

研究报

Research Paper

基因组信息指导的星海链霉菌中2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷的分离鉴定

王晓庆¹, 王晓政¹, 陈亮宇², 赵心清^{1,2}, 黄婷婷^{1*}, 林双君¹

¹上海交通大学生命科学技术学院,微生物代谢国家重点实验室,教育部代谢与发育科学国际合作联合 实验室,上海 200240

²大连理工大学生命科学技术学院, 辽宁 大连 116024

摘要:【目的】研究海洋链霉菌新种星海链霉菌Streptomyces xinghaiensis NRRL B24674^T次级代谢物中是 否存在2-甲硫基-N⁶-异戊烯基修饰的腺苷。【方法】通过生物信息学分析星海链霉菌S. xinghaiensis NRRL B24674^T基因组序列,寻找这类化合物的生物合成相关基因;采用正相硅胶柱色谱、反相硅胶柱 色谱、凝胶柱色谱和高效液相色谱等分离技术对该菌株的发酵粗提物进行分离纯化;利用质谱与核磁共 振等波谱技术鉴定化合物的结构。【结果】在星海链霉菌基因组中找到含有2-甲硫基-N⁶-异戊烯基修饰 的化合物生物合成途径中的2个同源蛋白;从该菌的发酵液中分离鉴定了2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷(ms²io⁶A)。【结论】星海链霉菌S. xinghaiensis NRRL B24674^T存在此类腺苷修饰反应,并且是首次 在链霉菌中发现此类腺苷修饰。生物信息学分析预示着链霉菌中可能普遍存在此类核酸或者核苷修饰。

关键词: 星海链霉菌, 基因组挖掘, 2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷, 腺苷修饰

tRNA 的转录后修饰几乎存在于包括古生 菌、细菌和真核生物在内的所有生物当中^[1]。有 趣的是,生物体内存在大量用于tRNA核苷酸的修 饰酶^[2],从而形成多样的tRNA结构。目前为止, 从tRNA中鉴定了100多个被修饰的核苷酸结构 (http://medstat.med.utah.edu/RNAmods),例如4-硫 尿核苷、5-甲基胺甲基-2-硫尿核苷、2-硫代胞苷 等^[3]。目前研究较多的是位于tRNA反密码子环附 近的修饰,这种修饰大多数在其34位(摇摆位点) 或37位(反密码子的3'端附近)进行甲基化修饰或者 甲硫基化修饰^[4],例如2-甲硫基-N⁶-异戊烯基-腺苷 (ms²i⁶A)修饰和2-甲硫基-N⁶-(4-羟基异戊烯基)-腺 苷(ms²io⁶A)修饰。

tRNA核苷酸修饰的生物学作用目前还不是很 清晰。最初认为这些修饰在维持tRNA独特的二级 和三级结构稳定性上发挥作用。在一些情况下,

基金项目: 国家自然科学基金(31425001)

^{*}通信作者。Tel: +86-21-62932418; E-mail: tingwing82@sjtu.edu.cn

收稿日期: 2015-07-07; 修回日期: 2015-08-28; 网络出版日期: 2015-09-29

tRNA中被修饰核苷酸的出现能够影响中心代谢, 如硫胺素的生物合成以及细菌的毒性作用等^[4]。 深入研究表明,在tRNA反密码子环区域和摆动位 点的特殊修饰能够提高翻译的保真度和翻译效 率,同时降低翻译中移码突变的概率,影响细胞 生长和细胞对胁迫环境的应激反应^[5-6]。

研究发现,在大肠杆菌tRNA的37位碱基的修 饰为2-甲硫基-N⁶-异戊烯基-腺苷^[7];在鼠伤寒沙门 氏菌中,存在以2-甲硫基-N⁶-(4-羟基异戊烯基)-腺 苷修饰的tRNA^[7];在红球菌中存在2-甲硫基-异戊 烯基腺嘌呤、2-甲硫基-异戊烯基腺苷、2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷等^[8];但在链霉菌中目 前还没有相关的报道。然而,一些放线菌,尤以 链霉菌为主,能在次级代谢过程中产生一些重要 的核苷类次级代谢物,它们都是由核苷或核苷酸 衍生而成的天然产物,其结构多样并且很多具有 广谱的抗菌活性^[9-10]。因此,我们推测在链霉菌中 可能也存在类似的核苷修饰方式。

