

Research Paper

kpsE和kpsD双基因缺失显著降低肠道外致病性大肠杆菌的毒力

高清清,夏乐,刘娟华,高崧*,刘秀梵

扬州大学兽医学院,江苏省动物重要疫病与人兽共患病防控协同创新中心,农业部禽用生物制剂创制重 点实验室,江苏扬州 225009

摘要:【目的】探究荚膜对肠道外致病性大肠杆菌致病作用的影响。【方法】选取负责荚膜多糖转运的 基因*kpsE*和*kpsD*,利用λ Red重组系统构建APEC E058和UPEC U17荚膜缺失株E058Δ*kpsED*和 U17Δ*kpsED*,并通过一系列的体内及体外试验对其生物学特性及致病性进行研究。【结果】双基因缺失 株的生长速度较野生株没有明显差异,但缺失株抗血清补体杀菌能力和抗鸡巨噬细胞HD-11细胞吞噬能 力显著下降。1日龄雏鸡*LD*₅₀致病性试验结果显示,缺失株E058Δ*kpsED*和U17Δ*kpsED*对鸡失去致病力, 而回复株毒力恢复至野生株水平;35日龄SPF鸡体内动态分布和竞争试验显示Δ*kpsED*缺失株在鸡体内定 殖能力和竞争性生长能力显著下降,表明*kpsED*双基因的缺失能显著降低APEC E058和UPEC U17的致病 力。【结论】荚膜与肠道外致病性大肠杆菌的致病性相关,是其重要的毒力因子。

关键词:肠道外致病性大肠杆菌,荚膜,缺失株,致病力

肠道外致病性大肠杆菌(Extraintestinal pathogenic *Escherichia coli*, ExPEC)是一类引起人和动 物肠道外感染的病原菌,主要包括: 禽致病性大 肠杆菌(Avian pathogenic *E. coli*, APEC),尿道致 病性大肠杆菌(Uropathogenic *E. coli*, UPEC)和新生 儿脑膜炎大肠杆菌(Neonatal meningitis-associated *E. coli*, NMEC)^[1]。研究证实APEC和UPEC在血清 型,种系发生型和毒力基因型等方面具有很大的 相似性^[2-4]。鉴于两者之间的相似性以及APEC可能由污染的禽肉传播给人^[5-6],有观点指出APEC可能是UPEC的菌株来源或者毒力基因的贮库。

存在于细菌外层的荚膜多糖(Capsular polysaccharide),能直接与其他细菌或环境相互作用, 保护菌体免受宿主免疫系统的侵害^[7-8]。大肠杆菌 可表达超过80多种的荚膜抗原(K抗原),依据其表 面的荚膜多糖的血清学和化学特性的差异,可分

^{*}通信作者。Tel: +86-514-87972117; Fax: +86-514-87972218; E-mail: gsong@yzu.edu.cn 收稿日期: 2015-12-24; 修回日期: 2016-03-05; 网络出版日期: 2016-03-28

基金项目:国家自然科学基金(31272559,30972196,30771604,30471281);农业部公益性行业专项(201303044);中国博士后科学基金项目(2015M580477);江苏省博士后基金项目(1501076C);江苏省自然科学基金(BK20140485,BK20151308);江苏省高校自然科学基金(14KJB230001);江苏高校优势学科建设工程资助项目(PAPD);扬州大学科技创新培育基金项目 (2014CXJ051,2015CXJ057)

成4个群(group)^[9]。其中,2群型荚膜主要表达于 肠道外致病性大肠杆菌,脑膜炎奈瑟菌和流感嗜 血杆菌等病原菌中,与3群型荚膜具有相似的操纵 子结构,包括编码运输和组装荚膜成分的中度至 高度保守区域(如*kpsDMTE*)^[10]。根据基因功能的 不同、荚膜其用第可公为2余反转(四1)、反转140

不同,荚膜基因簇可分为3个区域(图1)。区域1的 基因跟荚膜多糖聚合物转运至外膜有关^[11-13],区 域2的基因跟荚膜N-已酰神经氨酸酶的合成、激 活、聚合相关联,并且是唯一一个跟多糖抗原有 关系的区域^[11,14-15],而区域3的基因负责转运唾液 酸(PSA)通过胞质膜^[16-17]。区域1或者区域3中基因 的突变可能会使胞内的多糖分子聚合物积聚,而区 域2基因的突变会影响到多糖分子聚合物的合成^[11]。

