

Research Paper

不同氮源及其浓度对标志链带藻合成淀粉和油脂的影响

吴桂秀,黄罗冬,高保燕,李爱芬,张成武*

暨南大学水生生物研究中心生态学系,广东 广州 510632

摘要:【目的】以标志链带藻(*Desmodesmus insignis*)为实验材料,研究不同氮源及其浓度对该藻生长、总 脂和淀粉(碳水化合物)含量的影响,为该藻在生物能源方面的应用提供一定的理论依据。【方法】以硝 酸钠、碳酸氢铵或尿素为氮源,5个氮浓度(3、6、9、12和18 mmol/L)的BG-11培养基培养标志链带藻, 采用干重法测定生物质浓度、重量法测定总脂、苯酚-硫酸法测定、总碳水化合物和淀粉的含量。【结果】 标志链带藻在3种氮源下均能很好的生长。最高油脂含量出现在3 mmol/L硝酸钠实验组,达到32.61% (d.w)。当18 mmol/L碳酸氢铵作为氮源时,总碳水化合物与淀粉的含量以及产率都达到最高,分别为 56.54% (d.w)和55.33% (d.w)、0.24和0.23 g/(L·d)。以尿素为氮源时,其生物质浓度和各组分含量与其它 氮源实验组差别不大,均有利于该藻的生长及各生化组分含量的积累。【结论】以该藻种生产生物能源 的成本等综合考虑,以18 mmol/L碳酸氢铵和尿素为氮源培养标志链带藻最优。

关键词:标志链带藻,生物质,总脂,碳水化合物,淀粉,单位体积产率

在过去几十年时间内,由于环境条件的恶 化、石油储藏量的减少,为了降低对石油的依 赖,从而驱动了人们对燃料乙醇的使用^[1]。目前 生物燃料乙醇的主要生产原料是淀粉类和糖类, 而淀粉类和糖类大量的使用必然引起对粮食、生 活原料和农业耕地的竞争。因此,人们必须重新 考虑寻找生物燃料乙醇的新的生产原料,富含碳 水化合物(主要为淀粉)的微藻是一较好的淀粉类 和糖类作物替代原料,而且微藻光合作用效率 强,单位面积产量高,它不与食物和水资源供给 或农业耕地相竞争,收获周期较短^[2]。

为了充分利用富含碳水化合物(淀粉)的微藻 生物质生产生物乙醇,人们首先必须筛选优质藻 种,并对它进行规模地培养获得大量的微藻生物 质,而微藻培养需要不同类型的无机营养盐,主 要的大量营养元素有碳、氮、磷和硫以及各种微 量元素。氮是藻类生命体组成的重要元素之一, 在藻细胞的新陈代谢反应中起着至关重要的作 用。微藻可吸收利用的氮源包括无机氮源(氨态 氮、硝态氮和亚硝态氮)和有机氮源(尿素、酪蛋

*通信作者。Fax: +86-20-85222025; E-mail: tzhangcw@jnu.edu.cn
收稿日期: 2015-10-15; 修回日期: 2016-01-08; 网络出版日期: 2016-02-29

基金项目:国家"863计划"(2013AA065805);国家自然科学基金(31170337);广东省低碳专项(2011-051);珠海市科技重大项目 (PB20041018);珠海市科技攻关项目(PC20081008)

白、氨基酸等),氮源种类的不同对微藻的生长及 生化组成有着较为显著的影响^[3-4]。Arumugam等^[5] 研究不同氮源对双对栅藻(Scenedesmus bijugatus) 生长的影响表明,双对栅藻能利用各种氮源(硝酸 钾、硝酸钠、尿素、硝酸钙、硝酸铵、氯化铵等) 及各种氮浓度(0.5、10.0、15.0、20.0 mmol/L), 然而在不同的氮源浓度条件下,双对栅藻的生长 状况差别很大。Fan等^[6]的研究发现当把尿素和铵 混合作为氮源时,微型原甲藻(Prorocentrum minimum)生长速率明显增加。同样,利用不同的 氮源对扁藻的生长研究显示,不同氮源对扁藻的 产物组成及其含量亦有显著的影响,其中尿素氮 能更好的促进扁藻生长,且有利于蛋白质积累, 而铵态氮则有利于淀粉积累^[7]。因此,氮源种类 及浓度是影响微藻生长及生化组的重要因素。