ms²io⁶A在鼠伤寒沙门氏菌中的生物合成途径 已经有报道,其推测的合成途径如图1,MiaA、 B和E 是参与其中的相关蛋白^[11]。首先二甲基烯丙 基二磷酸-tRNA转移酶(MiaA)催化DMAPP[二甲基 烯丙基二磷酸(Δ2-异戊烯焦磷酸)]的二甲基烯丙基 基团转移到tRNA37位腺苷(A₃₇)的氨基N⁶上形成 N⁶-异戊烯基腺苷(i⁶A₃₇)^[12];然后甲硫基-N⁶-异戊烯 基腺苷合成酶(MiaB)利用S-腺苷甲硫氨酸 (SAM)、铁硫蛋白催化i⁶A₃₇甲硫基化,形成2-甲 硫基-N⁶-异戊烯基腺苷(ms²i⁶ A₃₇)^[13-14];最后2-甲 硫基-N⁶-异戊烯基腺苷-tRNA单加氧酶(MiaE)催化 ms²i⁶A₃₇氧化形成2-甲硫基-N⁶-(4-羟基异戊烯基)腺 苷(ms²io⁶A)^[15]。

本研究中使用的菌种星海链霉菌S. xinghaiensis NRRL B24674^T是从大连星海湾分离鉴定的一株海 洋来源链霉菌。经初步检测,该菌发酵液具有很 好的广谱抗菌活性,不仅对鲍曼不动杆菌、铜绿 假单胞菌、大肠杆菌等革兰氏阴性菌具有很好的 抑制作用,而且对葡萄球菌、枯草芽胞杆菌等革 兰氏阳性菌均具有很好的抑制作用^[16]。星海链霉 菌S. xinghaiensis NRRL B24674^T基因组测序已经 完成^[17],本文利用该菌的基因组序列信息,通过 基因组挖掘的方式,寻找上述甲硫基或异戊烯基 修饰的核苷的相关合成基因,然后通过一系列分 离纯化手段对该菌的发酵粗提物进行分析,以探 究该菌次级代谢产物中是否存在2-甲硫基或N⁶-异 戊烯基修饰的核苷,或者以这些结构单元为母体 形成的核苷类次级代谢产物。

1 材料和方法

1.1 菌株与培养基

星海链霉菌*S. xinghaiensis* NRRL B24674^T分 离自大连星海湾。固体平板培养基(g/L):玉米淀 粉30.0,黄豆饼粉7.0,KNO₃ 1.5,K₂HPO₄ 0.5,琼 脂20,蒸馏水1 L,pH 7.5。种子培养基(g/L): 胰蛋白胨17.0,大豆蛋白胨3.0,葡萄糖2.5, K₂HPO₄ 2.5,蒸馏水1 L,pH 7.5。发酵培养基 (g/L):可溶性淀粉20.0,黄豆饼粉25.0,(NH₄)₂SO₄ 2.0,NaCl 2.0,K₂HPO₄ 0.5,CaCO₃ 5.0,蒸馏水1 L, pH 7.2。

http://journals.im.ac.cn/actamicrocn

1.2 主要试剂与仪器

试剂:石油醚、氯仿、二氯甲烷、乙酸乙 酯、甲醇、乙酸、氨水,购自上海凌峰试剂公 司; 氘代甲醇,购自美国Cambridge Isotope Laboratory公司; 色谱级乙腈(Acetonitrile, ACN), 购自Sigma-Aldrich公司; HP20大孔树脂,购自日 本三菱株式会社; 正相柱层析硅胶,购自上海盛 亚化工有限公司; C₁₈反相硅胶柱层析硅胶(50 μm), 购自日本YMC公司; Sephedex TM LH-20,购自 美国GE医疗。

仪器:旋转蒸发仪,购自荷兰Buchi公司; Innova 44R摇床,购自美国New Brunswick Scientific 公司;恒温生化培养箱,购自韶关市泰宏医疗器 械有限公司;高效液相色谱仪(High Performance Liquid Chromatography, HPLC),液-质联用仪 (Liquid Chromatography-Mass Spectrometer, LC-MS),购自安捷伦科技有限公司;600 M核磁共振 仪,购自德国Bruker公司。

