微生物学报 Acta Microbiologica Sinica 2017, 57(10): 1527-1535 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20160473

Research Article

crgA 调控三孢布拉霉合成类胡萝卜素

巩尊洋,罗玮*,杜瑶,余晓斌

江南大学生物工程学院,工业生物技术教育部重点实验室,江苏 无锡 214122

摘要:【目的】探究 crgA 基因在三孢布拉霉合成类胡萝卜素过程中的调控作用。【方法】克隆三孢布拉霉 crgA 基因并利用 split-marker 策略敲除该基因;在表型特征、关键酶基因转录水平、类胡萝卜素合成水平等方面 将基因敲除株与野生株进行比较分析。【结果】与野生型菌株相比, crgA 基因敲除菌产孢能力明显下降, 而 类胡萝卜素合成途径中的关键酶基因转录水平明显提高,在发酵120h后β-胡萝卜素的积累量提高了31.2%。将 crgA 基因重新导入到敲除菌后,该菌的性状恢复至野生型。【结论】crgA 基因调控三孢布拉霉的生长和 产孢能力,并通过调控类胡萝卜素关键酶基因表达来调控类胡萝卜素的合成,是一个负调控因子。

关键词:三孢布拉霉,类胡萝卜素, crgA 基因,负调控因子

类胡萝卜素是一类具有多种生物学功能的天 然色素,其中β-胡萝卜素和番茄红素具有较强的 抗氧化作用,能够清除机体自由基从而避免遗传 物质受到攻击,在防癌抗癌^[1]、预防心脑血管疾 病^[2]等方面有着广泛的应用。类胡萝卜素广泛存在 于植物、真菌及藻类中。丝状真菌三孢布拉霉生 长速度快、类胡萝卜素含量高,被认为是类胡萝 卜素的理想生产菌^[3]。在三孢布拉霉中,类胡萝卜 素是通过甲羟戊酸(MVA)途径合成的。首先,3-羟 基-3-甲基戊二酰辅酶 A(HMG-CoA)在 HMG-CoA 还原酶的作用下转化为甲羟戊酸,然后经过多步 酶促反应合成番茄红素,再经番茄红素环化酶最 终生成β-胡萝卜素^[4]。在 MVA 途径中, hmgR 基 因编码的 HMG-CoA 还原酶是第一个限速酶,是 萜类化合物合成过程中的重要调控位点^[5]。carRA 和 carB 是类胡萝卜素合成过程另外 2 个关键酶基 因,分别编码八氢番茄红素合成酶及番茄红素环化 酶、八氢番茄红素脱氢酶,其表达水平与类胡萝卜 素的合成呈正相关^[6]。除此以外,三孢布拉霉合成 类胡萝卜素仍受到其他一些未知基因的调控。

crgA 基因是在卷枝毛霉中发现的一个负调控 因子,该基因缺失突变后能够引起上述关键酶基 因表达水平^[7]和类胡萝卜素合成量的提高^[8]。但在 卷枝毛霉中 *crgA* 基因并不是直接通过控制关键酶 基因的表达来控制类胡萝卜素的合成,而是与基因 家族 *mcwc-1* (*Mucor circinelloides white collar-1*)

基金项目: 国家自然科学基金(21606105); 江苏省自然科学基金(BK20130130); 中央高校基本科研业务费专项资金(JUSRP51504) *通信作者。E-mail: wluo@jiangnan.edu.cn

