大的遗传分化。

表 3.	不同 DNA	片段的核苷酸变异
------	--------	----------

	No.	Length range		Total no. alleles	Max. genetic	
Fragment	isolates	/hn	Variable site ^a	(frequency of the most	distance	
	13014103	, ph		dominant allele)	uistance	
cob	20	1454 – 2711	19 (13, 6)	5 (10)	0.008	
cox1	20	1811 - 2862	15 (9, 6)	7 (10)	0.004	
cox2	20	837 - 1963	15 (10, 5)	6 (10)	0.011	
cox3	20	943 - 2156	11 (0, 11)	3 (15)	0.012	
rnl-i1	20	173 – 1365	6 (4, 2)	4 (10)	0.006	
rnl-i2	20	1437 – 1443	3 (3,0)	4 (13)	0.002	
rnl-i3	20	294 - 1187	0 (0,0)	2 (19)	0.000	
rnl-i4	20	279 - 2107	7 (3, 4)	6 (9)	0.001	
rns-cox3_Long ^b	16	1095	1 (0, 1)	2 (15)	0.001	
rns-cox3_Short ^b	4	402	0 (0, 0)	1 (4)	0.000	
cox2-nad5	20	1352 – 1353	17 (17,0)	4 (11)	0.011	
nad3-cox2	20	774 - 784	16 (16,0)	4 (10)	0.019	
cox3-trnS	20	1376 – 1395	10 (10,0)	3 (15)	0.007	
Total mitochondrial fragments	20	12592 10219	110 (95 24)	0 (()	0.000	
excluding rns-cox3°	20	12582 - 19318	119 (85, 54)	9 (6)	0.006	
nrDNA ITS	20	528	1 (0, 1)	2 (19)	0.002	
MAT1-1-1	17	1480	5 (4, 1)	4 (11)	0.003	
MAT1-2-1	9	820	2 (2,0)	2 (7)	0.002	

Table 3. Nucleotide variations on different DNA fragments

^aValues within parentheses are the number of parsimony informative sites and singleton sites, respectively.

^bFor *rns-cox*3, the larger sequence (*rns-cox*3_Long) and the smaller sequence (*rns-cox*3_Short) were analyzed separately due to their lack of identity. ^cDue to the lack of identity between the two different-length *rns-cox*3 sequences, *rns-cox*3 was not considered when analyzing all mitochondrial fragments. In fact, even considering *rns-cox*3 did not affect the number of inferred genotypes.

2.2 外显子区和内含子区的序列变异比较

对于有内含子的线粒体 DNA 片段,我们比较 了外显子区和内含子区的序列变异情况(表4)。 就外显子区而言,蛋白编码基因比核糖体 RNA 基因具有相对较大的变异,而且随着菌株的增 多,蛋白编码基因外显子区的变异位点数也在增 多。就内含子区而言,蛋白编码基因与核糖体 RNA 基因差异不大。对蛋白编码基因,外显子区 和内含子区的变异相当;对核糖体 RNA 基因,内 含子区变异水平高于外显子区。相对于外显子 编码的氨基酸,内含子蛋白似乎更容易发生氨基 酸突变。

表 4. 不同蛹虫草菌株在线粒体 DNA 片段外显子区和内含子区的序列变异比较

Table 4. Comparison of different C. militaris isolates on exonic and intronic regions of mitochondrial DNA fragments

	Isolates with introns	Exonic region ^a			Intronic region ^a				
Fragment		Length∕ bp	Variable sites	Indel sites	Amino acid changes	Length⁄ bp	Variable sites	Indel sites	Amino acid changes
,			0.(0)	0.(0)		1056 1057	6.000	1	2.
cob	11	1161	2 (8)	0(0)	0(0)	1256 - 1257	6	1	2
cox1	14	1593	4 (9)	0(0)	0(0)	1051	4	0	0
cox2	11	750	6 (9)	0(0)	0 (0)	1125	4	0	0
cox3	1	810	(11)	_	(1)	1213	—	_	—
rnl-i1	10	173	1 (1)	0(0)	—	1191 – 1192	5	1	1
rnl-i2	20	202	0 (0)	0(0)	_	1235 – 1241	3	6	$2 + 2^{b}$
rnl-i3	1	294	(0)	_	_	893	_	—	_
rnl-i4	19	279	0 (0)	0(0)	_	1821 – 1828	7	7	2

^a When comparing exonic regions, we compared for both intron-containing isolates (outside parentheses) and all 20 isolates (inside parentheses). When comparing intronic regions, we only compared for intron-containing isolates whose numbers were given in the table. It's noteworthy that some intergenic regions were also amplified for some fragments, but nucleotide variations at those regions were not included in this table.