1.3 序列分析

利用BioEdit 7.1.11建立星海链霉菌基因组序 列(GenBank登录号: AFRPxb20150299000)^[17]的本 地数据库用于BLAST比对。以*Salmonella enterica* 中MiaA (WP_001000734), MiaB (WP_001519200) 和MiaE (WP_000218459)的氨基酸序列在该基因 组数据库进行比对,查找同源蛋白。利用PSI-BLAST在NCBI的GenBank中进行同源蛋白查找。 氨基酸序列比对用BioEdit进行,系统进化树构建 用MEGA 5.0完成,系统进化树中所用MiaA同源 蛋白来自于GenBank。

1.4 菌株的培养及发酵

将菌种划线接种于固体平板,30°C恒温培养 箱培养6d,用接种环刮取1 cm²的孢子,接种于 50 mL种子培养基,30°C、200 r/min振荡培养 48 h。取种子液,按10%接种量接种到500 mL发 酵培养基,30°C、200 r/min振荡培养96 h,加入 12%(质量比)的灭菌的HP20大孔树脂,继续振荡 培养72 h。

1.5 次级代谢产物的提取

对星海链霉菌进行大量发酵,共85 L。将发酵所得混合物取出后,6000 r/min离心30 min,取得上层的大孔树脂。随后用1.5倍发酵液体积的乙酸乙酯对大孔树脂进行反复萃取3次。再将萃取后的乙酸乙酯于30 °C减压蒸馏,去除有机溶剂,获得发酵粗提物。

1.6 次级代谢产物的分离纯化

使用正向硅胶色谱柱对发酵粗提物进行分 离,分离条件为石油醚,石油醚:二氯甲烷=3:1, 二氯甲烷,二氯甲烷:甲醇=20:1、5:1和1:1,甲 醇。收集洗脱液,利用高效液相色谱仪对其进行 分析,将样品合并为FR1-FR6共6个组分。 HPLC中以水和乙腈作为流动相,HPLC分离柱为 安捷伦XDB C₁₈柱(5 µm, 4.6 mm×250 mm),梯度 洗脱条件为:0-15 min, 10%-100% ACN(乙腈); 15-25 min, 100% ACN; 25-27 min, 100%-10% ACN; 27-33 min, 10% ACN; 流速为0.6 mL/min, 检测波长设定为210 nm,在没有特别说明情况下, HPLC的检测波长均为210 nm。

用长度与直径比较大的反相硅胶柱色谱柱对 FR4进行粗分,用甲醇和水的混合液作为流动相 进行梯度洗脱,甲醇的浓度依次为30%、50%、 75%、100%。收集洗脱液,利用HPLC对样品进 行分析,合并为FR4-7。然后,用长度与直径比较 小的反相硅胶柱色谱柱对FR4-7进行细分,用甲醇 和水的混合液作为流动相进行梯度洗脱,甲醇的 浓度依次为40%、50%、100%。收集洗脱液,利 用HPLC对样品进行分析,合并为FR4-7-8。对组 分FR4-7-8用Sephedex LH-20进行纯化,甲醇作为 洗脱剂,HPLC分析洗脱液,合并样品得到化合物1, 纯度为97%。 王晓庆等 | 微生物学报, 2016, 56(5)

2 结果和分析

2.1 星海链霉菌基因组中MiaA和MiaB的同源 蛋白

我们以对Salmonella enterica中tRNA的37位腺 苷进行2-甲硫基-N⁶-(4-羟基异戊烯基)(ms²io⁶A)修 饰的关键蛋白MiaA (WP_001000734), MiaB (WP_001519200)和MiaE (WP_000218459)为出发 蛋白,通过同源比对,在星海链霉菌基因组中找 到MiaA和MiaB的同源蛋白,与Salmonella enterica 中相应蛋白的一致性和相似性分别为 39%/56% 和 40%/59% (图2,图3)。随后,我们通过同源比对 搜索从NCBI GenBank数据库中获得不同物种来源 的MiaA 同源蛋白,以邻近法构建系统进化树,结 果表明MiaA蛋白在动物、植物、古菌和原核生物 中均广泛存在,其中链霉菌来源的MiaA同源蛋白 聚为同一分支(图4)。在基因组中MiaB蛋白一般与 MiaA偶联在一起,系统发育分布也具有类似性。 这些生物信息学分析结果暗示这株菌中可能存在 相似的核酸或者腺苷的修饰途径并产生此类修饰 的转运核酸或者腺苷^[18]。因此我们对星海链霉菌 的发酵粗提物进行分离纯化。