收稿日期: 2016-11-13; 修回日期: 2017-02-13; 网络出版日期: 2017-03-14

有关^[9]。该基因家族中的 mcwc-1b 和 mcwc-1c 在 光照下被活化,其编码的蛋白共同作用促进类胡 萝卜素关键酶基因的表达。而 crgA 编码的 CrgA 蛋白具有泛素连接酶的活性,能够使 Mcwc-1b 泛 素化以控制类胡萝卜素关键酶基因的过量表达和 类胡萝卜素大量积累^[10]。有研究者发现在三孢布 拉霉正菌中存在 crgA 的同源基因,将该基因导入 到卷枝毛霉 crgA 基因缺失突变菌中,能够使其恢 复野生株合成类胡萝卜素的表型,表明在三孢布 拉霉和卷枝毛霉中 crgA 基因调控类胡萝卜素的合 成是保守的^[11]。尽管如此, crgA 基因在三孢布拉 霉中的调控作用至今尚无文献报道。由于三孢布 拉霉负菌是 β-胡萝卜素和番茄红素的主要生产 菌,因此在负菌中进行该基因的确定以及调控类 胡萝卜素合成的研究具有重要的理论意义和潜在 的经济价值。本实验以三孢布拉霉负菌为研究对 象,从中克隆 crgA 基因并采用高效基因敲除策略 对其进行功能缺失处理,以研究 crgA 基因对三孢 布拉霉生长及其对类胡萝卜素合成的影响。

1 材料和方法

1.1 材料

1.1.1 菌株及培养基:本实验所用出发菌株为三 泡布拉霉(*Blakeslea trispora*)NRRL2896负菌。三 泡布拉霉用以下培养基培养:麦汁培养基:5°麦 汁加入 2%琼脂,自然 pH;种子培养基(g/L):玉 米粉 30,大豆粉 50,KH₂PO₄1.5,MgSO₄·7H₂O 0.5, pH 6.5;发酵培养基(g/L):玉米粉 50,大豆粉 25, KH₂PO₄ 1.5,MgSO₄·7H₂O 0.5,棉籽油 40 mL/L, pH 6.5;所用培养基 121 °C 灭菌 20 min 备用。

1.1.2 试剂: 真菌 DNA 抽提试剂盒、胶回收试剂 盒购自天根生化科技(北京)有限公司,总 RNA 提 取试剂盒购自苏州科晴生物公司, Ex-Taq 聚合酶、 SYBR[®] Premix Ex-Taq II 购自 TaKaRa 公司, 溶菌 酶、纤维素酶、蜗牛酶购自无锡特达生物公司, 潮霉素、AMV 第一链 cDNA 合成试剂盒、引物 合成及测序均由生工生物工程(上海)股份有限公 司提供,其他试剂均购自国药集团化学试剂有限 公司。稳渗液: 0.6 mol/L NaCl; ST 溶液: 蔗糖 188.2 g/L, Tris 1.2 g/L, pH 7.5; STC 溶液: 蔗糖 188.2 g/L, Tris 1.2 g/L, CaCl₂ 2.78 g/L, pH 7.5; PTC 溶液: PEG6000 600 g/L, Tris 1.2 g/L, CaCl₂ 2.78 g/L, pH 7.5; 以上溶液 115 °C 灭菌 30 min。

1.2 三孢布拉霉的培养

吸取 100 μL 三孢布拉霉负菌孢子悬液至麦汁 培养基平板上,涂布均匀后置于 25 °C 培养箱培养 4-5 d,待菌丝长满整个平板,用适量无菌水洗下 孢子并稀释至 1×10⁶ 个/mL。吸取新生孢子接种至 装有 50 mL 种子培养基的 250 mL 三角瓶中并置于 摇床,于 25 °C、180 r/min 培养 48 h;吸取种子液 至发酵培养基(25 mL/250 mL)用于发酵培养,接种 量均为 10%。

1.3 crgA 基因的克隆

取培养好的种子液,离心去上清后反复洗涤 2次获得菌丝体,然后加入适量液氮研磨至白色粉 末状,用真菌 DNA 试剂盒提取基因组。以该基因 组为模板,利用表 1 中的引物进行 PCR。所有 PCR 产物连接至 pMD-18T 载体,然后转化至大肠杆菌 DH5α 中扩增,重新抽提后测序。