近年来,大量研究表明,一般在有利的生长 条件下,微藻主要合成蛋白质、细胞壁碳水化合 物和膜脂类的细胞结构,但在一定的环境胁迫条 件下,大部分微藻生长速度减慢甚至停止细胞分 裂,而此时光合作用固定的碳主要用于能量密度 更高的物质合成(如淀粉、油脂),这些物质都可 用于生物燃料的生产^[8-10]。因此,研究淀粉和油脂 积累之间的代谢途径和过程对于促进生物燃料的 生产具有非常重要的意义。淀粉和油脂在应用于 生物乙醇和生物柴油生产上极具重要性,虽然在 高等植物中,关于此类研究较多,但微藻中淀粉 和油脂之间的合成关系研究较少。了解藻细胞中 淀粉和油脂合成时的碳流分配,对生物燃料的开 发以及基础研究中微藻培养实验设计都具有显著 意义。微藻中较多的研究都是单独的关于淀粉合 成或是油脂合成,以及在环境胁迫下碳硫的分配, 而这两者之间的合成竞争关系却很少有人关注。

本文选用的标志链带藻(Desmodesmus insignis) 隶属于绿藻纲(Chlorophytceae), 栅藻科 (Scenedesmaceae),链带藻属(Desmodesmus)。前 期研究发现,在细胞培养后期,细胞内有明显的 淀粉颗粒,同时,其培养周期短,沉降速率快, 不仅能在废水中生长,而且其淀粉含量高^[11],是 一株生产生物乙醇的优良藻株。目前,未发现对 标志链带藻中淀粉和油脂的生产和积累之间的关 系的相关研究报道。因此,本研究以淡水微藻培 养的常用培养基BG-11为基础,以硝酸钠、碳酸 氢铵和尿素为氮源,分别设计不同氮浓度的培养 条件,考察这3种氮源及其浓度对标志链带藻生长 及油脂、碳水化合物和淀粉积累的影响,获得该 藻的有利生长条件。通过生物量、碳水化合物、 淀粉和油脂含量的测定,研究淀粉和油脂之间生 物合成的动力学。讨论在不同条件胁迫下淀粉和 油脂合成之间的相关性,为该藻在生物能源方面 的应用提供参考。

1 材料和方法

1.1 材料

实验藻种标志链带藻(Desmodesmus insignis), 为暨南大学水生生物研究中心微藻生物技术与生 物能源实验室保藏藻株。

1.2 实验设计及培养条件

以淡水微藻常用的BG-11培养基为基础,其 它营养成分不变,按照氮的相同摩尔浓度进行换 算,培养基中的氮源分别选用硝酸钠、碳酸氢铵 和尿素,且每种氮源各设计5个浓度水平,具体浓 度数值参见表1。Ø6.0×60 cm的柱状光生物反应器 为培养容器,入射表面的光照强度为(400±10) µmol photons/(m²·s),连续光照,通入富含1.0% CO₂的 压缩空气通气培养,温度为(25±1) °C,取对数生 长期的藻种接种,藻细胞初始接种浓度为*OD*₇₅₀= 0.50±0.02,共培养15 d,每种氮源的浓度实验组 均设置3个平行重复。

1.3 测定指标及方法

1.3.1 生物质浓度测定:生物质浓度采用重量法测定。每隔24 h取藻液10 mL,用预先烘至恒重

6

3

Table 1. The different nitrogen source concentration						
Molar concentration /(mmol/L)	Mass concentration/(g/L)					
	NaNO ₃	NH ₄ HCO ₃	CO(NH ₂) ₂			
18	1.50	1.39	0.53			
12	1.00	0.93	0.35			
9	0.75	0.70	0.27			

表1. 不同氮源浓度值

 $(记为M_0)$ 的混合纤维滤膜 $(0.45 \mu m)$ 真空抽滤,然 后于105°C的烘箱中烘干至恒重(*M*₁)。生物质浓 度(Biomass, B)按照公式(1)计算。

