微生物学报 Acta Microbiologica Sinica 2018, 58(9): 1582-1592 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20170532

Research Article

双功能域 β-折叠桶碱性植酸酶蛋白序列分析与酶学特性

鲁芳^{1,2},张蓓²,刘永²,宋迎²,郭刚兴²,杨培龙³,姚斌³,郭素娟^{1*},高伟^{2*}

1北京林业大学省部共建森林培育与保护教育部重点实验室,北京 100083

2北京林业大学理学院,北京 100083

3中国农业科学院饲料研究所,农业部饲料生物技术重点实验室,北京 100081

摘要:【目的】表达、纯化来源于 Bacillus sp. HJB17 的双功能域 β-折叠桶碱性植酸酶(phyHT),并对该 酶进行蛋白序列以及酶学特征分析,为该酶的广泛应用奠定基础。【方法】应用生物信息学技术,对 phyHT 蛋白序列进行了生物信息学分析。表达、变复性、分离纯化得到具有酶活性的可溶性 phyHT 蛋 白溶液,通过硫酸亚铁-钼蓝法对 phyHT 的酶学特性进行了研究。【结果】序列分析结果显示,phyHT 由 633 个氨基酸组成,含有 2 个植酸酶结构域,属于典型的 BPP 植酸酶,相对分子量(*M*_W)为 69321.68 Da, 理论等电点为 5.37,为亲水性蛋白。二级结构中,phyHT 中 α-螺旋(helix)、β-片层(sheet)占主要的比例, 高级结构以 β 片层形成的桶状结构为主。酶学性质研究表明,该酶的最适反应温度为 35 °C,在 45 °C 以下比较稳定。最适的 pH 为 8.0,在 pH 为 6.0–12.0 条件之间比较稳定。低浓度的 Ca²⁺以及 Mg²⁺对酶 活性有促进作用,Fe²⁺、Mn²⁺、Zn²⁺、Cu²⁺、Ni²⁺等金属离子对酶活性有抑制作用。【结论】本研究成功 对 phyHT 进行了蛋白序列分析以及酶学性质研究,phyHT 属于碱性植酸酶,酶活性高、稳定性好,在 理论研究和工业生产方面均有很大应用价值。

关键词:β-折叠桶碱性植酸酶,生物信息学分析,酶学特性

磷是生命体维持生命活动的六大必需元素之 一,地球表面上的磷元素的储量较少^[1]。一些专家 预测,世界的磷矿石到 2050 年可能会被耗尽^[2]。 自然界中,有相当大的一部分磷是以植酸的形式 存在的,植酸和它的衍生物中所含有的有机磷可 占到总磷的一半以上。植酸非常稳定,加热、强 酸均很难使其分解,植酸中的磷元素不能被直接 吸收和利用^[3],这就限制了磷的循环利用。目前降 解植酸的一个有效的方法为酶解法,即采用植酸 酶降解植酸。植酸酶可以分解植酸,释放出难以 被利用的植酸形式的磷,从而增加了磷的有效性。 植酸酶,全称为肌醇六磷酸磷酸水解酶,是

基金项目: 中央高校基本科研业务费专项资金(2018ZY18, 2015ZCQ-LY-02); 国家自然科学基金(31070651)

^{*}通信作者。郭素娟, Tel: +86-10-62338128, E-mail: gwangzs@263.net; 高伟, Tel: +86-10-62338136, E-mail: w_gao@bjfu.edu.cn 收稿日期: 2017-11-01; 修回日期: 2017-12-26; 网络出版日期: 2018-03-20

催化植酸及植酸盐类水解生成肌醇或肌醇衍生物 以及相应的磷酸一类酶的统称^[4]。人们对植酸酶的 研究已经持续了近百年,但是直到最近二三十年 内植酸酶的研究才飞速发展起来^[5],现在对于植酸 酶的研究仍然是当前研究的热点。