2群型荚膜的组装转运途径是ATP结合盒(ATPbinding cassette, ABC)转运蛋白依赖型。细菌在细 胞内膜的胞质面上,在新生肽链的非还原性末端 添加葡萄糖残基聚合形成多糖。多糖聚合物转运 穿过内膜导入周质,主要依赖KpsM和KpsT蛋 白,这2种蛋白是典型的ABC-2型转运蛋白,其中 KpsM是一种内膜蛋白, KpsT是ATP酶^[18-20]。 ABC转运蛋白在输出荚膜多糖过程中,还需要2种 辅助蛋白,一种是细胞质膜-周质辅助蛋白KpsE, 还有一种是外膜辅助蛋白KpsD^[18]。依靠这2种辅 助蛋白,细菌可将荚膜多糖跨周质转运至外膜。 kpsE基因在K1和K5型大肠杆菌中已测序,其编码 的氨基酸序列与CtrB和BexC蛋白同源,这2种蛋 白分别是由流感嗜血杆菌和脑膜炎奈瑟菌中荚膜 相关基因编码的^[21-23]。通过对KpsE蛋白拓扑结构 研究发现,其C端结构能够与细胞质膜周间质面 相互作用,经化学交联法证实KpsE主要以二聚体 的形式发挥作用,其二聚体化不依赖于其它Kps 蛋白或荚膜的合成^[24]。KpsD为一种外膜辅助蛋 白,作为跨周质和外膜之间转运的桥梁,促进荚 膜多糖的转运^[24]。有研究报道,在空肠弯曲杆菌 中,通过对kpsE基因的缺失,证实荚膜在其黏附 和入侵人胚上皮细胞过程中发挥着重要作用^[25]。

图 1. 2群荚膜多糖编码基因操纵子的模式图

Figure 1. Genetic organization of group 2 capsule gene clusters. Two conserved regions (region 1 and 3) encode enzymes required for capsule transport through the inner membrane and are localized up- and downstream of a highly variable serotype-specific region (region 2).

本研究为了探讨荚膜与ExPEC (APEC和UPEC) 致病性的关系,利用λ Red同源重组系统,分别构 建了荚膜转运基因*kpsED*双基因缺失株APEC E058Δ*kpsED*和UPEC U17Δ*kpsED*,旨在进一步了 解荚膜在ExPEC致病过程中的作用及深入研究 ExPEC的致病机理。

1 材料和方法

1.1 菌株和质粒

APEC E058菌株为本实验室由临床发病鸡中 分离的鸡源强毒株^[26],血清型为O2; UPEC U17 菌株为本实验室由临床尿道感染病例中分离的人 源强毒株^[2],血清型未定。本研究所用的质粒和 菌株见表1。

1.2 引物设计

根据质粒pKD3序列设计引物KCF/KCR,扩 增氯霉素基因,并在引物的5′端加50 bp的kpsED 上下游序列,作为同源重组的同源臂。引物KF和 KR为kpsED开放阅读框上下游序列,结合CF和 CR进行kpsED缺失株的鉴定。引物HF和HR扩增 kpsED全长序列,用以构建回复株。引物序列见 表2。

1.3 缺失株的构建

1.3.1 线性打靶DNA的制备:以pKD3为模板,使用引物KCF/KCR扩增并回收两端带有50 bp *kpsED*

1573

表1. 本研究中使用菌株和质粒

Table 1. Bacterial strains and plasmids used in this study

Strains or plasmids	Characteristics	Source or reference
Strains		
E058	Wild-type avian E. coli serotype O2	Avian
U17	Wild-type strain of UPEC serotype nontypable	Human
$E058\Delta kpsED$	$E058\Delta kpsED$	This study
U17 $\Delta kpsED$	$U17\Delta kpsED$	This study
DH5a	<i>endA1</i> hsdR17(rk ⁻ mk ⁺)supE44 thi-1 recA1 <i>gyrA</i> (Nal ^R) RelA1 Δ (lacIZYA-argF) U169deoR (ϕ 80d lac Δ (lacZ) M15)	Invitrogen
Plasmids		
pMD18-T Vector	TA Cloning Vector, Amp	TaKaRa
pHSG396	Complementary vector, Cam	TaKaRa
pKD46	Amp, expresses λ Red recombinase	[27]
pKD3	cat gene, template plasmid	[27]
pCP20	Cm, Amp, yeast Flp recombinase gene, FLP	[27]

表2. 本试验中使用引物

Table 2. Primers used in this study

Primers	Sequences(5' \rightarrow 3')	Target genes
KCF	ATGTTGATAAAAGTGAAGTCTGCCGTATCCTGGATGCG TGCTCGTCTGTCTTGTGTAGGCTGGAGCTGCT	pKD3
KCR	ATTGATGACGTCGCCATCTTCAAGCAGAACAGAATC AATATTGGATTCGTATGGGAATTAGCCATGGTCC	pKD3
KF	AGTGAAGTCTGCCGTATCC	Upstream region of kpsED
KR	GTCGCCATCTTCAAGCAGA	Downstream region of kpsED
CF	TTGTGTAGGCTGGAGCTGCT	pKD3
CR	ATGGGAATTAGCCATGGTCC	pKD3
HF	CTCAAGCTTATGTTGATAAAAGTGAAGTC	kpsED
HR	GCTCTCGAGTTACAAAGACAGAATCACT	kpsED

50 bp up- and down-stream region of kpsED are underlined.