0.50

0.25

0.46

0.23

0.18

0.09

 $B (g/L) = (M_1 - M_0) \times 100$ 公式(1) 1.3.2 藻粉的制备:每3 d收取300 mL的藻液,在 3500 r/min离心5 min, 去掉上清液, 用去离子水 洗涤藻泥2次, 收获的藻泥放入-20°C冰箱中冻 结,然后采用冷冻干燥机冷冻干燥24h。冻干的藻粉 于4°C冰箱中保存用于各生化组分含量的测定。

1.3.3 油脂含量的测定:采用有机溶剂萃取-重量 法测定^[12],总脂含量按照公式(2)计算。

总脂含量 $(\omega) = \frac{M_2 - M_1}{M_0} \times 100\%$ 公式(2)

式中, M_2 为粗脂重量+EP管重量(g); M_1 为 Eppendorf管重量(g); M_0 为干藻粉的重量(g)。

1.3.4 碳水化合物含量的测定:利用改进的苯酚-硫酸法^[13]测定总碳水化合物的含量,称取10 mg左 右干燥的脱脂藻渣,放置于具螺口瓶盖的体积为 15 mL的玻璃离心管中,再放置一小磁力棒,离 心管中加5 mL 0.5 mol/L H₂SO₄,至于磁力水浴锅 中,100°C恒温水浴4h进行酸水解。水解冷却至 室温后,将提取物以3500 r/min离心5 min,将上 清液移至50 mL容量瓶,并用去离子水洗涤沉淀 离心合并所得上清液(重复3次),用去离子水定容 至50 mL。吸取500 µL提取液,并补水至2.0 mL。 迅速加入1 mL 6%苯酚(现配现用)及5 mL 98%浓

硫酸摇匀,室温冷却放置30 min后,于490 nm处 测定吸光值,代入标准曲线,计算样品中碳水化 合物含量(公式3)。

总碳水化合物含量(C)=

 $\frac{(OD-0.0025)\times\omega}{17.316\times200\times M}\times100\%$ 公式(3)

式中, OD为样品吸光度值; ω为样品藻渣的总脂 含量(%DCW); M为藻渣的重量(mg)。

标准曲线以0.1 mg/mL葡萄糖标准溶液绘制, 所得方程为:v=17.316x+0.0025,相关系数 $R^2=1$, 其中v为490 nm处的吸光度值, x为葡萄糖标准溶 液的浓度(mg/mL)。

1.3.5 淀粉含量的测定:采用改进的蒽酮-硫酸法^[14] 测定淀粉含量,将配置好的葡萄糖标准液(0.1 mg/mL) 稀释成不同浓度梯度,加入4 mL蒽酮试剂(将 200 mg蔥酮溶解于76% H₂SO₄中配制而成), 沸水 浴10 min后,迅速置于冰水中冷却终止反应。于 620 nm波长下测定吸光度,制作标准曲线。标准 曲线所得的方程为: y=5.4363x+0.0063。相关系数 $R^2=0.9977$,其中v为620 nm处的吸光度值,x为葡 萄糖标准溶液的浓度(mg/mL)。称取10 mg左右干 燥的脱脂藻渣,放置于具螺口瓶盖的体积为15 mL 的玻璃离心管中,再放置一小磁力棒,离心管中 加2.5 mL去离子水和3.25 mL 52%的高氯酸溶液, 于冰浴条件下提取20 min, 3500 r/min离心5 min, 吸取上清至50 mL的容量瓶中,上述步骤重复3次 后,用去离子水将容量瓶定容至刻度线。取200 µL 水解好的样品用去离子水补水至1 mL, 加入4 mL 蒽酮试剂, 沸水浴10 min后, 迅速置于冰水中冷 却终止反应,于620 nm波长下测定吸光度。代入 标准曲线,计算样品中淀粉含量(公式4)。

淀粉含量(S)=

 $(OD - 0.0063) \times 250 \times 0.9 \times \omega \times 100\% \quad \text{σt$} (4)$ 5.643M式中, OD为样品吸光度值; ω为样品藻渣的总脂 含量(%DCW); M为藻渣的重量(mg), 0.9为葡萄 糖转淀粉的系数。

 1.3.6
 单位体积总脂、总碳水化合物、总淀粉产

 率:利用公式(5)、(6)和(7)计算单位体积总脂、总

 碳水化合物、总淀粉产率。

 总脂单位体积产率 = $\frac{B \times \omega}{t}$

 公式(5)