^b The first number before the "+" sign is the number of amino acid substitutions and that after the "+" sign is the number of amino acid indels.

2.3 遗传多样性与分子标记数目的关系

对遗传多样性和位点数目做图,结果显示任 意6个线粒体位点能够反映约79.8%的遗传多样 性(图1)。考虑到即便使用12个位点,其最大遗 传多样性也才只有86.8%,6个线粒体位点反映 的遗传多样性已经足够高了。结合前面不同位点 碱基变异的比较结果,我们推荐今后分析蛹虫草 遗传多样性或群体遗传结构时,可以使用(依照优 先顺序) nad3-cox2、cox2-nad5、cox2、cox3、cob 和 cox1 这6个位点。

图 1. 分子标记数目与遗传多样性的对应关系

Figure 1. Permutation analysis showing the relationship between the number of assayed loci and genotype diversity. Each data point shows the mean and standard deviation of genotype diversity from 1000 permutations. The standard deviation values are too small to be visible in the figure.

3 讨论

泛用于进化、系统发育、种群遗传结构、遗传漂流、杂 交和生物地理学等方面的研究。线粒体基因组不同 区域的进化速率存在差异,适于解决不同的科学问 题。保守性高的区域可用于系统发育研究^[28].而变 异较大的区域可用于鉴别不同的物种或个体[29-30]。 在真菌学领域,线粒体 DNA 片段已被用于真菌遗传 多样性或群体遗传结构的分析。例如, Candida albicans 在线粒体复制起始位点周围的序列上存在 较大变异[31];nad2、nad4、nad5、atp6、cox1-atp8 这五 个线粒体 DNA 片段可用于 Cryptococcus gattii 的群 体遗传分析^[17]; Rhizophagus irregularis 不同菌株的 线粒体基因组大小存在差异,据此可设计鉴别不同 菌株的线粒体分子标记^[32]等。本研究发现,由于内 含子的插入缺失多样性,不同蛹虫草菌株的线粒体 基因组大小可能不同,而且不同线粒体 DNA 片段的 核苷酸变异情况也存在较大差异(表3)。本研究所 发现的线粒体 DNA 具有比细胞核 DNA 更大遗传变 异的结果(表3),与之前利用 nrDNA ITS 序列发现 蛹虫草具有很小遗传分化的结果一致^[9]。

除不同区域变异水平有异外,线粒体基因内含 子区与外显子区的变异水平也可能不同。内含子和 外显子类似"寄生物"与"宿主"的关系,二者的进化 起源和进化速率可能存在不同。本研究发现对于蛋 白编码基因,外显子区和内含子区的变异水平相当; 而对于核糖体 RNA 基因,内含子区变异水平高于外 显子区(表4)。对于后者,可能的原因之一是本研 究只扩增了核糖体基因 ml 内含子周围的部分外显 子序列。事实上,蛹虫草 ml 外显子全长3189 bp,而 本研究扩增的 4 段 ml 外显子序列总长也才只有 948 bp。蛹虫草线粒体基因内含子与外显子是否同时起源,是否能够反映一致的系统发育关系,这些是值得今后深入研究的内容。

通常,随着使用的分子标记数目的增多,所反映 的遗传多样性也在提高,但分子标记数目增加到一 定程度,遗传多样性提高的程度会变缓。本研究发 现任意6个线粒体位点能够反映约79.8%的遗传 多样性,而即便使用12个线粒体位点时遗传多样性 也才只有 86.8% (图 1)。综合考虑线粒体 DNA 片 段的变异程度和测序成本,我们推荐今后分析蛹虫 草遗传多样性或群体遗传结构时,可以选择使用 (依照优先顺序) nad3-cox2、cox2-nad5、cox2、cox3、 cob 和 cox1 这 6 个位点。这几个位点中, nad3-cox2 和 cox2-nad5 扩增的主要是两个线粒体基因之间的 区域, $m \cos 2$, $\cos 3$, $\cosh \pi \cos 1$ 扩增的是对应的线粒 体基因区域。值得注意的是,这些片段是对不同蛹 虫草菌株筛选得出的,主要用于蛹虫草菌的遗传多 样性和群体遗传分析,在其它真菌中需要通过实验 检测后方能使用。