同源臂的氯霉素基因的PCR产物,即为用于λ Red 同源重组反应的线性打靶DNA。

1.3.2 电转化及缺失株的鉴定:将线性打靶DNA 片段电转化到含有pKD46的感受态细胞E058和 U17中^[28]。电转化后,菌液涂布于含氯霉素的LB 琼脂平板培养,挑取单菌落使用引物KF/KR结合 CF/CR进行PCR扩增鉴定。鉴定正确的缺失株在 42 ℃培养后去除pKD46质粒,并进行PCR鉴定。 **1.3.3 氯霉素抗性基因的去除:**将表达FLP重组 酶的辅助质粒pCP20电转化入含有氯霉素抗性基 因的缺失株中,于含氨苄青霉素的LB平板上筛选 阳性株,然后在普通LB平板上筛选不含氯霉素抗 性基因的缺失株。

1.4 回复株的构建

用引物HF/HR从野生株基因组DNA中扩增全 长kpsED片段,纯化回收并连接到pMD18-T载体 上。用Hind III和Xho I 双酶切质粒pMD18-T-kpsED 获得目的片段kpsED,克隆入回复质粒pHSG396 的Hind III、Xho I酶切位点,构建重组质粒pHSG396kpsED。按照上述电转方法将重组质粒电转入缺 失株中,构建突变回复株。

1.5 菌落形态观察及遗传稳定性分析

1.5.1 菌落形态观察:将荚膜缺失株和野生株经 三区划线接种于LB琼脂平板,于37°C培养,观 察两者的菌落形态有无明显差异。

1.5.2 遗传稳定性分析:将获得的缺失株E058 Δ*kpsED*和U17Δ*kpsED*进行连续传代,然后通过 PCR鉴定及测序验证,以分析其遗传稳定性。

1.5.3 生长曲线测定:在相同培养条件下,分别 接种等量的野生株、缺失株(调节*OD*₆₀₀=0.05)于 10 mL LB培养基中,在37 ℃恒温摇床中,以220 r/min 摇振培养;连续4 h,每隔0.5 h测定培养物的*OD*₆₀₀ 值。以培养时间为横坐标,*OD*₆₀₀为纵坐标,绘制 细菌的生长曲线,观察野生株与缺失株在LB培养 基中的生长速度。

1.6 血清杀菌试验

分别测定野生株E058和U17,缺失株E058 Δ*kpsED*和U17Δ*kpsED*抗血清补体杀菌的能力。用 1 mL含15% 甘油的PBS将LB平板上培养的细菌洗 下,稀释浓度调至10⁶ CFU/mL。取100 μL菌液混 合等体积的90% SPF鸡血清,置37 °C培养。分别 取培养1、2、3和4 h时间段的菌液稀释涂平板计 数,18 h后观察结果。

1.7 1日龄鸡的半数致死量(LD₅₀)的测定

分别对野生株E058和U17,缺失株E058Δ*kpsED* 和U17Δ*kpsED*,回复株ReE058Δ*kpsED*和ReU17 Δ*kpsED*对鸡的*LD*₅₀进行测定。基本步骤如下:细 菌分别接种于LB液体培养基中,37°C培养至对 数生长期,4°C离心,沉淀的细菌用15%甘油-PBS溶液洗涤悬浮并稀释至10⁸、10⁷、10⁶、10⁵和 10⁴ CFU/mL;每个稀释度取0.1 mL菌液气囊接种 1日龄SPF鸡6只,并以平板计数确定实际攻毒量,攻毒后观察7d,并记录雏鸡存活情况。通过 Reed 和 Muench的方法计算*LD*50结果。

1.8 鸡巨噬细胞感染试验

1.8.1 HD-11细胞的吞噬试验:将2×10⁵个/孔的细 胞接种到24孔细胞培养板,用含10% FCS和100 U/mL氨苄青霉素、100 µg/mL链霉素的DMEM培 养基在37°C、含5% CO₂的湿润气体条件下培养 获得单层细胞。在细菌接种前1.5h,将细胞培养 基更换为含10% FCS、不含抗生素的DMEM培养 基。取处于对数生长期野生株和突变株,4000 r/min 离心5 min,用PBS洗涤细菌,以100:1的m.o.i比 值将细菌加入细胞中。室温1000 r/min离心5 min, 离使细胞的吞噬作用同步。37°C孵育1h,用 PBS洗涤细胞3次,加入含10% FCS和100 µg/mL 离庆大霉素的DMEM培养基, 37 ℃孵育1.5 h, 杀 灭胞外的细菌。用PBS洗涤细胞3次,加入1 mL 0.1% TritonX-100溶液裂解细胞。每孔内的1 mL细 胞裂解液,取100 uL加入到900 uL的PBS,依次稀 释。每个稀释度的稀释液取100 µL,涂布LB平板进 行离细菌计数。每次重复3个孔。细胞对细菌的内 离吞率=(吞入细胞的细菌数÷每孔接种的细菌离 数)×100%。