总碳水化合物单位体积产率 = $\frac{B \times C}{t}$ 公式(6) 总淀粉单位体积产率 = $\frac{B \times S}{t}$ 公式(7)

式中, t为培养时间(d)。

1.4 数据处理

数据分析采用 SPSS 18.0软件单因素方差分析 (ANOVA)中的LSD多重比较法,分别采用Excel 2010和Origin 8.5对数据进行分析处理并绘图。

2 结果和分析

2.1 不同氮源及氮浓度对标志链带藻生物质浓度 的影响

标志链带藻在3种氮源5种氮浓度下培养至第 15天时其生物质浓度积累的变化情况如图1所示。 在NaNO₃、NH₄HCO₃、CO(NH₂)₂不同浓度的培养 基中,标志链带藻均能正常生长,但不同氮源及 其氮浓度对标志链带藻生长的影响不同。

氮作为微藻生长的重要营养元素,氮源的种 类不同除了会影响微藻的生物质积累外,还对微 藻生化组分的合成产生重要影响,其浓度高低对 微藻生长及其生化组成有着至关重要的作用。如 图1所示,当培养基中氮的初始浓度为18、12、 9 mmol/L时,NH₄HCO₃组标志链带藻最高生物质 浓度分别为6.24、6.52、6.47 g/L。当培养基中氮 的初始浓度为6、3 mmol/L时,以尿素为氮源培养 下,标志链带藻的最大生物质浓度分别为6.46、 5.21 g/L。以NaNO₃为氮源培养下,标志链带藻生 物质浓度明显低于其余2种氮源相同浓度时的生物 质浓度,并且随氮浓度的降低生物质浓度先增高 后下降,结果以NaNO₃为氮源时标志链带藻最适

图 1. 氮源种类及其浓度对标志链带藻生长的影响 Figure 1. The effects of different nitrogen sources and concentrations on the biomass of *D. insignis*. Stdev: reflect values relative to the average degree of dispersion.

生长的初始浓度氮为6 mmol/L,此时生物质浓度 达到最高为5.50 g/L。但结果发现,当以NH₄HCO₃ 和尿素为氮源时,标志链带藻生物质浓度在各个 浓度组相差不大,只是在氮浓度为18 mmol/L时才 略微高于后者,且生物质浓度都是随着氮浓度的 下降先增高后降低,当NH₄HCO₃浓度为12 mmol/L 时对标志链带藻的生长最有利。结果表明标志链 带藻对不同氮源的需求不同,都有其最适的生长 的浓度,单独增加氮的浓度,并不能有效提高藻 细胞的生物质浓度。

2.2 不同氮源及氮浓度对标志链带藻细胞内油脂 含量的影响

标志链带藻在3种氮源5种氮浓度培养下,第 15天时总脂含量如图2所示。标志链带藻的总脂含 量与氮浓度呈负相关,低氮浓度组(3 mmol/L) 与其他浓度组间存在极显著差异(P<0.01)。同一 氮浓度下,3种氮源之间的总脂含量差异不显著 (P>0.05)。

当氮浓度为18 mmol/L时,藻细胞油脂含量最低,随着氮浓度的降低,总脂含量均逐渐升高,

图 2. 氮源种类及其浓度对标志链带藻细胞内总脂含量 的影响

Figure 2. The effects of different nitrogen sources and concentrations on the total lipid concent of *D. insignis*. Stdev: reflect values relative to the average degree of dispersion.

当氮浓度为3 mmol/L时,以NaNO₃为氮源组油脂 含量最高达到32.61%,尿素为氮源的油脂含量达 到31.38%,与硝酸钠的差异不大。同时,结合图1 中不同氮浓度下生物质浓度的变化趋势,当氮 浓度为3 mmol/L时,以尿素组生物质浓度达到 6.40 g/L,高于NaNO₃组,因此,尿素为氮源时可 获得较高的油脂产量。

