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Abstract: [Objective] Azorhizobium caulinodans ORS571 can fix nitrogen not only as a free-living organism and an
associative-symbiotic bacterium by colonizing the root surface of non-leguminous plants, but also as a symbiotic
bacterium by interacting with leguminous plant Sesbania rostrata. Due to its ability to grow and fix nitrogen under
three conditions, A. caulinodans uses sophisticated chemotaxis signal transduction systems to transform
environmental cues into corresponding behavioral responses. Chemotaxis appears crucial for the growth of A.
caulinodansin complicated environment and the construction of associative relationship with the plant. However, little
is known about the chemotactic pathway of A. caulinodans. Thus, our study aimed to compare the chemotaxis-like
genes of A. caulinodans with those of well-studied species. [Methods] NCBI protein BLAST was used for searching
sequence similarity with default parameter values against the genomes of A. caulinodans. HMMER3, based on Pfam
database, was used for comparative analyses of methyl-accepting chemotaxis protein (MCP). [Results] There was a
major chemotaxis cluster in A. caulinodans and the CheR methylated MCPs independently of pentapeptide motif.
There were 43 MCP homologs containing diverse signal-sensing architectures in A. caulinodans. In addition,
cytoplasmic domains of these MCPs were all composed of 38 heptad repeats. [Conclusion] Despite the extremely
high homology presented between the chemotactic system of A. caulinodans and those of well-studied species, A.
caulinodans shows its own unique characteristics. The classification of these chemotactic pathways by comparative
genomics enables us to better understand how A. caulinodansresponds to changes in environment via exquisite signal
transductions in chemotaxis system.
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Azorhizobium caul inodans  ORS571 is  a
microsymbiont isolated from the stem nodules of the
tropical legume Sesbania rostrata, and has the
capability of fixing nitrogen both under free-living
and symbiotic conditions [1]. Nitrogen-fixing nodules
are formed along the host stem as well as on the roots
of S. rostrata [2]. Stem nodules arise at positions of
adventitious root primordia after intercellular
invasion by A. caulinodans [3].

Rhizobia move to the rhizosphere under the
influence of chemotactic and growth-promoting
compounds secreted by host plants, including amino
acids, organic acids, sugars, aromatics, and various
other secondary metabolites [4]. These chemical
signals are exchanged via molecular dialogue between
bacteria and plants. In Rhizobium leguminosarum bv.
viciae, two chemotaxis gene clusters modulate cell
motile behavior and swimming bias, thus benefit to
nitrogen-fixing symbiosis within the roots of pea
plants [5]. Chemotaxis is that bacteria move to the
directed orientation relying on the sensitivity to
chemical stimuli. A. caulinodans and other rhizobia
such as Agrobacterium tumefaciens, Bradyrhizobium
japonicum, and Rhizobium leguminosarum have the
natural chemotactic traits to assemble among
rhizosphere of their host [5–8].

Chemotaxis genes are widespread in a variety of
microorganisms. The chemotaxis system of E. coli
has been well studied and provides a paradigm for
chemotaxis signal pathway. In E. coli, the chemotaxis
pathway involves a major gene cluster containing
most che genes, which are located closely to the
flagella related genes [9]. Chemoreceptors, known as
methyl-accepting chemotaxis proteins (MCPs),
mediate gradient-tracking behavior via modulating
CheA, a histidine kinase that acts as the central

processing unit of the chemosensory circuit. CheA
phosphorylates CheY and CheB, which are responsible
for motor control and sensory adaptation respectively.
The scaffold protein CheW couples with CheA to
interact with receptors [10]. Phosphorylated CheY
diffuses to the flagellar motor promoting a switch in
the rotational direction from anticlockwise to clockwise [11].
CheY-P is hydrolyzed by phosphatase CheZ so that
the promoting tumbling signal activity is extinguished.
Methyltransferase CheR and methylesterase CheB
mediate the reversible methylation of MCPs to
stabilize the range of chemotactic sensitivity [10].