根据结构和催化机理,植酸酶可分为组氨酸酸性磷酸酶(HAP)、β-折叠桶植酸酶(BPP)、半胱氨酸磷酸酶植酸酶(CP)和紫色酸性磷酸酶植酸酶(PAP)^[6]。BPP的分子结构中有一特殊的折叠桶结构,故因此而得名。这类植酸酶最早在芽孢杆菌中发现^[7],目前发现的BPP大多数仍然来源于芽孢杆菌^[8-10],是已发现植酸酶中唯一中性偏碱的植酸酶(pH 6.0-8.0)。相对于已经市场化的HAP,BPP有较高的热稳定性,更易降解植酸,更适于中性偏碱性环境的应用。一些研究表明,BPP在陆地和水体环境分布最为广泛^[6,10],因此,BPP具有更大的社会需求和市场推广前景。但是,由于 BPP的比活不高,分离纯化困难,限制了其工业化的进程。获得较高酶活性的BPP是其进行商业化生产的当务之急。

研究者前期报道了双功能域 β-折叠桶植酸酶 (phyH)的 2 个功能域(N 端功能域和 C 端功能域) 之间关系以及对酶活性的影响^[11],该酶具有两个 协同作用的功能域,并且与目前已经发现的一些 其他种类 BPP 植酸酶相比,其酶活性较高^[12]。之 后,我们对 PhyH 进行了重新构建,截去前端的 40 氨基酸的信号肽,重组蛋白(PhyHT)大量表达, 以包涵体的形式存在于沉淀中,经过变复性以及 分离纯化后得到了具有催化活性的蛋白溶液,得 到的植酸酶比活力显著提高^[13-14]。另外,我们对 phyHT 进行了初步晶体学研究^[13],有希望解析出 其三维晶体结构,明确其功能机制。phyHT 的 2 个功能域之间具有协同作用,使得植酸酶的催化 活性大大提高,这可能是微生物应对自然界植酸 难以水解的一种重要机制。本研究对双功能域 β-折叠桶植酸酶蛋白序列进行了生物信息学分析及 预测,为后期揭示该酶的催化机制提供线索。同 时,对 phyHT 进行表达纯化以及酶学特性的研究, 为将来广泛的应用提供理论依据。

1 材料和方法

1.1 菌株及质粒

含有双功能域β-折叠桶植酸酶全长phyHT(菌 株 Bacillus sp. HJB17,菌株登记为ACCC 05550) 基因的载体重组质粒(pET-28b-phyHT)为实验室前 期构建获得^[13,15];表达菌株 Escherichia coli BL21 (DE3)购自宝日医生物技术(北京)有限公司。

1.2 培养基和溶液

LB液体培养基:蛋白胨 10g;酵母提取物5g; 氯化钠 10g;加去离子水至 1000 mL,分装,125 °C 灭菌 20 min。

植酸钠底物溶液: 50 mmol/L Tris-HCl, 2 mmol/L 植酸钠, 1 mmol/L 氯化钙, pH 校准到 实验所对应的范围。

显色剂(钼酸铵-硫酸亚铁): 50 mmol/L Tris-HCl, 5.5%硫酸, 1.5%钼酸铵, 2.7%硫酸亚铁。 终止液: 10%TCA。

1.3 phyHT 蛋白序列分析

将实验室保存的含有 pET-28b-phyHT 重组质 粒进行测序。氨基酸序列使用蛋白质数据库 (Protein databank, PDB)搜索,从相似性较高的蛋 白质序列中,选取 2 个与 phyHT 蛋白同源性最高 的蛋白进行序列对比。应用蛋白专家分析系统,

1583

对得到的 phyHT 蛋白的分子量、等电点(Compute pl/M_w)、基本理化性质(ProtParam)、二级结构 (CFSSP)、亲疏水性(ProtScale)等进行分析与预测。 SMART 对蛋白的二级结构和蛋白结构域进行预 测。GlobPlot 工具预测 PhyHT 的球型结构域。 SWISS-MODEL 工具对 phyHT 的三级结构进行预测。