2.3 不同氮源及氮浓度对标志链带藻细胞内总碳 水化合物含量的影响

不同氮源和氮浓度培养下,标志链带藻的总 碳水化合物含量的变化,如图3所示。当以NH4HCO3 为氮源时,标志链带藻能积累较高的碳水化合 物,氮浓度为18 mmol/L时总碳水化合物的含量最 高达到56.54%,氮浓度为12、9、6 mmol/L时总碳 水化合物含量变化不大,分别为:51.48%、 50.71%、46.78%。但在低氮浓度下(3 mmol/L)总 碳水化合物含量最小为40.39%,而NaNO3和尿素 组,碳水化合物含量相对较高,分别为46.20%和 41.44%。以NaNO3和尿素为氮源组,总碳水化合 物含量与氮浓度呈正相关,总碳水化合物含量 随着氮浓度的增加而增加,当氮浓度为18 mmol/L 时,碳水化合物含量最高分别为52.40%和53.01%。 同时,在NaNO₃为氮源培养下,各浓度对总碳水 化合物含量的影响较小,各浓度下碳水化合物含 量差异不大,在46.20%-52.40%之间。

图 3. 氮源种类及其浓度对标志链带藻细胞内碳水化合物含量的影响

Figure 3. The effects of different nitrogen sources and concentrations on the carbohydrate concent of *D*. *insignis*. Stdev: reflect values relative to the average degree of dispersion.

2.4 不同氮源及氮浓度对标志链带藻细胞内淀粉 含量的影响

不同氮源及其浓度对标志链带藻细胞内淀粉 含量的影响,如图4所示,随着氮浓度的降低,藻 细胞内的淀粉含量逐渐降低,当氮浓度为18 mmol/L 时,藻细胞中淀粉含量最高。同时,结合对标志 链带藻细胞生物质浓度和油脂含量的分析发现低 氮胁迫下,微藻细胞生长受到限制,细胞需积累 能量密度更高的脂肪作为长期储能物质,从而导 致了细胞体内淀粉含量的下降^[15],同时积累大量 的油脂。当以NH₄HCO₃为氮源时,不同氮浓度之 间淀粉含量存在极显著差异(*P*<0.01),且氮浓 度为18 mmol/L时,淀粉含量最高约占干重的 55.33%。

图 4. 氮源种类及其浓度对半美链带藻细胞内淀粉含量 的影响

Figure 4. The effects of different nitrogen sources and concentrations on the starch concent in *D. insignis*. Stdev: reflect values relative to the average degree of dispersion.

2.5 不同氮源及氮浓度下标志链带藻单位体积碳 水化合物、总淀粉和总脂产率

3 种氮源在5种氮浓度下培养至15 d时,标志 链带藻的单位体积总碳水化合物、总淀粉和总脂 产率,如图5所示。碳水化合物、淀粉产率随着 NaNO₃、NH₄HCO₃、尿素浓度的增加而增加,当 NaNO₃和尿素浓度达到6 mmol/L时,NH₄HCO₃ 浓度达到9 mmol/L 时,继续增加氮浓度对碳水化 合物和淀粉产率的影响不大。总脂产率与氮素浓 度呈负相关,即随着氮浓度的增加,油脂产率降 低,当氮浓度为3 mmol/L时候NaNO₃、NH₄HCO₃、 尿素组的油脂产率达到最高,分别为:0.09、0.10 和0.11 g/(L·d)。

同时,氮源浓度会影响藻细胞单位体积碳水 化合物产率和淀粉产率,以NH₄HCO₃为氮源时, 18 mmol/L氮浓度下标志链带藻碳水化合物和淀粉 产率最高,分别达到0.24/(L·d)和0.23 g/(L·d)。同 时,当以尿素为氮源时,其生物质浓度和各组分 含量与其它氮源实验组差别不大,碳水化合物和

图 5. 氮源浓度对标志链带藻碳水化合物、淀粉及总脂 单位体积产率的影响

Figure 5. The effects of different nitrogen source concentrations on the volumetric productivity of carbohydrate, starch and total lipid of *D. insignis*. A: NaNO₃; B: NH₄HCO₃; C: CO(NH₂)₂. Stdev: reflect values relative to the average degree of dispersion.