1.8.2 胞内存活试验: 细菌感染细胞至庆大霉素 杀灭胞外菌过程同1.8.1。用PBS洗涤细胞3次,加 入含10% FCS和10 μg/mL庆大霉素的DMEM培养 基,用于抑制胞外细菌的生长增殖。从加入低抗 生素浓度的培养基时开始计时,分别在细菌增殖 6、12和24 h时,加入1 mL 0.1% TritonX-100溶液 裂解细胞进行胞内细菌涂板计数。细菌在胞内的 存活率=(在一定时间内胞内计数的细菌数÷每孔 接种的细菌数)×100%。

1.9 35日龄SPF鸡感染试验

1.9.1 体内动态分布试验:将细菌浓度调至4×10⁸ CFU/mL。60只35日龄的SPF鸡,随机分为4组,

每组15只。每组35日龄SPF鸡分别左胸气囊接种 0.25 mL的E058、U17野生株、E058Δ*kpsED*和 U17Δ*kpsED*缺失株。接种24 h后,扑杀各组鸡, 取心血及内脏器官中的肝脏、脾脏、肺脏、肾 脏,称重后研磨,经过连续稀释后,用无抗性的 LB固体培养基和氯霉素抗性培养基进行细菌计 数,18 h后观察结果。动态分布试验结果用Mann Whitney test方法进行统计分析。

1.9.2 体内竞争试验:体内竞争试验时,每组15 只35日龄SPF鸡分别在左胸气囊接种0.5 mL的E058 野生株与E058Δ*kpsED*缺失株混合菌液,U17野生 株与U17Δ*kpsED*缺失株的混合菌液(每只鸡最终接 种野生株、缺失株各10⁸ CFU)。接种24 h后,全部 扑杀,取心、肝、脾、肺、肾,称重后研磨,经 过稀释后用有氯霉素抗性的和无抗性的LB固体培 养基进行细菌计数,18 h后观察结果。

2 结果和分析

2.1 ΔkpsED缺失株的构建及鉴定

以pKD3为模板,引物KCF/KCR扩增出大小为1100 bp两侧带kpsED同源臂的氯霉素抗性基因 片段,经胶回收纯化后得到线性打靶DNA (图2)。

图 2. 线性打靶DNA PCR结果

Figure 2. PCR product of linear targeting DNA. M: DL5000 DNA marker (TaKaRa); lane 1, 2, 3: PCR product of linear targeting DNA.

将线性打靶DNA分别电转化入含有pKD46的 野生株E058和U17菌株中,诱导同源重组,挑取 在氯霉素抗性平板上生长的阳性克隆株进行PCR 鉴定,以KF/KR引物扩增出带氯霉素抗性基因片 段,对照野生株扩增片段为2500 bp, Δ*kpsED::cat* 重组菌条带大小为1100 bp (图3)。

图 3. E058∆kpsED::cat 和U17∆kpsED::cat 重组菌 PCR鉴定

Figure 3. Identification of E058 $\Delta kpsED::cat$ and U17 $\Delta kpsED::cat$ by PCR. M: DL5000 DNA marker (TaKaRa); lane 1, 2: the amplified *kpsED* fragment of E058 and U17 by primer KF/KR; lane 3, 4: the amplified *kpsED-cat* fragment of E058 $\Delta kpsED::cat$ and U17 $\Delta kpsED::cat$ by primer KF/KR.

通过转入能够表达FLP重组酶的pCP20辅助质 粒用于消除FRT位点之间的氯霉素抗性基因,以 已经丢失氯霉素抗性的阳性克隆菌株为模板,以 KF/KR引物进行PCR扩增鉴定,野生株扩增片段 为2500 bp,重组菌大小为120 bp (图4),表明缺失 株E058Δ*kpsED*和U17Δ*kpsED*构建成功。

2.2 回复株的构建及鉴定

利用引物HF/HR扩增kpsED全长序列,大小为2826 bp,将该片段克隆入质粒pHSG396,通过

图 4. 缺失株E058AkpsED和U17AkpsED PCR鉴定

Figure 4. Identification of E058 $\Delta kpsED$ and U17 $\Delta kpsED$ by PCR. M: DL5000 DNA marker (TaKaRa); lane 1, 2: the amplified *kpsED* fragment of E058 and U17 by primer KF/KR; lane 3, 4: the amplified *kpsED* fragment of E058 $\Delta kpsED$ and U17 $\Delta kpsED$ by primer KF/KR.

PCR及酶切鉴定,构建了重组质粒pHSG396kpsED。将回复质粒pHSG396-kpsED电转化入缺 失株E058ΔkpsED和U17ΔkpsED中,挑取在氯霉素 抗性平板上生长的阳性克隆株,用引物KF/KR进 行PCR鉴定(图5),结果表明回复株构建成功,分 别命名为ReE058ΔkpsED和ReU17ΔkpsED。

2.3 缺失株的主要生物学特性

2.3.1 菌落形态的比较:将缺失株和野生株经三 区划线接种于LB固体培养基,于37°C培养18h 后,均长出圆形,微凸,光滑,湿润的细小菌落 (直径1-2 mm)。表明,与野生株相比,缺失株的 菌落形态并没有发生明显的变化。