1.4 phyHT 蛋白的制备

根据前期研究^[13-15]中表述的方法对 phyHT 蛋 白进行诱导表达、变复性、分离纯化,获得具有 活性的 phyHT 蛋白溶液。具体操作为:将实验室 保存的含有 pET-28b-phyHT 重组质粒^[15]的菌液接 种到5mLLB培养基(含100 µg/mL卡那霉素)进行 活化,提取质粒。将重组质粒转入表达菌株 Escherichia coli BL21(DE3)中, 37 ℃ 培养至 OD₆₀₀ 值达到 0.6-0.8 时,加入 IPTG 至终浓度 0.2 mmol/L, 诱导 4-6 h。离心,收集菌体,超声波破碎,12% SDS-PAGE 检测到目的蛋白在沉淀中以包涵体的 形式存在。利用梯度透析的方法进行变复性[13-14], 得到 phyHT 粗蛋白溶液。应用镍柱亲和层析以及 分子筛的方法对复性后 phyHT 蛋白进行分离纯 化,得到具有一定催化活性的纯度高、稳定性好 的蛋白溶液。12% SDS-PAGE 检测蛋白的分子量 以及纯度,考马斯亮蓝法测定蛋白浓度。

1.5 phyHT 蛋白酶学特性研究

1.5.1 植酸酶酶活测定: 植酸酶酶活性测定方法 采用硫酸亚铁-钼蓝显色法^[15-16]:取 100 μL 植酸酶 溶液,在 37 °C 水浴中孵育 5 min,加入 400 μL 的底物溶液,37 °C 水浴反应 15 min。加入 500 μL 的终止液对反应进行终止。加入 500 μL 显色剂,在 室温静置 10 min,使其充分显色,低速离心 10 min, 除去部分不可见的沉淀杂质,在 700 nm 波长下测 定溶液的 *OD* 值。设置对照实验,对照组为:100 μL 植酸酶液先加入 500 μL 终止液使酶失活,再以同 样的方法进行后续测定。

1.5.2 phyHT 主要酶学特性研究: (1) 最适反应 温度测定:将 phyHT 蛋白溶液在 pH 为 8.0 的缓冲 体系及不同温度(10-65°C)下,按1.5.1的方法, 进行酶促反应,测定 phyHT 的酶活性。(2) 最适 pH 测定:在最适温度下,将 phyHT 蛋白溶液于 pH为 3.0-9.0 的条件下,按 1.5.1 的方法,进行酶 促反应, 测定 phyHT 的酶活性。(3) 温度耐受性 测定:将 phyHT 分别在不同的温度(20-65°C)下, 孵育不同的时间,之后立即置于冰中冷却,按1.5.1 的方法,最适反应条件下,测定 phyHT 的酶活性。 (4) pH 稳定性:将 phyHT 在一系列不同 pH 缓冲 液中处理 30 min 后,在最适温度与 pH 条件下, 按 1.5.1 的方法, 测定 phyHT 的酶活性。(5) 米氏 常数与最大反应速率测定(Km值, Vmax): 配置不同 浓度(0.1 mmol/L-10.0 mmol/L)的底物溶液,在最适 反应条件下,按 1.5.1 的方法,测定 phyHT 的酶 活性。通过 LineweaveBurk 双倒数曲线法^[17], 计 算出表观 $K_{\rm m}$ 、 $V_{\rm max}$ 。(6) 金属离子对酶活性的影响: 在酶促反应体系中,添加不同浓度的不同的金属 离子。按 1.5.1 的方法,最适反应条件下,测定 phyHT 的酶活性。(7) 贮存稳定性测定:将 phyHT 在最适反应缓冲液中保持,置于4℃冰箱中,每 隔7d测定 phyHT 的酶活性。

2 结果和分析

2.1 生物信息学分析

2.1.1 phyHT 蛋白序列比对及基本理化性质分析: phyHT 蛋白序列由 phyH (ADZ99372.1)截去了 N 端 信号肽的 40 个氨基酸后加上 pET-28b(+)载体的表 达标签,共 633 个氨基酸组成。在已知结构的 BPP 中,phyHT 与来自 Bacillus amyloliquefaciens 的热 稳定植酸酶(TS-Phy, PDB 编号为 1cvm)^[18]以及来 自于 Bacillus subtilis 的 3-植酸酶(3-phytase, PDB 编号为 3amr)^[19],结构相似性较高,其部分序列比 对结果如图 1。

phyHT 的理论等电点(pI)为 5.37,相对分子量 (*M*_W)为 69321.68 Da。分子式: C₃₀₄₅H₄₇₉₂N₈₈₄O₉₄₅S₁₃。 其中 Leu、Ala、Gln 含量较高分别为 12.2%、10.0%, 8.7%。正电荷(Arg+Lys)和负电荷(Asp+Glu)氨基酸 分别为 45 和 71 个。总平均亲水性:-0.263,为亲水性蛋白。