淀粉产率接近NH₄HCO₃组。因此,综合考虑标志 链带藻的碳水化合物和淀粉产率,确定NH₄HCO₃ 为最佳氮源,18 mmol/L氮浓度为最适氮浓度。最 终,以该藻种生产生物能源的成本等综合考虑, 以碳酸氢铵和尿素为氮源氮浓度为18 mmol/L时培 养标志链带藻最优。

3 讨论

与高等植物相比,微藻的光合作用效率较高,它能高效地固定CO₂转变为富含能量的生物质,是制备可再生生物燃料的理想原料,利用微藻生产生物燃料已逐步成为世界研究的热点之一。近年来,特别是利用微藻制备生物乙醇,越来越受到人们的关注,Borines等^[16]的研究就全面阐述了利用海藻生产生物乙醇的优点,其中包括可避免以粮食作物生产燃料乙醇带来的粮食危机。

淀粉含量高的优良藻种是生产微藻生物乙醇 的基础,经过众多的研究者发现,淀粉含量较高 的微藻主要集中于绿藻、红藻、蓝藻、甲藻、隐 藻等微藻。常见的富含淀粉微藻主要有小球藻(绿 藻)、斜生栅藻(绿藻)、水绵(绿藻)、衣藻(绿藻)、 螺旋藻(蓝藻)等^[17-25](表2),在某些情况特别是逆 境条件下(如氮、磷、硫短缺等)这些微藻细胞会 大量合成淀粉,主要是直链淀粉和支链淀粉的混 合体。

绿藻门的微藻在光合作用下细胞内主要积累 淀粉类物质,通过机械的方法(如超声,研磨等) 或酶溶法,可释放出胞内淀粉并转化成可发酵的 糖,利用酵母发酵生成的乙醇可以用作生物燃 料。淀粉含量的多少也可以作为衡量微藻生物能 源化的一项指标。本文研究材料标志链带藻,在 细胞培养后期,胞内有明显的淀粉颗粒,此时细 胞内含有大量的碳水化合物(淀粉),其含量最高

表2. 一些微藻的淀粉含量 Table 2. Starsh contant of some microalese (dru ut)

Table 2.	Starch	content	01	some	micro	aigae	(ary	wtj	

Microalgae	Starch content	References
Chlamydomonasreinhardtii UTEX90	53.0	[17]
Green algaNKG 121701	>50.0	[18]
Chlorella vulgaris	35.0	[19]
Chlorococcum littorale	27.0	[20]
Scenedesmus obliquus	23.7	[21]
Nostoc sp. TISTR 8873	32.9	[22]
<i>Spirogyra</i> sp.	44.3	[23]
Chlorella zofingiensis	43.4	[24]

可达到56.54% (DW),是生产生物乙醇的优良藻 株,在不同氮源的高浓度时(18 mmol/L)均能够获 得较高的生物质浓度,且都能合成大量的碳水化 合物及淀粉。因此,综合考虑选用12 mmol/L的尿 素为氮源培养标志链带藻用于生物乙醇的生产更 具优势。

油脂和淀粉都是细胞内的重要储存物质,其 含量的多少可以作为衡量微藻生物能源化的一项 指标。微藻细胞中淀粉的合成与油脂的合成拥有 共同的前体物质3-磷酸甘油醛,所以它们的合成存 在一定的竞争关系。Wang等^[25]研究发现当淀粉合成 途径被阻断时,莱茵衣藻(Chlamydomonasreinhardtii) 油脂的含量增加了30倍。同样Li等^[26]的研究也证 明了当淀粉合成的关键酶ADP-葡萄糖焦磷酸化酶 缺陷时, 莱茵衣藻的中性脂和总脂的含量分别上 升至32.6%和46.4% (DW)。这些研究都表明了淀 粉和油脂之间的合成存在着竞争关系。在胁迫条 件下小球藻(Chlorella zofingiensis)细胞内快速积累 淀粉和油脂,但油脂积累发生在淀粉积累之前, 且随着氮胁迫时间的延长,小球藻细胞内的淀粉 降解转而积累能量密度更高的脂肪作为长期储能 物质^[13]。本研究发现在全氮(18 mmol/L)条件下标 志链带藻细胞内积累的储存物质主要为淀粉,其 含量高达55.33% (DW),而在氮胁迫(3 mmol/L) 下,其总脂含量上升至32.61% (DW),淀粉含量 下降至41.56% (DW)。本研究结果同样表明了淀 粉和油脂之间的合成存在一定的竞争关系,但两 者的具体关系还不清楚。