To date, little is known about chemotaxis system
in Azorhizobium species even though whole genome
sequence of A. caulinodans ORS571 had been
annotated [12]. Comparative genome analysis of
chemotaxis related genes of A. caulinodans with the
publicly available che genes homologs in other
species may be crucial for the understanding of their
cellular functions and contributing to the study on
their roles in symbiosis with host plant.

1    Materials and Methods

1.1    Multiple sequence alignment and phylogenetic
analyses

NCBI protein BLAST and position-specific-
iterated-BLAST (blastp and psi-blast, respectively,
http://blast. ncbi. nlm. nih. gov/) were used for
searching sequence similarity with default parameter
values against the genomes of A. caulinodans
(GenBank: AP009384.1, http://www.ncbi.nlm.nih.
gov/nuccore/AP009384.1) [13]. MUSCLE (http://
www.ebi.ac.uk/Tools/msa/muscle/) was used with
default values for parameter to conduct multiple
sequence alignments and to establish the class
membership of the methyl-accepting domains [14].
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MEGA 4 software was used to construct 16S rRNA
gene phylogenetic trees by the Neighbor-Joining [15].

1.2    Identification of chemotaxis related proteins

and chemoreceptors from genomic data sets

Chemotaxis related genes and proteins were
retrieved from the genome of A. caulinodans ORS571.
Chemoreceptors were identified by searching the
NCBI nonredundant database for matches to the
Pfam MCP signal domain profile (accession PF00015)
with HMMER3[16]. Sequence logos were generated
using WebLogo [17].

1.3    Promoter prediction and analysis

Promoters were predicted with PromScan and
Virtual Footprint using default parameters [18–19]. Only
sequences fully match the typical promoter consensus
sequence and lying within 300 bp upstream of
predicted ORFs were considered.

2    Results and Discussion

2.1    General features of A. caulinodans ORS571

chemotaxis genes

Scanning the whole genome of A. caulinodans,

50 genes of che and mcp had been annotated. It has a
single chemotaxis pathway majorly located in one
gene cluster containing cheA, cheW, cheY, cheB, and
cheR (Azc 0661-0665), and the other two genes
including cheY (Azc-0620) and cheZ (Azc-0621) are
out of this cluster. All clusters are close to the flagellar
gene clusters.

The che gene cluster in A. caulinodans was compared
with those in the well-studied and genome-annotated
α-proteobacterial species, several Rhizobiaceae were
included. We constructed the phylogenetic tree using
16S rRNA genes, interestingly, the distribution and
organization of che gene clusters appear consistent
with the evolutionary relationship with 16S rRNA
among these species (Figure 1). A. caulinodans owns
the unique che gene order cheA, cheW, cheY, cheB,
cheR (AWYBR), which was on the separate branch
of the phylogenetic tree. The four species (A .
tumefaciens, B. japonicum, R. leguminosarum and R.
leguminosarum) on the top branch shared the che
gene order YAWBRYD in the major functional
cluster which controlled flagellar motility [20–21].
Clusters in B. japonicum and R. palustris were interrupted

Figure 1.  Distribution and organization of che gene cluster in α-proteobacteria. One major cluster containing cheA is
in A. caulinodans ORS571. The phylogenetic tree of the selected microorganisms is based on 16S rRNA sequences.
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by several mcp genes between YAW and BR.

A. caulinodans possessed a cheZ gene outside

the chemotaxis gene neighborhood, which was

indicated by the yellow arrow in Figure 1. CheZ is

the well studied CheY-P phosphatase in E. coli [22]

and rarely found in α-proteobacteria. CheZ can be

distinguished by the conserved catalytic glutamine

residue and high conservation of positions surrounding

the catalytic residue in contrast with that in β/γ-

proteobacteria [23]. A remote CheZ orthologue in

Helicobacter pylori retains phosphatase function [24]

and whether CheZ in A. caulinodans is activated awaits

experimental analysis.