2.1.2 phyHT 的二级结构及亲疏水性预测:通过 蛋白质专家分析系统(ExPASy)的 CFSSP 工具对 phyHT 的二级结构进行预测。如图 2-A 可知,二 级结构的 phyHT 中螺旋(helix)、片层(sheet)、转角 (turn)比例分别为 67.9%、63.7%、12.6%。该蛋白 主要由 α-螺旋以及 β-转角组成,这与 phyHT 属于 β-折叠桶植酸酶的结构相符合。采用 ProtScale

图 1. phyHT 的部分序列的对比分析

Figure 1. Partial amino acid sequence alignment of phyHT.

http://journals.im.ac.cn/actamicrocn

图 2. phyHT 蛋白分析

Figure 2. PhyHT protein analysis. A: Prediction of secondary structure for phyHT; B: Predicted hydrophobicity/hydrophilicity of the phyHT; C: Disorder globularity domain predictor of phyHT; D: The domain structure analyzed of phyHT by SMART.

工具进行亲疏水性分析,如图 2-B 所示,氨基酸 预测值大部分为负值,同时根据上述预测的蛋白 总平均亲水性值-0.263,进一步说明 phyHT 是一 种亲水性蛋白。

2.1.3 phyHT蛋白固有无序化区、球蛋白区预测: 利用 GlobPlot version 2.3 软件预测氨基酸序列中 的紊乱区、球蛋白区,结果显示 phyHT 氨基酸序 列中存在 3 个固有无序化区,分别位于 11–18、 318–331、567–588 氨基酸位置。由于蛋白质紊乱 区氨基酸具有可变性,该区域很可能与 phyHT 的 酶活性发挥或蛋白相互作用相关,在探寻蛋白功 能机制时应当重点关注。该蛋白存在 2 个潜在的 球蛋白区,位于 4–317、332–566 氨基酸位置(图 2-C),球形蛋白区的氨基酸相对稳定。 2.1.4 phyHT 跨膜区及功能结构域分析: SMART 软件分析 phyHT 氨基酸序列结果如图 2-D,该蛋 白在氨基酸序列含有 2 个植酸酶结构域区域 (80-228, 276-632 氨基酸),属于典型的植酸酶蛋 白,在 232-243 氨基酸处有一个低复杂度区,没 有推测出有跨膜区域的存在。

2.1.5 phyHT 蛋白三级结构预测:应用 SWISS-MODEL 在线工具对蛋白进行三级结构预 测,找到序列相似性在25%以上的较优模板50个, 应用 SWISS-MODEL 上的 build model 功能,进行 三级结构的预测,分别以 5wyj.16.A、5gje.1.A、 3s2k.1.B 为模板,构建三级结构的模型,得到 3 个 phyHT 的模型,其结构模型如图 3。预测的三 级结构以 β 片层为主,占主要的比例,其次是 α 螺旋和无规则卷曲,这与该蛋白二级结构的预测 结果相一致。

2.2 phyHT 的表达纯化

phyHT 在 Escherichia coli 原核表达体系中进 行了诱导表达, phyHT 蛋白以无活性的包涵体形 式存在,通过变复性的方法得到目的蛋白 phyHT。 经过镍柱亲和层析收集峰值,再经分子筛层析进 一步分离纯化,得到纯度较高的目的蛋白样品。由 分子筛图谱可以看出,PhyHT单体蛋白在 12.69 mL 处出现峰值,如图 4-B 所示。对分离纯化的蛋白 进行 12%的 SDS-PAGE 检测,如图 4-A 所示:获 得高纯度的 phyHT,其分子量为 69.3 kDa,与目 的蛋白相符合,且蛋白的纯度较高,几乎没有杂 蛋白的存在。

图 3. phyHT 蛋白的三级结构

Figure 3. The tertiary structure of phyHT. A: templates, 5wyj.16.A; B: templates, 5gje.1.A; C: templates, 3s2k.1.B.