本文在前期研究的基础上,探索了不同氮源 及氮浓度对标志链带藻淀粉和油脂之间的相互关 系。为了进一步了解两者合成之间碳分配的具体 关系,本实验室下一步将对不同培养条件下,淀 粉合成的关键酶,腺苷二磷酸葡萄糖焦磷酸化酶 (ADP-glucose pyrophosphorylase, AGPase)的酶活 和基因表达差异进行分析,以期为调控微藻淀粉 和油脂合成提供一定的理论指导,对微藻生物燃 料的开发和应用提供有价值的技术参数。

参考文献

- Goldemberg J. Ethanol for a sustainable energy future. *Science*, 2007, 315(5813): 808–810.
- [2] Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M. Microalgae-novel highly efficient starch producers. *Biotechnology and Bioengineering*, 2011, 108(4): 766–776.
- [3] Xin L, Hu HY, Ke G, Jia Y. Growth and nutrient removal properties of a freshwater microalga *Scenedesmus* sp. LX1 under different kinds of nitrogen sources. *Ecological Engineering*, 2010, 36(4): 379–381.
- [4] Huang CC, Hung JJ, Peng SH, Chen CNN. Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO₂ and nitrogen sources on the accelerated growth. *Bioresource Technology*, 2012, 112: 228–233.
- [5] Arumugam M, Agarwal A, Arya MC, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae *Scenedesmus bijugatus. Bioresource Technology*, 2013, 131: 246–249.
- [6] Fan C, Glibert PM, Alexander J, Lomas MW. Characterization of urease activity in three marine phytoplankton species, *Aureococcus anophagefferens, Prorocentrum minimum*, and

Thalassiosira weissflogii. Marine Biology, 2003, 142(5): 949–958.

- [7] Meng YY, Xu P, Yang HB, You HY, Yu Y. The effects of sources of nitrogen, iron and phosphorus on growth and components in alga *Platymonas subcordi forrmis*. *Fisheries Science*, 2012, 31(11): 668–672. (in Chinese).
 孟迎迎, 徐嫔, 杨海波, 尤慧艳, 于媛. 氮, 磷, 铁盐对扁藻生长 及组分含量的影响. 水产科学, 2012, 31(11): 668–672.
- [8] Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira J
 A. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. *Applied Energy*, 2011, 88(10): 3331–3335.
- [9] Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Peltier G. Oil accumulation in the model green alga *Chlamydomonas reinhardtii*: characterization, variability between common laboratory strains and relationship with starch reserves. *BMC Biotechnology*, 2011, 11(1): 7.
- [10] Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of *Chlamydomonas reinhardti. Biotechnology and Bioengineering*, 2012, 109(8): 1947–1957.
- [11] 沈丹丹. 富油及富淀粉微藻培养与奶牛场废水处理相结合的 效果研究. 暨南大学硕士学位论文, 2013.
- [12] He SS, Gao BY, Lei XQ, Wan LL, Li AF, Zhang CW. Effects of initial nitrogen supply on the growth, morphology and lipid accumulation of oleaginous microalga *Eustigmatos vischeri* (Eustigmatophyceae). *Acta Hydrobiologica Sinica*, 2015, 39(3): 574–582. (in Chinese).

何思思,高保燕,雷学青,万凌琳,李爱芬,张成武.初始硝酸 钠浓度对魏氏真眼点藻的生长,形态和油脂积累的影响.水 生生物学报,2015,39(3):574–582.

- [13] DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. *Analytical Chemistry*, 1956, 28(3): 350–356.
- [14] McCready RM, Guggolz J, Silviera V, Owens HS. Determination of starch and amylose in vegetables. *Analytical Chemistry*, 1950, 22(9): 1156–1158.
- [15] VH Work, R Radakovits, RE Jinkerson, JE Meuser, LG Elliot, DJ Vinyard, LML Laurens, GC Dismukes, MC Posewitz.

Increased lipid accumulation in the *Chlamydomonas reinhardtii* sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. *Eukaryotic Cell*, 2010, 9(8): 1251–1261.