2.2 2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷(ms²io⁶A) 的结构鉴定

化合物1为淡黄色粉末,易溶于甲醇和二甲基 亚砜,微溶于氯仿。紫外吸收如图5所示,其中 λ_{max} : 244 nm, 284 nm。对化合物进行液-质(LC-MS)分析,正离子模式下,其准分子离子峰为 398.1464 [M+H]⁺,而其理论分子量为398.1493, 因此确定它的分子式为C₁₆H₂₃N₅O₅S。将化合物1 溶解在0.4 mL的氘代甲醇中,进行核磁共振 (Nuclear Magnetic Resonance, NMR)分析,以四甲 基硅烷(TMS)作为内标(表1),¹H NMR(CD₃OD)显 示该化合物含有一个芳香质子信号 $\delta_{\rm H}$ 8.12(s, H-9, 1H),结合化合物的分子式中含有多个氮原子,推 测化合物存在一个腺嘌呤单元,但相对于腺嘌呤

Figure 3. MiaB homolog from S. xinghaiensis and the sequence alignment.

图 4. 邻近法构建基于MiaA同源蛋白的系统发育树

Figure 4. Phylogenetic tree of MiaA homologues using Neighbour-Joining method. MiaA from *S. xinghaiensis* highlights in bold.

缺少了一个H-2,由此可以确认该化合物存在一个 2-位取代的腺嘌呤单元,这与该化合物的紫外吸 收相一致。¹H NMR还显示该化合物还有6个与杂 原子相连的氢【 $\delta_{\rm H}$ 5.91 (d, J = 5.94 Hz, H-1', 1H), 4.72 (dd, J = 5.52, 5.47 Hz, H-2', 1H), 4.31 (dd, J = 5.92, 5.04 Hz, H-3', 1H), 4.11 (dd, J = 5.94, 2.94 Hz, H-4', 1H), 3.85 (dd, J = 12.36, 2.76 Hz, H-5'a, 1H), 3.72 (dd, J = 12.36, 2.76 Hz, H-5'b, 1H)】,根据¹H-¹H COSY相关(H-1'/H-2'/H-3'/H-4'/H-5'a/H-5'b)推测 该化合物存在糖单元。该糖的端基氢偶合常数

	表1. 化合物1的核磁数据(600 MHz, CD ₃ OD)			
Table 1. NMR date (600 MHz, CD_3OD) of compound 1				
No.	$\delta_{\rm H}({\rm multi}, J/{\rm Hz})^{\rm a}$	$\delta_{\rm C}({\rm DEPT})^{\rm b}$	¹ H- ¹ H COSY	НМВС
2		166.3s		
4		148.9s		
5		117.2s		
6		168.3s		
8	8.10 (s)	139.4d		2, 7
1′	5.91 (d, 5.94)	89.8d	2'	3'
2'	4.72 (dd, 5.52, 5.47)	74.2d	1', 3'	
3'	4.31 (dd, 4.92, 5.04)	71.2d	2', 4'	5a′
4′	4.11 (dd, 2.94, 5.94)	86.5d	3', 5a', 5b'	2'
5'	3.85 (dd, 2.76, 12.36) 3.72 (dd, 2.76, 12.36)	62.3t	4', 5b' 4', 5a'	
1″	4.28 (brs)	65.1t	2"	3″
2″	5.48 (brs)	123.3d	1″	4", 5"
3″		139.4s		
4″	4.20 (s)	60.6t		2″
5″	1.82 (s)	20.6q		4", 2"
SCH ₃	2.55 (s)	13.6q		4