2.3.2 遗传稳定性分析:将突变株连续传10代后,PCR鉴定未发生回复突变,序列测序结果正确,表明其具有良好的遗传稳定性。

2.3.3 生长曲线测定:根据野生株E058和U17, 及缺失株E058Δ*kpsED*和U17Δ*kpsED*在LB中分别 培养0.5、1、1.5、2、2.5、3、3.5和4 h的OD₆₀₀测 定的结果,可以看出缺失株的生长速度与野生株 基本一致(图6)。

2.4 SPF鸡血清杀菌试验结果

血清杀菌试验结果显示缺失株E058ΔkpsED和 U17ΔkpsED抵抗血清补体杀菌的能力显著下降, 表明荚膜在抗血清补体杀菌方面发挥着重要的作 用(图7)。

图 5. 回复株ReE058AkpsED和ReU17AkpsED PCR鉴定

Figure 5. Identification of complementation strain ReE058 $\Delta kpsED$ and ReU17 $\Delta kpsED$ by PCR. M: DL5000 DNA marker (TaKaRa); lane 1, 2: the amplified *kpsED* fragment of E058 and U17 by primer KF/KR; lane 3, 4: the amplified *kpsED* fragment of ReE058 $\Delta kpsED$ and ReU17 $\Delta kpsED$ by primer KF/KR; lane 5, 6: the amplified *kpsED* fragment of E058 $\Delta kpsED$ and U17 $\Delta kpsED$ by primer KF/KR.

图 6. ExPEC野生株、荚膜缺失株在LB中的生长曲线 Figure 6. Growth curves of wild-type strains and isogenic mutants in LB at 37 °C, and their optical density checked at different times.

图 7. ExPEC野生株和荚膜缺失株血清杀菌试验

Figure 7. Influence of the capsule on serum resistance of wild-type strains E058, U17 and isogenic mutants. Bacteria were incubated in 90% serum obtained from SPF chicks. The graph shows means standard errors of values originated from three independent assays.

2.5 半数致死量(LD₅₀)的测定

利用1日龄雏鸡感染模型测定野生株、缺失株 和回复株的毒力,结果表明缺失株毒力基本丧 失,而回复株毒力恢复至野生株水平,见表3。

2.6 细胞感染试验

2.6.1 HD-11细胞吞噬试验: HD-11细胞吞噬试验结果显示, HD-11细胞对野生株E058和U17的内吞率分别为0.24%和0.25%, 而对缺失株E058

表3. ExPEC野生株、荚膜缺失株和回复株*LD*₅₀的测定 Table 3. *LD*₅₀ of wild-type strains, mutants and

complementation strains

Que in a	Challenge dose (CFU)					
Strains	10 ⁷	10^{6}	10 ⁵	10 ⁴	10^{3}	LD_{50}
APEC E058	6/6*	6/6	5/6	5/6	4/6	10 ^{3.5}
UPEC U17	6/6	5/6	5/6	5/6	3/6	10 ^{3.8}
$E058\Delta kpsED$	0/6	0/6	0/6	0/6	0/6	\
U17∆ <i>kpsED</i>	0/6	0/6	0/6	0/6	0/6	\
ReE058∆kpsED	6/6	5/6	4/6	4/6	3/6	10 ^{3.9}
ReU17∆ <i>kpsED</i>	5/6	4/6	5/6	4/6	3/6	104.2

*Number of dead chicks/Number of inoculated chicks.

ΔkpsED和U17ΔkpsED的内吞率显著高于野生株, 分别为1.44%和1.26%(表4)。

2.6.2 细菌胞内存活试验:细菌胞内存活试验结 果显示,与接种细胞的细菌量相比,在感染6h、 12h和24h后,野生株E058胞内存活率分别为 1.51%、1.65%和1.92%,U17分别为1.26%、 1.47%和1.84%。相比而言,*kpsED*缺失株在胞内 存活能力显著下降,E058Δ*kpsED*在感染6h后, 存活率为1.15%,而在感染12h和24h后分别下 降至0.46%和0.12%;U17Δ*kpsED*感染6h后,存 活率为1.22%,而在12h和24h后分别下降至 0.48%和0.09%(图8)。

表4.	鸡巨噬细胞HD-11细胞吞噬试验
Table 4.	Ingestion assays of bacteria by HD-11

Strains	Percent of intracellular bacteria/%
E058	0.24±0.019
U17	0.25±0.002
$E058\Delta kpsED$	1.44±0.02**
$U17\Delta kpsED$	1.26±0.016**

**, Significant differences between mutants and their wild-type strains (P < 0.01).

图 8. ExPEC野生株和荚膜缺失株胞内存活试验

Figure 8. Intracellular survival of bacteria in chicken macrophage HD-11 cells. Intracellular growth of wild-type strain E058 and U17, isogenic mutants E058 $\Delta kpsED$ and E058 $\Delta kpsED$ were compared over a 24 h period. The values represented the average data of three independent experiments. Asterisks indicate statistically significant differences (**P<0.01).