- [16] Borines MG, De Leon RL, McHenry MP. Bioethanol production from farming non-food macroalgae in Pacific island nations: chemical constituents, bioethanol yields, and prospective species in the Philippines. *Renewable and Sustainable Energy Reviews*, 2011, 15(9): 4432–4435.
- [17] Kim MS, Baek JS, Yun YS, Sim SJ, Park S, Kim SC. Hydrogen production from *Chlamydomonas reinhardtii* biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. *International Journal of Hydrogen Energy*, 2006, 31(6): 812–816.
- [18] Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T. Saccharification of marine microalgae using marine bacteria for ethanol production//Davison BH, Lee JW, Finkelstein M, McMillan JD. Biotechnology for Fuels and Chemicals. New York: Humana Press, 2003: 247–254.
- [19] Fernandes B, Dragone G, Abreu AP, Geada P, Teixeira J, Vicente A. Starch determination in *Chlorella vulgaris*-a comparison between acid and enzymatic methods. *Journal of Applied Phycology*, 2012, 24(5): 1203–1208.
- [20] Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga *Chlorococcum littorale*. *Journal* of *Fermentation and Bioengineering*, 1998, 86(1): 38–43.

- [21] Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology, 2010, 101(14): 5330–5336.
- [22] Rodjaroen S, Juntawong N, Mahakhant A, Miyamoto K. High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. *Kasetsart Journal (Natural Sciences)*, 2007, 41(3): 570–575.
- [23] Hossain ABMS, Saleh AA, Aishah S, Boyce AN, Chowdhury PP, Naqiuddin M. Bioethanol production from agricultural waste biomass as a renewable bioenergy resource in biomaterials//Proceedings of the 4th Kuala Lumpur International Conference on Biomedical Engineering 2008. Berlin Heidelberg: Springer, 2008: 300–305.
- [24] Zhu SN, Huang W, Xu J, Wang ZM, Xu JL, Yuan ZH. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga *Chlorella zofingiensis*. *Bioresource Technology*, 2014, 152: 292–298.
- [25] Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless *Chlamydomonas reinhardtii. Eukaryotic Cell*, 2009, 8(12): 1856–1868.
- [26] Li YT, Han DX, Hu GR, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in *Chlamydomonas reinhardtii. Biotechnology and Bioengineering*, 2010, 107(2): 258–268.

Effects of different nitrogen sources and concentrations on starch and lipid biosynthesis by *Desmodesmus insignis*

Guixiu Wu, Luodong Huang, Baoyan Gao, Aifen Li, Chengwu Zhang*

Research Center for Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, Guangdong Province, China

Abstract: **[Objective]** In order to improve biofuel production by *Desmodesmus insignis*, we studied the effect of different nitrogen sources and concentrations on the growth, total lipids, carbohydrate and starch accumulation of *Desmodesmus insignis*. **[Methods]** *D. insignis* was cultivated in basic general-11 medium containing 5 different initial nitrogen concentrations (3, 6, 9, 12 and 18 mmol/L) supplied in the form of sodium nitrate, ammonium bicarbonate and urea. Biomass was determined by dry weight, total lipids by gravimeter, and carbohydrates and starch by phenol-sulfuric acid method. **[Results]** NaNO₃, NH₄HCO₃ and CO(NH₂)₂ were all suitable for the growth of *D. Insignis*. When 3 mmol/L NaNO₃ was used, the peak lipid content reached to 32.61% (d.w). The maximum content and productivity of carbohydrate and starch were 56.54% (d.w), 55.33% (d.w) and 0.24 g/(L·d), 0.23 g/(L·d) respectively, when 18 mmol/L NH₄HCO₃ was used. Urea could also obtain relative high content of biomass, total lipids, carbohydrates and starch. **[Conclusion]** Integrating these results with production costs, we could suggest ammonium bicarbonate and urea as nitrogen source at the concentration of 18 mmol/L.

Keywords: Desmodesmus insigni, biomass, total lipid, carbohydrate, starch, volumetric productivity

(本文责编:张晓丽)

Supported by the National High Technology Research and Development Program of China (2013AA065805), by the National Natural Science Foundation of China (31170337), by the Special Program for Low-Carbon, Reform and Development Commission of Guangdong Province (2011-051), by the Scientific and Technological Key Program of Zhuhai (PB20041018) and by the Scientific and Technological Project of Zhuhai (PC20081008)

^{*}Corresponding author. Fax: +86-20-85222025; E-mail: tzhangcw@jnu.edu.cn

Received: 15 October 2015; Revised: 8 January 2016; Published online: 29 February 2016