1.4 Gene deletion cassette 的合成

crgA 基因的敲除采用 split-marker 法^[12], 该方 法需由 2 轮 PCR 反应获得敲除载体,其原理如图 1 所示。在第 1 轮 PCR 反应中,根据测得的 *crgA* 基因序列在两端设计引物,以扩增获得 1 kb 左右 的同源臂。同时,所用的筛选标记为潮霉素抗性 基因(*hyg*),该基因从质粒 pCSN44 上扩增而来,

Primers	Sequences $(5' \rightarrow 3')$	Purpose
Fu/Cu	GGAAATTAAGCTATGCACCGCAGTATAGTC	crgA clone/complementation
Fd/Cr	TATTTTCATATGGAACAAGATTTGTCTATA	crgA clone/complementation
Cd	CGTGGATCCATTGTCGAACGACAAGGCAGT	crgA complementation
Cf	TCAAAAATATTAAATGCTAAAAATGGAGAA	crgA complementation
hF	GTCGGAGACAGAAGATGATATTGAAGGAG	hyg cassette
hR	GTTGGAGATTTCAGTAACGTTAAGTGGAT	hyg cassette
5f	GGAAATTAAGCTATGCACCGCAGTATAGTCA	5' flank region
5r	ATCCACTTAACGTTACTGAAATCTCCAACAGG	
	AAGGTTTGAACAGAAAACTCTTGTAGC	5' flank region
3f	CTCCTTCAATATCATCTTCTGTCTCCGACACA	
	GACGACTGAAGAGATGATTGATGAACT	3' flank region
3r	TATTTTCATATGGAACAAGATTTGTCTATACTG	3' flank region
hf	GCGAAGAATCTCGTGCTTTCA	Split marker
hr	TCCAGAAGAAGATGTTGGCGAC	Split marker
P1	AGCCTACGTTTTGAGTAGCTCGATC	Confirm mutants
P2	ATACATTGTTGTGATGAAGCCACAC	Confirm mutants
P3	ATGGGCATGTTTTTGGGCTAGCAGT	Confirm mutants
P4	CGCGCAGGCTCTCGATGAGCTGAT	Confirm mutants
P5	CTCCTACATCGAAGCTGAAAGCACG	Confirm mutants
P6	ACTCCTCTTCCAAGAGCACTAGGTA	Confirm mutants
hmgR-F	AAACGATGGATTGAACAAGAGGG	RT-qPCR
hmgR-R	TAGACTAGACGACCGGCAAGAGC	RT-qPCR
<i>carB</i> -F	TATTGGCGGAACTGCTACTGC	RT-qPCR
<i>carB</i> -R	CCCTGATCAAAGCGATGACC	RT-qPCR
<i>carRA</i> -F	TCTTGAGCGTCGTCCTATCC	RT-qPCR
<i>carRA</i> -R	GCACGGTCAATTATCCAAGC	RT-qPCR
<i>tef1</i> -F	AACTCGGTAAGGGTTCCTTCAAG	RT-qPCR
tef1-R	CGGGAGCATCAATAACGGTAAC	RT-qPCR

表 1. 本实验所用的引物

Table 1. Oligonucleotide primers used in this study

Figure 1. Disruption of crgA with split-marker strategy. A: Round 1; B: Round 2; C: Deletion.