5.94 Hz, 可知该结构中所含糖单元为β构型。结合 HSQC谱, ¹³C NMR显示该化合物有5个连氧碳 【δ_C 89.8 (C-1'), 74.2 (C-2'), 71.2 (C-3'), 86.5 (C-4'), 62.3 (C-5')】,由此确认该化合物中β核糖单元。结合以上信息,该化合物存在一个取代腺嘌呤核 糖核苷,即片段1 (Fragment 1)。另外¹H NMR还显

示该化合物存在一个与N相连的亚甲基【 $\delta_{\rm H}$ 4.28 (brs, H-1", 2H)】,以及一个双键质子信号【 $\delta_{\rm H}$ 5.48 (brs, H-2", 1H)】,¹H-¹H COSY相关显示这组 氢存在相关,表明该化合物存在片段2 (Fragment 2)。¹H NMR还显示该化合物存在一个与季碳相连 的甲基信号【 $\delta_{\rm H}$ 1.82 (s, H-5", 3H)】,一个与甲硫 基信号【 $\delta_{\rm H}$ 2.55 (s, H-10, 3H),一个与氧相连的亚 甲基信号【 $\delta_{\rm H}$ 4.20 (s, H-4", 2H)】,这些数据都与 ¹³C NMR相一致【 $\delta_{\rm C}$ 20.6 (C-15), 13.6 (C-10), 60.6 (C-14)】。根据HMBC,可知甲硫基位于C-4位。 查阅相关文献,结合HMBC,将此化合物确定为2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷(ms²io⁶A)(图6)。

3 讨论

tRNA中腺苷修饰广泛存在于所有生物中,并 在细胞生长、分化、转录、翻译等过程中发挥着 重要作用,例如植物激素—细胞分裂素就是一类 被修饰的腺苷衍生物。细胞分裂素能够促进植 物的生长,调节植物的顶端优势、叶的衰老以 及根的发育等生长过程^[13]。它一般是在腺苷嘌呤 环的N⁶位置上的类异戊二烯或者芳香族侧链修 饰,或者以自由的碱基、核苷或核苷酸存在,或 者在嘌呤环的N⁷和N⁹,或者在羟基化侧链上有糖基 修饰^[8]。植物中的ms²io⁶A就属于细胞分裂素的 一种。

http://journals.im.ac.cn/actamicrocn

此外,ms²io⁶A修饰的核苷酸还有望成为癌症 的标志物。核苷酸的修饰是复杂有序多酶催化的 RNA成熟过程的一部分,但修饰的核苷酸在 RNA代谢过程中由于缺乏相应的磷酸化酶而作为 终产物随着尿液排出体外,因此尿液中的RNA水 平可用于鉴别癌症患者和健康人的标准。德国科 学家Bernd Kammerer 分析了1-4期的乳腺癌患者的 尿液,其中就发现了ms²io⁶A的存在^[19]。

ms²io⁶A修饰也存在于克雷伯氏菌、铜绿假单 胞菌、粘质沙雷氏菌、费氏柠檬酸杆菌和一些植 物病原菌,如土壤农杆菌、根瘤菌、棒状杆菌 中^[7-20]。在沙门氏菌中的研究表明,ms²io⁶A修饰 的tRNA提高了对酪氨酸、色氨酸、半胱氨酸和丝 氨酸的选择,减少了对苯丙氨酸的选择^[21]。tRNA37 位碱基没有ms²io⁶A的修饰,将会导致菌体的翻译 效率降低且移码突变的几率提高^[22]。同时,沙门 氏菌可以在琥珀酸、延胡索酸和苹果酸作为碳源 的培养基上生长,也是依赖于其tRNA37位碱基的 ms²io⁶A修饰^[23]。

本文通过对星海链霉菌的基因组进行分析比 对,找到了参与ms²io⁶A修饰的同源蛋白MiaA和 MiaB,这两种蛋白与已经报道沙门氏菌中的相应 蛋白具有较高的同源性,由此推测星海链霉菌中 也可能存在类似的修饰方式。通过对星海链霉菌 发酵产物的分离纯化,最终得到2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷。这是首次在链霉菌中分离 发现2-甲硫基-N⁶-(4-羟基异戊烯基)-腺苷,通过核 磁确定其结构,也是首次报道了该化合物的核磁 共振波谱数据。传统的ms²io⁶A的分离是首先获得 菌体RNA,然后将其降解所得^[24],而在我们的研究 中,ms²io⁶A可可以直接在发酵液中分离得到。因 此推测,ms²io⁶A可能是在tRNA代谢中产生而被 排出体外的,或者是该类酶具有一定的底物广谱 性,从而催化腺苷发生了类似的修饰反应。