There is only one CheA homolog in A. caulinodans,

but multiple cheA genes have been found in other

species that thrive in natural environments [25]. In R.

leguminosarum, genome encodes two chemotaxis

gene clusters, namely che1 and che2, controlling

swimming bias and chemotaxis. Nodulation and

competition assays have demonstrated che1 is

dominant pathway regulating cell motility and che2

has a minor effect on chemotaxis [8]. In A. tumefaciens

and C. crescentus the che1 ortholog is determined to

be the only chemotaxis operon controlling flagellar

motility [20,26]. We postulate that the only cluster

containing CheA ortholog is the major pathways for

chemotactic control and plant association in A.

caulinodans. Previous experiments have proven our

inference to some extent. A cheW mutant in A.

caulinodans was previously found to be impaired in

nodulation [27].

2.2    Distribution and characteristics of A. caulinodans

MCPs

43 genes for MCPs have been discovered dispersing

throughout A. caulinodans genome. These conjectural

MCPs were identified by searching MA domains

throughout the genome. The MA domain, being

comprised of highly conserved amino acid sites,

mediates biochemical signal when methylated by

methyltransferase CheR [28]. Compared with five

MCPs in E. coli [29], various MCPs plausibly reflect

that A. caulinodans makes a physiological response

that sense a vast range of environmental signals from

external environment. E. coli owns five chemoreceptors

that have similar structure with two transmembrane

helices, HAMP and MA domains [30–31]. The sequences

of the predicted A. caulinodans MCPs exhibit high

diversity in the domain organization and topology

(Figure 2-B).

In original studies on MCPs, the C-terminal

cytoplasmic domains were recognized to be in a

superfamily supported by mult iple sequence

alignment [32]. According to Zhulin's research, the vast

majority MCPs cytoplasmic domains (MCP-CD) in

microbial chemoreceptors could be classified into

seven category defined by the number of heptad

repeats (namely 24H, 28H, 34H, 36H, 38H, 40H,

44H) [33]. By structural analysis, Tsr in E. coli and

TM1143 in T. maritima belong to 36H and 44H,

respectively [34–35]. Multiple sequence alignments of

the A. caulinodans MCPs illustrated that all 43 MCPs

belong to 38H, although some MCPs contain

deletions in sequence.

Zhulin et al. have theorized that a MCP-CD

consists of three subdomains. One signal domain in

the central region and two methylation units on both

sides are separated by two varied flexible bundle

subdomains [33]. Eight Heptads in the centre of MCP-

CD (N04-C04, Figure 2-A) show extraordinarily high

conservation. All residues fall into intradimer (adeg)
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and interdimer (bcf) interaction sites, both of which

contribute to bridging connections to CheA and

CheW, but one stabilizes dimer by self-interaction

and the other joints monomers by reverse linking [33].

Distinct residues still exist even though in highly

conserved position such as site N03b of Tsr (36H-

class) in E. coli, one Phe residue that is significant for

receptor cooperativity [36–37]. In our studied 38H class,

one Gln residue is conspicuous at C03c site, while it

usually is one Arg residue in other classes. The

function of this unique site on stabilizing trimer of

dimmers relies on further experimental demonstrations.

To identify the potential methylation sites in

MCPs, Glx pairs in the consensus methylation

sequence -[ASTG]-[ASTG]-x(2)-[EQ]-[EQ]-x(2)-

[ASTG]-[ASTG]- were searched in methylation

subdomains [33]. Strikingly, two N-terminals and one

C-terminal homologs were found in our 38H MCPs.

The Glx pair is located in bc sites of heptads and

small residues dock at upstream and downstream of

Glx pair. This motif is thought to be critical for

methyltransferase (CheR) and methylesterase (CheB)

to implement reversible methylation in MCPs [38].

2.3    Characterization of the CheR tethering segment

Sensory adaptation in bacterial chemotaxis is

mediated by covalent modifications of specific

glutamate and glutamine residues within the MCPs.