http://journals.im.ac.cn/actamicrocn

其包含潮霉素磷酸转移酶基因(hph)和 trpC 启动 子。在第二轮重叠延伸 PCR 中,分别将同源臂与 筛选标记基因连接在一起形成敲除载体。

1.5 三孢布拉霉原生质体制备及转化

将培养好的菌丝体用磁力搅拌器打散并用无 菌水冲洗2次,然后每克菌丝体加入5mL复合酶 系并置于摇床上, 28 ℃、75 r/min 避光酶解菌丝, 显微镜观察原生质体生成情况。其中复合酶系为: 2%溶菌酶+3%纤维素酶+3%蜗牛酶, pH 6.0, 由稳 渗液配制而成^[13]。待获得足够量的原生质体,将酶 解液用4层擦镜纸过滤去除菌丝,4000 r/min 离心 10 min, 去除上清并用稳渗液重悬, 重复 2 次获得 原生质体悬浮液。三孢布拉霉原生质体的转化方法 如 Turgeon 等^[14]所述并略有改动。将获得的原生质 体用 ST 溶液洗涤 2 次, 4000 r/min 离心 10 min, 用 STC 溶液重新悬浮原生质体,并将浓度稀释至 1×10⁶ 个/mL。吸取 200 µL 原生质体悬浮液,加入 5-10 µg split-marker 敲除载体片段,置于冰水中冰 浴 20 min。然后缓慢混合 10 倍体积 PTC 溶液, 25 ℃ 水浴 20 min, 并用稳渗液重新悬浮。转化子的筛选 使用双层麦汁培养基,先将悬浮液涂布至第一层麦 汁培养基上, 25 ℃ 培养 12 h 待原生质体长出细胞 壁后, 再添加 10 mL 含有浓度为 200 µg/mL 潮霉素 和 0.1% Trition×100 的麦汁培养基,置于 25 ℃ 培 养箱继续培养,其中200 µg/mL的潮霉素能够完全 抑制野生三孢布拉霉的生长,而 Trition×100 能够 抑制菌丝蔓延。待长出孢子后, 传代 4-5 次获得纯 合潮霉素抗性菌株,并提取基因组进行 PCR 验证 阳性即为 crgA 基因敲除菌株 $\Delta crgA$ 菌。

1.6 crgA 基因回补菌株的构建

crgA 基因的回补也采用 split-marker 法,原理 同图 1-C,即根据测得的基因序列设计引物,PCR

扩增出 2 段 crgA 基因片段,两片段之间有部分重叠。将基因片段同时转化三孢布拉霉原生质体后涂布麦汁培养基,待长出孢子并传代 4-5 次,测序验证阳性即为 crgA 基因回补菌株 C-ΔcrgA 菌。

1.7 总 RNA 提取、反转录及荧光定量 PCR

将培养不同时间的发酵液 10000 r/min 离心 3 min 收集菌丝体,取适量置于预冷的研钵中,加 入液氮将菌丝体研磨至粉末状,之后按照总 RNA 提取试剂盒说明书进行提取。反转录按照 AMV 第一链 cDNA 合成试剂盒说明书进行,产物(cDNA) 置于-20 °C 保存或直接用于下一步实验。将 cDNA 稀释至 50 ng/µL,按照说明书配制 20 µL 反应体 系: cDNA 2 µL, 好BR[®] Premix Ex-Taq II 10 µL, 引物(10 µmol/L) 0.8 µL, ddH₂O 6.4 µL。反应程序: 95 °C 30 s; 95 °C 5 s, 55 °C 20 s, 40 个循环; 溶 解曲线分析: 95 °C 15 s, 60 °C 1 min, 95 °C 15 s, 60 °C 5 s。 *tef1* 为真核生物的转录因子,其表达不受 菌的状态和所处环境的影响,所以在该荧光定量 PCR 中,选用 *tef1* 为内参基因^[15]。采用 2^{-ΔΔCi}法分析实验 结果,计算基因表达差异倍数,所用引物见表 1。

1.8 类胡萝卜素的提取及测定

取培养不同时间的发酵液 10000 r/min 离心 5 min,将获得的菌丝体置于真空干燥箱 40 °C 干 燥 24 h,取适量加入石油醚多次研磨至菌丝无色, 收集提取液按 20:1 (石油醚:BHT, V/M)的比例加 入 BHT,然后置于-70 °C 或直接用于下一步实验。 将提取液置于旋转蒸发仪,50 °C 蒸干并加入 5 mL 乙腈重新溶解,取少量用 0.22 μm 有机系滤膜过 滤,HPLC 法测定色素含量。其中,色谱柱为安捷 伦 TC-C18,流动相为 80%乙腈、20%甲醇,检测 波长 450 nm,流速 0.1 mL/min,进样量 10 μL, 柱温为 28 °C。