致谢:感谢中国科学院上海植物生理生态研究所王 成树研究员、中国农业大学张国珍教授和中国科学 院微生物研究所文华安研究员提供研究菌株。

参考文献

- [1] Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom *Cordyceps militaris*: Current state and prospects. *Fitoterapia*, 2010, 81(8): 961-968.
- Tuli HS, Sharma AK, Sandhu SS, Kashyap D.
 Cordycepin: A bioactive metabolite with therapeutic potential. *Life Sciences*, 2013, 93(23): 863-869.
- [3] Wang M, Meng X, Yang R, Qin T, Li Y, Zhang L, Fei C, Zhen W, Zhang K, Wang X, Hu Y, Xue F. Cordyceps militaris polysaccharides can improve the immune efficacy of Newcastle disease vaccine in chicken. International Journal of Biological Macromolecules, 2013, 59: 178-183.
- Wong JH, Ng TB, Wang HX, Sze SCW, Zhang KY, Li
 Q, Lu XX. Cordymin, an antifungal peptide from the medicinal fungus *Cordyceps militaris*. *Phytomedicine*, 2011, 18(5): 387-392.
- [5] Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao G-P, Liu

X, St Leger R, Wang C. Genome sequence of the insect pathogenic fungus *Cordyceps militaris*, a valued traditional Chinese medicine. *Genome Biology*, 2011, 12(11): R116.

- [6] Xiong C, Xia Y, Zheng P, Shi S, Wang C. Developmental stage-specific gene expression profiling for a medicinal fungus *Cordyceps militaris*. *Mycology*, 2010, 1(1): 25-66.
- [7] Yin Y, Yu G, Chen Y, Jiang S, Wang M, Jin Y, Lan X, Liang Y, Sun H. Genome-wide transcriptome and proteome analysis on different developmental stages of *Cordyceps militaris. PLoS One*, 2012, 7(12): e51853.
- [8] Shrestha B, Zhang W, Zhang Y, Liu X. The medicinal fungus Cordyceps militaris: research and development. Mycological Progress, 2012, 11: 599-614.
- [9] Wang L, Zhang W, Hu B, Chen Y, Qu L. Genetic variation of *Cordyceps militaris* and its allies based on phylogenetic analysis of rDNA ITS sequence data. *Fungal Diversity*, 2008, 31: 147-155.
- [10] Zhang YJ, Xu LL, Zhang S, Liu XZ, An ZQ, Wang M, Guo YL. Genetic diversity of *Ophiocordyceps* sinensis, a medicinal fungus endemic to the Tibetan Plateau: Implications for its evolution and conservation. BMC Evolutionary Biology, 2009, 9: 290.
- [11] Sung GH. Complete mitochondrial DNA genome of the medicinal mushroom *Cordyceps militaris* (Ascomycota, Cordycipitaceae). *Mitochondrial DNA*, 2015, DOI: 10.3109/19401736.2013.855754.
- [12] Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. *Research in Microbiology*, 2011, 162(1): 53-70.
- [13] Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity—critical analysis and update. *Cold Spring Harbor Perspectives in Biology*, 2013, 5(5): a012641.
- [14] Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldon T. High variability of mitochondrial gene order among fungi. *Genome Biology* and Evolution, 2014, 6(2): 451-465.
- [15] Bullerwell CE, Lang BF. Fungal evolution: the case of the vanishing mitochondrion. Current Opinion in Microbiology, 2005, 8(4): 362-369.
- [16] Qin Z, Yang Y, Kang L, Yan S, Cho K, Cai X, Lu Y, Zheng H, Zhu D, Fei D, Li S, Jin L, Li H. A mitochondrial revelation of early human migrations to the

Tibetan Plateau before and after the last glacial maximum. *American Journal of Physical Anthropology*, 2010, 143(4): 555-569.