此外,在对NCBI GenBank数据库进行同源蛋

白查找的过程中,我们发现MiaA和MiaB的同源 蛋白广泛存在于动物、植物、古菌和原核生物 中,也在链霉菌中普遍存在(图4)。尽管在链霉菌 中还没有对这类修饰的报道和功能研究,但其生 物合成相关基因的普遍存在,以及本文在星海链 霉菌中分离并确定了这类化合物的产生,说明这 种修饰在链霉菌中具有普遍性,并且可能具有一 定的生物学意义,值得开展深入的研究。

参考文献

- Björk GR, Durand JMB, Hagervall TG, Leipuviene R, Lundgren HK, Nilsson K, Chen P, Qian Q, Urbonavicius J. Transfer RNA modification: influence on translational frameshifting and metabolism. *FEBS Letters*, 1999, 452(1/2): 47–51.
- [2] Gustilo EM, Vendeix FAP, Agris PF. tRNA's modifications bring order to gene expression. *Current Opinion in Microbiology*, 2008, 11(2): 134–140.
- [3] Lundgren HK, Björk GR. Structural alterations of the cysteine desulfurase IscS of *Salmonella enterica* serovar Typhimurium reveal substrate specificity of IscS in tRNA thiolation. *Journal* of *Bacteriology*, 2006, 188(8): 3052–3062.
- [4] Persson BC. Modification of tRNA as a regulatory device. Molecular Microbiology, 1993, 8(6): 1011–1016.
- [5] Gu C, Begley TJ, Dedon PC. tRNA modifications regulate translation during cellular stress. *FEBS Letters*, 2014, 588(23): 4287–4296.
- [6] Endres L, Dedon PC, Begley TJ. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. *RNA Biology*, 2015, 12(6): 603–614.
- [7] Persson BC, Bjork GR. Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cisribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. Journal of Bacteriology, 1993, 175(24): 7776–7785.
- [8] Tarkowski P, Václavíková K, Novák O, Pertry I, Hanuš J, Whenham R, Vereecke D, Šebela M, Strnad M. Analysis of 2methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. *Analytica Chimica*

Acta, 2010, 680(1/2): 86-91.

- [9] Isono K. Nucleoside antibiotics: structure, biological activity, and biosynthesis. *The Journal of Antibiotics*, 1988, 41(12): 1711–1739.
- [10] Niu GQ, Tan HR. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. *Trends in Microbiology*, 2015, 23(2): 110–119.
- [11] Corder AL, Subedi BP, Zhang SA, Dark AM, Foss FW Jr, Pierce BS. Peroxide-shunt substrate-specificity for the Salmonella typhimurium O₂-dependent tRNA modifying monooxygenase (MiaE). Biochemistry, 2013, 52(36): 6182–6196.
- [12] Moore JA, Poulter CD. Escherichia coli dimethylallyl diphosphate: tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme. Biochemistry, 1997, 36(3): 604–614.
- [13] Arragain S, Handelman SK, Forouhar F, Wei FY, Tomizawa K, Hunt JF, Douki T, Fontecave M, Mulliez E, Atta M. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N⁶threonylcarbamoyladenosine in tRNA. Journal of Biological Chemistry, 2010, 285(37): 28425–28433.
- [14] Pierrel F, Douki T, Fontecave M, Atta M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. *Journal of Biological Chemistry*, 2004, 279(46): 47555–47563.
- [15] Mathevon C, Pierrel F, Oddou JL, Garcia-Serres R, Blonclin G, Latour JM, Ménage S, Gambarelli S, Fontecave M, Atta M. tRNA-modifying MiaE protein from *Salmonella typhimurium* is a nonheme diiron monooxygenase. *Proceedings of the National Academy of Sciences of the United States of America*, 2007, 104(33): 13295–13300.
- [16] Zhao XQ, Li WJ, Jiao WC, Li Y, Yuan WJ, Zhang YQ, Klenk HP, Suh JW, Bai FW. Streptomyces xinghaiensis sp. nov., isolated from marine sediment. International Journal of

Systematic and Evolutionary Microbiology, 2009, 59(11): 2870–2874.