2 结果和讨论

2.1 crgA 基因的克隆及分析

测得的三孢布拉霉负菌 crgA 基因全长 4289 bp, 利用 DNAMAN 将负菌 crgA 基因序列与正菌 (EMBL Accession No. AJ585199)进行比对分析, 两者相似性为 94%,并且在该基因的两端分别有 1335 bp、1396 bp 完全相同(图 2),表明在三孢布 拉霉负菌中也存在 crgA 基因。但在中间部分负菌 crgA 基因比正菌长 28 bp,相似性仅为 83%,而此 部分位于正菌 crgA 基因的 CDS 区。因此,尽管 在三孢布拉霉负菌中也含有 crgA 基因,但其序列 与已报道的正菌 crgA 基因序列并不完全相同,两 者的区别仍需进一步探究。

2.2 crgA 基因敲除菌株的筛选

将转化后的原生质体涂布在麦汁平板上,培养约12h后原生质体会再生出细胞壁,此时添加 另外一层含有潮霉素的麦汁培养基,由于潮霉素 对野生三孢布拉霉有抑制作用,能够正常生长的 表明是具有潮霉素抗性的转化子(图 3-A)。为了进

Figure 2. Sequence comparison of crgA in Blakeslea trispora mating type (+) and (-).

一步确定潮霉素抗性基因插入位置正确并成功敲除 crgA 基因,设计了引物进行 PCR 验证(图 3-B)。 本实验利用 hph 基因替换 crgA 基因片段,而引物 P1/P2 根据替换下来的片段序列设计,因此该片段在 野生菌中能够扩增得到,而在ΔcrgA 菌株中则无法扩 增得到。同理, hph 片段只能在ΔcrgA 菌株中扩增得 到。对于引物 P3/P4 和 P5/P6,其中一条位于同源臂 中,另一条位于 hph 中,目的片段同样只能在ΔcrgA 菌株中扩增得到。所挑出的转化子 PCR 扩增后,凝 胶电泳结果如图 3-C 所示。结果与预期一致,表明 hyg 基因插入了正确的位置并替换下 crgA 基因。

2.3 crgA 基因对三孢布拉霉产孢能力的影响

为了研究 crgA 基因对三孢布拉霉产孢能力的 影响,将野生菌、ΔcrgA 菌株和 C-ΔcrgA 菌株的孢 子悬液稀释至约 1×10⁶个/mL,分别取 100 μL 涂 布在麦汁培养基上,培养 1 周后观察两菌株在平 板上菌丝生长和孢子生成状况,结果如图 4 所示。

图 4. 三孢布拉霉不同菌株在固体培养基上的生长状况

Figure 4. The growth condition of different *Blakeslea trispora* strain in solid media. A: WT; B: $\Delta crgA$; C: C- $\Delta crgA$.

三孢布拉霉野生菌在适宜的生长条件下能够 迅速蔓延至整个平板,并且长出黑色孢子。

与野生菌相比, ΔcrgA 菌株先长出较厚的菌丝 膜, 然后长出少量的孢子, 产孢能力则明显下降。 在接种量相近的情况下, ΔcrgA 菌株的产孢量比野 生菌低 3 个数量级, 而将该基因重新导入到ΔcrgA 菌株后恢复野生菌产孢能力(表 2), 表明 crgA 基 因能够显著影响三孢布拉霉孢子的生成。在与三 孢布拉霉相近的卷枝毛霉中, 孢子的生成也与 crgA 基因有关, 同时受光照的影响, 具体原因 不详^[16]。

2.4 *crgA* 基因对 β-胡萝卜素合成关键酶基因表 达的影响

在 MVA 途径中, hmgR 基因编码的 HMG-CoA 还原酶催化合成类异戊二烯的前体物质甲羟戊酸 是不可逆反应, hmgR 被认为是 MVA 途径中的第 1 个关键基因^[17]。carRA 和 carB 是 β-胡萝卜素合