In the well studied chemotaxis systems of E. coli, the

high abundant receptors Tar and Tsr, sensing aspartic

acid and serine in extracellular  environment

Figure 2.  Conserved subdomains and sites of MCPs in A. caulinodans. A: Class-specific conservation in the signaling
subdomain. Eight heptads (N04-C04) in the centre of MCP-CD show extraordinarily high conservation. Each heptad
is composed of intradimer (adeg) and interdimer (bcf) interaction sites. B: Domain architectures of MCPs in A.
caulinodans show diversity. Abbreviation: HAMP, histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis
proteins and phosphatases; MA, methyl-accepting; PAS, the Drosophila period clock protein (PER), vertebrate aryl
hydrocarbon receptor nuclear translocator (ARNT), and Drosophila single-minded protein (SIM); C: Methylation sites
are conserved and located at specific positions. The potential methylation sites are the Glx pair is located in bc sites.
Residue coloring: small (ASTG), green; hydrophobic (ILMV), black; aromatic (HFWY), yellow; negative (DE), red;
polar (NQ), magenta; positive (KR), blue; and special (CP), cyan.
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respectively, firm CheR through the interaction

between the specific pentapeptide (NWETF) at the C-

terminus and the β-subdomain of CheR [ 3 9 ] .  In

Thermotoga maritima, it is independent of C-terminal

sequences for CheR to bind to MCPs, even though

the last five residues show high conservation on

hydrophobic residues at the third and fifth sites [40].

The two species mentioned above are representative

of two typical CheR-pentapeptide-dependent and

pentapeptide-independent respectively. The former

has longer β-loop at β-subdomain. It appears that the

three highly conserved glycine residues embedded in

β-subdomain are important in enabling pentapeptide

binding [41] (Figure 3). According to previous studies,

the specific pentapeptide-containing MCPs belong to

class 34H or to class 36H [33].

To identify which type A. caulinodans CheR

belongs to, we compared the aligned β-subdomain

sequences of A. caulinodans CheR with several

representative species in different MCP classes. As

shown in Figure 3, CheR homologues from species

with 36Hs MCPs show high conservation at Gln182,

Arg187, Arg197 and three Gly residues. These

conserved residues have been proven to interact with

specific residues in pentapeptide according to crystal

structure analysis of S. enterica  CheR [ 4 2 ] .  A.

caulinodans (38H) and T. maritime (44H) show less

conservation except Gly166, Phe185, Ile/Leu198,

which are highly conserved in both pentapeptide-

dependent and independent β-subdomains. All three

Figure 3.  Alignment of the β-subdomain of A. caulinodans CheR and other typical species. Conserved amino acid
residues in β-subdomain are colored: small (G), green; hydrophobic (L, V, I, F, Y); amino acid residues that are
conserved and that are proposed to be important for CheR-pentapeptide interactions are highlighted: small (G), green;
positively charged (R, K), yellow; side-chain amine/amide containing residues (Q), blue. The organism abbreviation
for each CheR homologue: Acau, Azorhizobium caulinodans; Bant, Bacillus anthracis; Bjap, Bradyrhizobium
japonicum; Rpal, Rhodopseudomonas palustris; Sent, Salmonella enteric; Tmar, Thermotoga maritime.
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highly conserved residues are exposed to solvent and
potentially available for interactions with other
proteins [40]. Based on this alignment, we can deduce
that the CheR in A. caulinodans may methylate
MCPs independently of pentapeptide motif.