- [17] Zhao XQ, Yang TH. Draft genome sequence of the marine sediment-derived actinomycete *Streptomyces xinghaiensis* NRRL B24674^T. *Journal of Bacteriology*, 2011, 193(19): 5543–5543.
- [18] Kaminska KH, Baraniak U, Boniecki M, Nowaczyk K, Czerwoniec A, Bujnicki JM. Structural bioinformatics analysis of enzymes involved in the biosynthesis pathway of the hypermodified nucleoside ms²io⁶A₃₇ in tRNA. *Proteins*, 2008, 70(1): 1–18.
- [19] Frickenschmidt A, Fröhlich H, Bullinger D, Zell A, Laufer S, Gleiter CH, Liebich H, Kammerer B. Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. *Biomarkers*, 2008, 13(4): 435–449.
- [20] Ajitkumar P, Cherayil JD. Presence of 2-methylthioribosyltrans-zeatin in Azotobacter vinelandii tRNA. Journal of Bacteriology, 1985, 162(2): 752–755.
- [21] Li JN, Esberg B, Curran JF, Björk GR. Three modified nucleosides present in the anticodon stem and loop influence the *in vivo* aa-tRNA selection in a tRNA-dependent manner. *Journal of Molecular Biology*, 1997, 271(2): 209–221.
- [22] Qian Q, Björk GR. Structural alterations far from the anticodon of the tRNA_{GGG}^{Pro} of Salmonella typhimurium induce +1 frameshifting at the peptidyl-site. Journal of Molecular Biology, 1997, 273(5): 978–992.
- [23] Petersson L, Gräslund A, Ehrenberg A, Sjöberg BM, Reichard
 P. The iron center in ribonucleotide reductase from *Escherichia* coli. Journal of Biological Chemistry, 1980, 255(14): 6706–6712.
- [24] Janzer JJ, Raney JP, McLennan BD. The transfer RNA of certain Enterobacteriacae contain 2-methylthiozeatin riboside (ms²io⁶A) an isopentenyl adenosine derivative. *Nucleic Acids Research*, 1982, 10(18): 5663–5672.

Genome guided identification of 2-methylthio-N⁶-(4-hydroxyisopentenyl)-adenosine from *Streptomyces xinghaiensis* NRRL B24674^T

Xiaoqing Wang¹, Xiaozheng Wang¹, Liangyu Chen², Xinqing Zhao^{1,2}, Tingting Huang^{1*}, Shuangjun Lin¹

¹ State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

² School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning Province, China

Abstract: **[Objective]** To investigate the production of adenosine modified with N⁶-(Δ^2 -isopentenyl) and 2-thiomethyl groups from marine-derived *Streptomyces xinghaiensis* NRRL B24674^T. **[Methods]** Bioinformatics analysis was carried out to search the genome sequence of *S. xinghaiensis* NRRL B24674^T and the secondary metabolites were purified by silica gel column chromatography, gel chromatography and high-performance liquid chromatography, and the chemical structure was elucidated by nuclear magnetic resonance (NMR) and mass spectroscopy (MS). **[Results]** Two proteins involved in such a biosynthetic pathway were found in the genome of *S. xinghaiensis* NRRL B24674^T, and its chemical structure was elucidated by analysis of high-resolution mass spectrometry (HR-MS) and NMR data. **[Conclusion]** Such an adenine modification process was present in *S. xinghaiensis* NRRL B24674^T, and it is the first time to report this kind of adenine modification from actinomycetes *Streptomyces*. Bioinformatics analysis implies that *Streptomyces* can also have this kind of RNA or adenine modification.

Keywords: *Streptomyces xinghaiensis*, genome mining, 2-methylthio-N⁶-(4-hydroxyisopentenyl)-adenosine, adenine modification

(本文责编:李磊)

Supported by the National Natural Science Foundation of China (31425001)

^{*}Corresponding author. Tel: +86-21-62932418; E-mail: tingwing82@sjtu.edu.cn

Received: 7 July 2015; Revised: 28 August 2015; Published online: 29 September 2015