2.7 SPF鸡体内动态分布试验结果

24 h的体内动态分布试验结果表明,与野 生株相比,缺失株E058ΔkpsED和U17ΔkpsED 在脏器中的 带菌量显著下降,毒力被高度致弱 (P<0.01)(图9)。

2.8 体内竞争结果

体内竞争结果显示, kpsED缺失株与野生株竞 争生长能力显著下降, 其毒力明显减弱(图10)。

图 9. ExPEC野生株和荚膜缺失株体内动态分布试验

Figure 9. Colonization and persistence of the wild-type strain E058 (•), E058 $\Delta kpsED$ (**(**), U17 (**V**), U17 $\Delta kpsED$ (\circ) during systemic infection. A: blood; B: liver; C: spleen; D: lung; E: kidney. Data were presented as \log_{10} (CFU/mL) of heart blood or \log_{10} (CFU/g) of tissues. Horizontal bars indicated the mean values. Each data point represented a sample from an individual chicken. Statistically significances as determined by the Mann-Whitney test were indicated by asterisks (**P<0.01).

Figure 10. In vivo competition assays: (A) E058 (•) and mutant E058 $\Delta kpsED$::cat (\blacktriangle) were inoculated simultaneously; (B) U17 (\blacktriangledown) and mutant U17 $\Delta kpsED$::cat (\circ) were inoculated simultaneously. Data are presented as \log_{10} (CFU/mL) of tissues. Horizontal bars indicated the mean \log_{10} (CFU/mL) values. Each data point represented a sample from an individual chicken. Statistically significant differences in values between wild-type strains and their mutants were indicated with asterisks (**P<0.01).

3 讨论

ExPEC的致病机理比较复杂、涉及多因子的 相互作用,尤其是毒力相关因子,在其致病过程 中发挥着重大作用。目前, 围绕着ExPEC毒力因 子的研究一直是一个热点,除了已知的一些毒力 因子,对潜在的毒力基因的挖掘工作也一直在延 续。研究通常采用基因突变的方法,对假定毒力 基因进行缺失突变,通过比较野生株和缺失株的 生物学特性及致病性,了解和推测相关基因的生 物学意义和功能,尤其对致病性方面的影响,进 而明确其是否为真正的毒力基因。

位于细菌表面的荚膜多糖,能直接与环境或 其他细菌相互作用,对细菌的生存具有重要意 义。细菌不仅可利用荚膜抵御不良环境,抵抗宿 主的非特异性免疫^[29],而且能增强与细胞表面或 细菌之间的黏附,表现出对靶细胞的专一攻击能 力,还能促进生物被膜的形成和在不同环境中的 定殖。有研究表明, UPEC的荚膜多糖形成的生物 被膜使得其更易感染并附着于尿道^[30]。尽管荚膜 多糖是细菌的一种重要的毒力因子,但是对于它 在ExPEC感染过程中到底扮演什么样的角色,目 前仍然不清楚。因此,本研究选取了负责转运荚 膜多糖至外膜的基因kpsE和kpsD,利用λ Red重组 系统构建了APEC E058和UPEC U17荚膜缺失株 E058AkpsED和U17AkpsED,研究其生物学特性及 致病性,试图深入了解荚膜在ExPEC致病过程中 发挥的作用。

宿主在抗病原菌感染中的第一道防线就是血 清补体系统的杀菌作用。与共生性革兰氏阴性菌 不同, ExPEC往往能够抵抗血清的杀伤作用, 表 明ExPEC的致病作用与其抗血清补体的杀菌作用 有很大的关联^[31]。因此,首先评价了荚膜基因缺 失对于ExPEC菌株抗血清补体杀菌能力方面的影 响,结果显示,荚膜缺失株对于鸡血清表现出高

度敏感性,说明荚膜在抗血清补体杀菌方面发挥 着重要作用。

ExPEC在建立感染的初期, 往往还需要抵御 巨噬细胞对其吞噬作用,而且在巨噬细胞内的定 殖也能够帮助ExPEC逃避宿主免疫反应的清除作 用,为其生存提供有利条件。研究证实,与低致 病性菌株相比,高致病性肠道外病原菌更能抵抗 鸡巨噬细胞的杀伤作用^[32]。因此,利用鸡巨噬细 胞HD-11,评价了荚膜基因kpsED的缺失对于细菌 在巨噬细胞内存活作用的影响。结果显示, kpsED缺失株能够被巨噬细胞更多地吞入,而野 生株能够抵抗吞噬细胞的吞入作用。同时, kpsED的缺失导致病原菌在巨噬细胞内的存活率 显著下降。由于在巨噬细胞内存活,对于 ExPEC来说是一种生存优势,缺失株的这种表型 缺陷可能是导致了其毒力下降的原因之一。

动物感染模型可对病原菌中参与致病作用的 因子进行直观的评价。通过雏鸡LD50的毒力试验 证实了荚膜缺失株已经完全丧失了毒力。鸡体内 动态分布试验结果显示,与野生株相比,荚膜缺 失株E058AkpsED和U17AkpsED在受检脏器中定殖 能力均显著下降。鸡体内竞争模型在评价突变株 相比野生株毒力变化方面更为敏感,结果同样证 明荚膜缺失株毒力被高度致弱,这就进一步证实 荚膜多糖作为ExPEC中的一种重要的毒力因子, 在细菌的致病过程中发挥了不可或缺的作用。

参考文献

- [1] Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. The Journal of Infectious Diseases, 2000, 181(5): 1753-1754.
- [2] Zhao LX, Gao S, Huan HX, Xu XJ, Zhu XP, Yang WX, Gao OO, Liu XF. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection

1579

model and a chicken challenge model. *Microbiology*, 2009, 155(5): 1634–1644.