2.4    Prediction and analysis of che promter

The bacterium has the capability to regulate the
expression of its chemosensory machinery according
to the external growth conditions [43]. The majority of
genes in bacteria are transcribed by RNA polymerase
bound to the specific factors σ70, σ28 and σ54. Both
type of factors σ28 and σ54 widely participate in the
transcription of che and flagellar gene clusters. The
che and late flagellar gene such as lfgA to lfgN, are
regulated by σ28 in E. coli [44]. In most cases, two
sigma factors coordinate complex chemotaxis system
collaboratively. In R. sphaeroides, one che cluster
keeps basal transcriptional activity ensured by σ70

promoter and additional transcripts are initiated from
the overlapping σ28, the other one involves in flagellar

synthesis independently via σ54 [45].
We searched upstream of major A. caulinodans

che operons for σ28 promoter consensus sequences,
but no typical σ28 site was found. Then we searched
for σ54 recognition site to determine whether it
exhibits σ54 regulation. One classic –24/–12 consensus
sequence was found upstream of the che cluster
(Figure 4). Nonetheless, the predicted region needs to
be further determined by electrophoretic mobility
shift assay. In order to determine if A. caulinodans
che gene expression is controlled in a hierarchic
fashion with flagellar assembly, it will be necessary
to analyze che expression in mutants that fail to
synthesize polar and lateral flagella.

In conclusion, the comparative analysis of
chemotaxis related genes in A. caulinodans studied
here has greatly refined our understanding of the
function of the chemosensory pathways in A.
caulinodans. The characteristic chemotaxis system
may show superiority when rhizobia infect with

nitrogen-desired roots of host plant. σ54- dependent

regulation also reflects the complex chemotaxis

mechanism to some extent.

External signals inputted into the chemosensory

pathway from wide dynamic range tend to be diverse

due to the presence of abundant chemoreceptor (mcp)

genes. To date, there are no systematic studies on

characterizing 38H MCPs-containing model bacterial

strains, so it highlights the potential of A. caulinodans

as a candidate of model organism for chemotaxis

study. To make additional progress on the function of

MCPs in signal transduction, deeper molecular

insights at each organizational level are needed. The

pursuit for the correct interplay between endosymbiosis

and chemotaxis will propel the research of chemosensory

pathway at the forefront of molecular study on

biological signaling.

Figure 4.  Putative σ54 promoter elements. For the A. caulinodans major che cluster, the predicted transcription start
site is 29 nucleotide bases upstream of predicted operon ATG start codons. –24/–12 consensus sequences are in italics.
The initiation codon (underlined) is also indicated.
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茎瘤固氮根瘤菌趋化系统基因的比较基因组学分析及相关蛋

白序列分析

姜南1, 2，刘卫1，李岩1，解志红1 *

1 中国科学院烟台海岸带研究所，山东 烟台    264003
2 中国科学院大学，北京    100049

摘要：【目的】茎瘤固氮根瘤菌既可以与毛萼田菁共生固氮，又可以自生或作为内生菌在其他植物体内

固氮。由于其具有3种生活状态及固氮能力，其感受外界信号的趋化系统应当更为复杂多样。目前对茎

瘤固氮根瘤菌的趋化通路研究很少，因此我们将茎瘤固氮根瘤菌的趋化系统与其他已有研究的菌株相比

较。【方法】基于NCBI蛋白数据库，利用BLAST程序对菌株ORS571及已公布全基因组序列的α变形菌

门的其他菌种进行趋化基因簇的比较分析；基于Pfam蛋白数据库，利用HMMER3程序对甲基化受体蛋

白序列进行比较分析。【结果】分析结果表明茎瘤固氮根瘤菌中有1条主要的趋化基因簇，其中所编码

的甲基化酶CheR为非五肽依赖型；此外，该菌还具有43个甲基化受体蛋白基因，所编码的受体蛋白保守

区段均由38个七肽单位组成。【结论】通过比较基因组学的分析可知茎瘤固氮根瘤菌与其他菌属相比趋

化系统具有高度同源性，但同时存在自身的独特性，这一结论能够使我们更好的了解茎瘤固氮根瘤菌利

用趋化系统适应环境的过程。

关键词：趋化性,   甲基化受体蛋白,   茎瘤固氮根瘤菌
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