表 2. 三孢布拉霉 crgA 基因对产孢能力的影响

Table 2.Effect of crgA on sporulation in Blakesleatrispora

Strain	Inoculum	Sporulation
WT	$(1.5\pm0.1)\times10^{5}$	(2.6±0.4)×10 ⁸
$\Delta crgA$	$(1.7\pm0.3)\times10^5$	(5.8±0.6)×10 ⁵
$C-\Delta crgA$	$(1.4\pm0.4)\times10^5$	$(1.1\pm0.2)\times10^8$

actamicro@im.ac.cn

成过程中另外 2 个关键基因,控制着类胡萝卜素 的合成^[6]。本文探究了 crgA 缺失对这 3 种关键酶 基因表达的影响。从图 5 中可以看出,在敲除 crgA 基因后,三孢布拉霉中这3种关键酶基因的转录 水平都得到提高,但3种关键酶基因转录水平提 高的倍数随时间的变化并不相同, hmgR 在发酵 48 h 时转录水平提高倍数最大, 而 carRA 和 carB 则在发酵 72 h 时转录水平提高倍数最大,分别提 高了 1.2、1.3 和 1.6 倍。这可能与 3 种关键酶在 MVA 途径中发挥作用的位置有关。HMG-CoA 还 原酶处于 MVA 途径的上游, 控制着流向类胡萝卜 素的代谢流,而八氢番茄红素脱氢酶、八氢番茄 红素合成酶及番茄红素环化酶则处于 MVA 途径 的中下游,负责将中间代谢物转化成番茄红素和 β-胡萝卜素。尽管关键酶基因转录水平最大提高 出现在不同时间,但在整个培养过程中转录水平 都有一定的提高,说明 crgA 基因对关键酶基因的 调控是持续的。将 crgA 基因重新导入到ΔcrgA 菌 株后,3种关键基因的转录明显受到抑制(图 6), 这表明 crgA 基因能够调控关键酶基因的表达。但 C-ΔcrgA 菌株关键基因的转录并不完全与野生菌 一致,仍有 0.1-0.2 倍的提高,这可能是关键基因 的表达同时受光照[11]、活性氧[18]等因素的影响造 成的。

图 5. 三孢布拉霉△*crgA* 菌相对于野生菌关键基因转 录水平的提高倍数

Figure 5. Increase of key gene transcription in *Blakeslea trispora* $\Delta crgA$ versus wild type strain.

图 6. 三孢布拉霉 C-Δ*crgA* 菌相对于野生菌关键基因 转录水平的提高倍数

Figure 6. Increase of key gene transcription in *Blakeslea trispora* C- $\Delta crgA$ versus wild type strain.

2.5 crgA 基因对三孢布拉霉发酵过程的影响

将三孢布拉霉野生菌、ΔcrgA 菌和 C-ΔcrgA 菌种子液转接至发酵培养基中,观察整个发酵过 程中生物量、类胡萝卜素含量的动态变化,以确 定 crgA 基因对三孢布拉霉发酵过程的影响。生物 量的变化如图 7 所示,从图中可以看出, crgA 基 因对生物量的影响主要在菌体生长前期,敲除菌 较野生菌生长速度更快;之后两者趋于一致,并 在发酵 120 h 后由于营养即将耗尽菌丝体开始自 溶,生物量急剧下降。菌丝体中番茄红素的含量 呈先上升后下降的趋势(图 8),这是因为番茄红素 是 MVA 途径中的中间代谢产物, 随着番茄红素环 化酶发挥作用,积累的番茄红素逐步转化成 β-胡 萝卜素。而ΔcrgA 菌番茄红素的积累速度和转化速 度则明显高于野生菌,这可能是关键酶基因的转 录水平得到提高引起的。β-胡萝卜素在发酵前期 几乎没有积累, 在发酵 24-96 h 缓慢上升, 在发酵 96h后开始迅速积累,并在发酵 120h时达到最大 值,达到 46.39 mg/L 相对于野生菌提高了 31.2% (图 9)。此后, 菌丝体开始自溶, β-胡萝卜素被释 放到发酵液中, 菌丝体中的积累量也急剧下降。 而将 crgA 基因重新导入 $\Delta crgA$ 菌中, C- $\Delta crgA$ 菌 的生物量、类胡萝卜素的含量变化恢复野生型性 状,表明该基因对三孢布拉霉的生长和发酵性能 有显著影响。