- [3] Mora A, López C, Dabhi G, Blanco M, Blanco JE, Alonso MP, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, Blanco J. Extraintestinal pathogenic *Escherichia coli* O1: K1: H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. *BMC Microbiology*, 2009, 9(1): 132.
- [4] Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Brée A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J. Common virulence factors and genetic relationships between O18: K1: H7 *Escherichia coli* isolates of human and avian origin. *Journal* of Clinical Microbiology, 2006, 44(10): 3484–3492.
- [5] Ojeniyi AA. Direct transmission of *Escherichia coli* from poultry to humans. *Epidemiology and Infection*, 1989, 103(3): 513–522.
- [6] Linton AH, Howe K, Bennett PM, Richmond MH, Whiteside EJ. The colonization of the human gut by antibiotic resistant *Escherichia coli* from chickens. *Journal of Applied Microbiology*, 1977, 43(3): 465–469.
- [7] 陆承平. 兽医微生物学. 第5版. 北京: 中国农业出版社, 2013: 15-16.
- [8] Zapata G, Crowley JM, Vann WF. Sequence and expression of the *Escherichia coli* K1 *neuC* gene product. *Journal of Bacteriology*, 1992, 174(1): 315–319.
- [9] Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules in *Escherichia coli*. Molecular Microbiology, 1999, 31(5): 1307–1319.
- [10] Robbins JB, McCracken GH Jr, Gotschlich EC, Ørskov F, Ørskov I, Hanson LA. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. The New England Journal of Medicine, 1974, 290(22): 1216–1220.
- [11] Boulnois GJ, Roberts IS. Genetics of capsular polysaccharide production in bacteria. *Current Topics in Microbiology and Immunology*, 1990, 150: 1–18.
- [12] Pazzani C, Rosenow C, Boulnois GJ, Bronner D, Jann K, Roberts IS. Molecular analysis of region 1 of the *Escherichia coli* K5 antigen gene cluster: a region encoding proteins involved in cell surface expression of capsular polysaccharide. *Journal of Bacteriology*, 1993, 175(18): 5978–5983.
- [13] Wunder DE, Aaronson W, Hayes SF, Bliss JM, Silver RP.

Nucleotide sequence and mutational analysis of the gene encoding KpsD, a periplasmic protein involved in transport of polysialic acid in *Escherichia coli* K1. *Journal of Bacteriology*, 1994, 176(13): 4025–4033.

- [14] Boulnoisl GJ, Jann K. Bacterial polysaccharide capsule synthesis, export and evolution of structural diversity. *Molecular Microbiology*, 1989, 3(12): 1819–1823.
- [15] Roberts IS, Mountford R, Hodge R, Jann KB, Boulnois GJ. Common organization of gene clusters for production of different capsular polysaccharides (K antigens) in *Escherichia coli. Journal of Bacteriology*, 1988, 170(3): 1305–1310.
- [16] Pavelka MS Jr, Wright LF, Silver RP. Identification of two genes, *kpsM* and *kpsT*, in region 3 of the polysialic acid gene cluster of *Escherichia coli* K1. *Journal of Bacteriology*, 1991, 173(15): 4603–4610.
- [17] Smith AN, Boulnois GJ, Roberts IS. Molecular analysis of the *Escherichia coli* K5 kps locus: identification and characterization of an inner-membrane capsular polysaccharide transport system. *Molecular Microbiology*, 1990, 4(11): 1863–1869.
- [18] Paulsen IT, Beness AM, Saier MH Jr. Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. *Microbiology*, 1997, 143 (8): 2685–2699.
- [19] Pigeon RP, Silver RP. Topological and mutational analysis of KpsM, the hydrophobic component of the ABC-transporter involved in the export of polysialic acid in *Escherichia coli* K1. *Molecular Microbiology*, 1994, 14(5): 871–881.
- [20] Pavelka MS Jr, Hayes SF, Silver RP. Characterization of KpsT, the ATP-binding component of the ABC-transporter involved with the export of capsular polysialic acid in *Escherichia coli* K1. *The Journal of Biological Chemistry*, 1994, 269(31): 20149–20158.
- [21] Frosch M, Edwards U, Bousset K, Krauße B, Weisgerber C. Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides. *Molecular Microbiology*, 1991, 5(5): 1251–1263.
- [22] Frosch M, Müller D, Bousset K, Müller A. Conserved outer membrane protein of *Neisseria meningitidis* involved in capsule expression. *Infection and Immunity*, 1992, 60(3): 798–803.