- Xu JP, Yan Z, Guo H. Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast *Cryptococcus gattii*. *Molecular Ecology*, 2009, 18(12): 2628-2642.
- [18] Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(41): 14812-14817.
- [19] Kouvelis VN, Sialakouma A, Typas MA. Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of *Lecanicillium* species. *Mycological Research*, 2008, 112(7): 829-844.
- [20] Sosa-Gómez D, Humber R, Hodge K, Binneck E, Silva-Brandão K. Variability of the mitochondrial SSU rDNA of *Nomuraea* species and other entomopathogenic fungi from Hypocreales. *Mycopathologia*, 2009, 167 (3): 145-154.
- [21] Zhang YJ, Zhang S, Liu XZ, Wen HA, Wang M. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. *Letters in Applied Microbiology*, 2010, 51(1): 114-118.
- [22] White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. // Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press, 1990.
- [23] Lu G, Moriyama EN. Vector NTI, a balanced all-in-one sequence analysis suite. Briefings in Bioinformatics, 2004, 5(4): 378-388.
- [24] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary Genetics analysis version 6. 0. *Molecular Biology and Evolution*, 2013, 30

(12): 2725-2729.

- [25] Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Research, 2004, 32(5): 1792-1797.
- [26] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 2009, 25(11): 1451-1452.
- [27] Agapow PM, Burt A. Indices of multilocus linkage disequilibrium. *Molecular Ecology Notes*, 2001, 1 (1-2): 101-102.
- [28] Bullerwell CE, Gray MW. Evolution of the mitochondrial genome: protist connections to animals, fungi and plants. *Current Opinion in Microbiology*, 2004, 7(5): 528-534.
- [29] Ghikas D, Kouvelis V, Typas M. The complete mitochondrial genome of the entomopathogenic fungus *Metarhizium anisopliae* var. *anisopliae*: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. *Archives of Microbiology*, 2006, 185 (5): 393-401.
- [30] Kouvelis VN, Ghikas DV, Typas MA. The analysis of the complete mitochondrial genome of *Lecanicillium muscarium* (synonym *Verticillium lecanii*) suggests a minimum common gene organization in mtDNAs of Sordariomycetes: phylogenetic implications. *Fungal Genetics and Biology*, 2004, 41(10): 930-940.
- [31] Wang H, Guo H, Sun S, Xu J. Abundant sequence variation around the mitochondrial origin of replication in the human opportunistic yeast pathogen *Candida albicans* from a tropical island in China. *Fungal Genetics and Biology*, 2007, 44(10): 991-1001.
- [32] Formey D, Moles M, Haouy A, Savelli B, Bouchez O, Becard G, Roux C. Comparative analysis of mitochondrial genomes of *Rhizophagus irregularis - syn*. *Glomus irregulare - reveals* a polymorphism induced by variability generating elements. *The New Phytologist*, 2012, 196(4): 1217-1227.

Determining mitochondrial molecular markers suitable for genetic diversity analysis of *Cordyceps militaris*

Yongjie Zhang^{1*}, Lihong Guo¹, Shu Zhang¹, Xingzhong Liu²

¹College of Life Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China

²State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

Abstract: [**Objective**] To screen efficient molecular markers suitable for genetic diversity analysis of *Cordyceps militaris* from mitochondrial DNA. [**Methods**] We amplified 12 mitochondrial DNA fragments and 3 nuclear DNA fragments from each of 20 *C. militaris* isolates and analyzed nucleotide variations on these DNA fragments. [**Results**] We revealed a greatly higher genetic variation in mitochondrial DNA fragments than in nuclear DNA fragments. Specifically, *C. militaris* isolates exhibited intron presence/absence diversity in some mitochondrial fragments, and more variable sites were found in mitochondrial fragments than in nuclear fragments. The extent of nucleotide variations also varied by mitochondrial fragment, and intronic proteins seemed to be more vulnerable to amino acid changes than exonic proteins. Genetic diversity increased with the number of molecular markers used. [**Conclusion**] We recommended using (in order) *nad3-cox2*, *cox2-nad5*, *cox2*, *cox3*, *cob*, and *cox1* for future genetic diversity and population genetic studies of *C. militaris*. **Keywords**: *Cordyceps militaris*, mitochondrial DNA, molecular marker, genetic diversity

(本文责编:张晓丽)

Supported by the National Science Foundation of China (81102759, 31140013), by the Specialized Research Fund for the Doctoral Program of Higher Education (20101401120007) and by the Natural Science Foundation for Young Scientists of Shanxi Province, China (2014021030-2)

^{*} Corresponding author. E-mail: zhangyj2008@sxu. edu. cn

Received: 3 February 2015/Revised: 18 March 2015