同时光照^[11]、性激素^[15]、活性氧^[18]等因素也 能够影响三孢布拉霉的生长和类胡萝卜素的积 累,共同组成代谢调控网络。由于三孢布拉霉调 控机制十分复杂,还需进一步的研究进行解析。

图 7. 生物量变化曲线

Figure 7. Time course of biomass in fermentation liquor.

http://journals.im.ac.cn/actamicrocn

图 8. 番茄红素含量变化曲线

图 9. β-胡萝卜素含量变化曲线

3 结论

本实验在三孢布拉霉负菌中克隆到 crgA 基因,并利用 split-marker 法将该基因敲除。与野生菌相比, ΔcrgA 菌株的产孢能力受到限制,但关键酶基因的转录和类胡萝卜素的积累量明显提高。 而将 crgA 基因重新导入到ΔcrgA 菌株中,ΔcrgA 菌株性状与野生菌一致,表明 crgA 基因是三孢布 拉霉代谢调控中的一个负调控因子。

参 考 文 献

[1] Liu XJ, Liu RS, Li HM, Tang YJ. Lycopene production from

synthetic medium by *Blakeslea trispora* NRRL 2895 (+) and 2896 (-) in a stirred-tank fermenter. *Bioprocess and Biosystems Engineering*, 2012, 35(5): 739–749.

[2] Zhang WW, Wu YW, Ouyang J. Extraction of water-soluble β-carotene from carrots by enzymatic hydrolysis. *Journal of Food Science and Biotechnology*, 2013, 32(8): 854–860. (in Chinese)

张玮玮,武彦文,欧阳杰. 酶解水提法从胡萝卜中提取水 溶性 β-胡萝卜素. 食品与生物技术学报, 2013, 32(8): 854-860.

- [3] Papaioannou EH, Liakopoulou-Kyriakides M. Substrate contribution on carotenoids production in *Blakeslea trispora* cultivations. *Food and Bioproducts Processing*, 2010, 88(2/3): 305–311.
- [4] Mantzouridou F, Tsimidou MZ. Lycopene formation in Blakeslea trispora. Chemical aspects of a bioproces. Trends in Food Science & Technology, 2008, 19(7): 363–371.
- [5] Bach TJ. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? *Lipids*, 1986, 21(1): 82–88.
- [6] Rodríguez-Sáiz M, Paz B, de la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL. *Blakeslea trispora* genes for carotene biosynthesis. *Applied and Environmental Microbiology*, 2004, 70(9): 5589–5594.
- [7] Navarro E, Ruiz-Pérez VL, Torres-Martínez S. Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in *Mucor circinelloides*. *European Journal of Biochemistry*, 2000, 267(3): 800–807.
- [8] Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolás FE, Garre V, Torres-Martínez S, Ruiz-Vázquez RM. A negative regulator of light-inducible carotenogenesis in *Mucor circinelloides*. *Molecular Genetics and Genomics*, 2001, 266(3): 463–470.
- [9] Silva F, Torres-Martínez S, Garre V. Distinct *white collar-1* genes control specific light responses in *Mucor circinelloides*. *Molecular Microbiology*, 2006, 61(4): 1023–1037.
- [10] Navarro E, Peñaranda A, Hansberg W, Torres-Martínez S, Garre V. A White Collar 1-like protein mediates opposite regulatory functions in *Mucor circinelloides*. *Fungal Genetics and Biology*, 2013, 52: 42–52.
- [11] Quiles-Rosillo MD, Ruiz-Vázquez RM, Torres-Martínez S, Garre V. Light induction of the carotenoid biosynthesis pathway in *Blakeslea trispora*. *Fungal Genetics and Biology*, 2005, 42(2): 141–153.
- [12] Yu NN, Wu CJ, Zhao W, Niu QQ, Wang B, Yan ZY, Qian DM,

Song XX. Construction of ubiqutin C-terminal hydrolase (*creB*) gene deletion mutant via split-marker strategy. *Progress in Modern Biomedicine*, 2012, 12(11): 2017–2021.