- [23] Kroll JS, Loynds B, Brophy LN, Moxon ER. The bex locus in encapsulated *Haemophilus influenzae*: a chromosomal region involved in capsule polysaccharide export. *Molecular Microbiology*, 1990, 4(11): 1853–1862.
- [24] Arrecubieta C, Hammarton TC, Barrett B, Chareonsudjai S, Hodson N, Rainey D, Roberts IS. The transport of group 2 capsular polysaccharides across the periplasmic space in *Escherichia coli*: roles for the kpsE and kpsD proteins. *The Journal of Biological Chemistry*, 2001, 276(6): 4245–4250.
- [25] Bachtiar BM, Coloe PJ, Fry BN. Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium-host interactions. FEMS Immunology and Medical Microbiology, 2007, 49(1): 149–154.
- [26] Gao S, Liu XF, Zhang RK, Jiao XA, Wen QY, Wu CX, Tang YM, Zhu XB, Li C, Chen J, Cui LB, Cui HP. The isolation and identification of pathogenic *Escherichia coli* isolates of chicken origin from some regions in China. *Acta Veterinaria et Zootechnica Sinica*, 1999, 30(2): 164–171. (in Chinese) 高崧, 刘秀梵, 张如宽, 焦新安, 文其乙, 吴长新, 唐一鸣, 朱晓 波, 李琮, 陈娟, 崔力兵, 崔洪平. 我国部分地区禽病原性大肠 杆菌的分离与鉴定. 畜牧兽医学报, 1999, 30(2): 164–171.
- [27] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proceedings of the National Academy of Sciences of*

- [28] Gao QQ, Wang XB, Xu HQ, Xu YY, Ling JL, Zhang DB, Gao S, Liu XF. Roles of iron acquisition systems in virulence of extraintestinal pathogenic *Escherichia coli*: salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. *BMC Microbiology*, 2012, 12(1): 143.
- [29] Howard CJ, Glynn AA. The virulence for mice of strains of *Escherichia coli* related to the effects of K antigens on their resistance to phagocytosis and killing by complement. *Immunology*, 1971, 20(5): 767–777.
- [30] Goller CC, Seed PC. Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection: contribution to intracellular biofilm development. *Virulence*, 2010, 1(4): 333–337.
- [31] Mellata M, Dho-Moulin M, Dozois CM, Curtiss R III, Brown PK, Arné P, Brée A, Desautels C, Fairbrother JM. Role of virulence factors in resistance of avian pathogenic *Escherichia coli* to serum and in pathogenicity. *Infection and Immunity*, 2003, 71(1): 536–540.
- [32] Pourbakhsh SA, Boulianne M, Martineau-Doizé B, Fairbrother JM. Virulence mechanisms of avian fimbriated *Escherichia coli* in experimentally inoculated chickens. *Veterinary Microbiology*, 1997, 58(2/4): 195–213.

Dual deletion of the *kpsE* and *kpsD* genes reduced the bacterial virulence of extraintestinal pathogenic *Escherichia coli*

Qingqing Gao, Le Xia, Juanhua Liu, Song Gao^{*}, Xiufan Liu

Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, China

Abstract: [Objective] To study the role of capsule polysaccharide in pathogenesis of extraintesinal pathogenic *Escherichia coli* (ExPEC). [Methods] By using λ Red recombination system, we generated the capsular polysaccharide transport associated genes *kpsE* and *kpsD* double knockout mutants E058 Δ *kpsED* and U17 Δ *kpsED*. We then compared and analyzed the characteristics of the mutant strains and wild-type strains. [Results] The growth curves in Luria Bertani showed that the deletion of *kpsED* did not affect growth kinetics of the mutants. The abilities of resistance to serum and killing by chicken macrophages were significantly impaired. *LD*₅₀ results showed that the double mutants completely abolished the virulence, whereas the complementation strains restored the virulence to resemble that of wild-type strains, and the colonization and coinfection model demonstrated that the deletion of *kpsED* led to attenuation of virulence, because the double mutant showed significantly decreased colonization compared with the wild-type strains in all organs tested in chickens. [Conclusion] These results indicated that the virulence factors encoded by capsule genes were important for the pathogenesis of ExPEC.

Keywords: extraintestinal pathogenic Escherichia coli, capsule, mutant, pathogenicity

(本文责编:张晓丽)

Supported by National Natural Science Foundation of China (31272559, 30972196, 30771604, 30471281), by the Special Fund for Agroscientific Research in the Public Interest (201303044), by the General Financial Grant from the China Postdoctoral Science Foundation (2015M580477), by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (14KJB230001), by the Natural Science Foundation of Jiangsu Province (BK20140485, BK20151308), by the Jiangsu Postdoctoral Science Foundation (1501076C), by the Science and Technology Innovation Fund of Yangzhou University (2014CXJ051, 2015CXJ057) and by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

^{*}Corresponding author. Tel: +86-514-87972117; Fax: +86-514-87972218; E-mail: gsong@yzu.edu.cn Received: 24 December 2015; Revised: 5 March 2016; Published online: 28 March 2016