- [13] Li Y. Study on silencing of the *carRA* gene by RNA interfetrnce in filamentous fungus *Blakeslea trispora*. Doctor Dissertation of Beijing University of Chemical Technology, 2009. (in Chinese)
 李晔. RNA 干扰三孢布拉氏霉菌番茄红素环化酶基因的研究. 北京化工大学博士学位论文, 2009.
- [14] Turgeon BG, Garber RC, Yoder OC. Development of a fungal transformation system based on selection of sequences with promoter activity. *Molecular and Cellular Biology*, 1987, 7(9): 3297–3305.
- [15] Schmidt AD, Heinekamp T, Matuschek M, Liebmann B, Bollschweiler C, Brakhage AA. Analysis of mating-dependent

transcription of *Blakeslea trispora* carotenoid biosynthesis genes *carB* and *carRA* by quantitative real-time PCR. *Applied Microbiology and Biotechnology*, 2005, 67(4): 549–555.

- [16] Nicolás FE, Calo S, Murcia-Flores L, Garre V, Ruiz-Vázquez RM, Torres-Martínez S. A RING-finger photocarotenogenic repressor involved in asexual sporulation in *Mucor circinelloides. FEMS Microbiology Letters*, 2008, 280(1): 81–88.
- [17] Ruiz-Albert J, Cerdá-Olmedo E, Corrochano L. Genes for mevalonate biosynthesis in *Phycomyces. Molecular Genetics* and Genomics, 2002, 266(5): 768–777.
- [18] Wang HB, Luo J, Huang XY, Lu MB, Yu LJ. Oxidative stress response of *Blakeslea trispora* induced by H₂O₂ during β-carotene biosynthesis. *Journal of Industrial Microbiology* & *Biotechnology*, 2014, 41(3): 555–561.

Regulation effect of crgA on carotenoid production in Blakeslea trispora

Zunyang Gong, Wei Luo^{*}, Yao Du, Xiaobin Yu

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu Province, China

Abstract: [Objective] We studied the regulation of *crgA* on carotenoid biosynthesis by *Blakeslea trispora*. **[Methods]** *crgA* was cloned from *B. trispora* and then disrupted by using split-marker strategy. Phenotypic characteristics, transcription of key enzyme genes and carotenoid accumulation between the wide-type and mutant strain were compared. **[Results]** In contrast to those of wild-type strain, the spore-forming ability of the mutant was weakened but transcription of key enzyme genes in the pathway of carotenoid biosynthesis increased and β -carotene production in the mycelia was improved by 31.2% after cultured for 120 h. After *crgA* was transformed into the mutant, the strain restored the phenotype as those of the wild-type strain. **[Conclusion]** *crgA* could regulate spore-forming and mycelia growth. Besides, the gene controlled carotenoid synthesis by regulating the transcription of key enzyme genes, which indicates that *crgA* is a negative regulator in *Blakeslea trispora*.

Keywords: Blakeslea trispora, carotenoid, crgA, negative regulator

(本文责编:李磊)

Supported by the National Natural Science Foundation of China (21606105), by the Natural Science Foundation of Jiangsu Province (BK20130130) and by the Fundamental Research Funds for the Central Universities (JUSRP51504)

^{*}Corresponding author. E-mail: wluo@jiangnan.edu.cn

Received: 13 November 2016; Revised: 13 February 2017; Published online: 14 March 2017