Figure. 4 Purification of phyHT monomer on gel filtration column and SDS polyacrylamide gradient gel analysis. A: 12% SDS-PAGE of stained with Coomassie Brilliant Blue. Lane M: Protein marker; lane 1: phyHT which corresponding the peak 2 on the gel filtration profile. B: Purification profile of phyHT, which eluted as a symmetrical peak from the SEC Superdex G200 column (blue peak). The vertical coordinate is the absorbency value (mAU) and the horizontal coordinate is the volume of solution (mL).

2.3 phyHT 主要酶学特性

2.3.1 phyHT 的最适反应温度: 在不同温度下测 定 phyHT 的结果表明(图 5-A),该酶的最适反应温 度为 35 ℃,10-45 ℃下,酶的催化活性保持在 30% 以上,说明 phyHT 可以在较宽的温度范围内发挥 其催化活性。

2.3.2 phyHT 的最适反应 pH: phyHT 在 pH 5–9 内保持较好的催化活性,随着 pH 值的增加,酶活性增强,在 pH 值 8.0 达到高峰,然后随着 pH 值 上升,酶活开始下降,其最适的 pH 为 8.0,偏碱性,说明其属于碱性植酸酶。当 pH 小于 5 时,酶的催化活性降低到 10%以下(图 5-B),该酶不适宜在酸性较强的环境下发挥作用。

2.3.3 phyHT 的温度稳定性: 60 °C 下孵育 15 min, phyHT 的酶活力下降到 15%以下,说明植酸酶在

温度大于 60 ℃ 的条件下,不能很好地保持酶活 性。当温度在 45 ℃ 时,孵育 2 h 后,植酸酶仍能保 持 80%的酶活性。当温度小于 37 ℃ 时,孵育 5 h 以内植酸酶的活力几乎不变。说明在低温状态下, phyHT 稳定性好。

2.3.4 phyHT 的 pH 稳定性: 37 °C 时, phyHT 在一系列不同 pH 缓冲液中处理 30 min 后, pH 为 6-12 时,剩余酶活性维持在 95%以上。当 pH 低 于 6 时,酶活性迅速下降,到 pH 低于 4 时,几乎 没有酶活性(图 5-C),说明该酶有很好的耐碱性, 但耐酸性较差。

2.3.5 phyHT 反应动力学参数:如图 5-D 所示, 通过 LineweaveBurk 双倒数曲线作图^[17],以植酸 钠为底物的条件下,计算出表观 *K*_m、*V*_{max}分别为 1.397 mmol/L 和 100.89 μmol/(mg·min)。

图 5. phyHT 酶学性质分析

Figure 5. Analysis of enzymatic properties of phyHT. A: The optimal temperature of phyHT; B: The optimal pH of phyHT; C: pH stability of phyHT; D: Kinetic parameters of enzymatic reaction. Error bars represents the standard deviations.

actamicro@im.ac.cn

2.3.6 金属离子对 phyHT 催化活性的影响: 如图 6 所示,低浓度的 Ca²⁺以及 Mg²⁺对 phyHT 的催化 效率有促进作用,浓度升高,酶活性受到抑制。 phyHT 属于 β-折叠桶植酸酶,其催化活性的发挥 具有钙离子依赖性,在一定的范围内具有促进催 化效果的功能^[20],Ca²⁺的浓度对 phyHT 催化活性 的影响与前人研究的结果一致^[11]。Fe²⁺、Mn²⁺、 Zn²⁺、Cu²⁺、Ni²⁺等金属离子对酶活性有抑制作用, 随着浓度的升高,植酸酶酶活性迅速降低。当金 属离子浓度在 2 mmol/L 时,植酸酶的酶活性均降 低到极低的水平。

2.3.7 phyHT 的储存稳定性:在4°C冰箱中,放置60d后,最适条件下测定 phyHT 的活性,酶活性仍保持70%左右,说明其具有很好的存储效果,稳定性较强。

3 讨论

BPP 普遍存在于陆地和水生生态系统中,是 自然界中分布最为广泛的一类植酸酶。基因组序 列数据库调查显示,BPP 主要分布于微生物中, 而微生物来源的植酸酶,被广泛地应用于商业生 产中^[12,20]。与目前生产上常用的 HAP 和 PAP 相比, BPP 在中性偏碱性的 pH 范围内发挥催化活性,热 稳定性高,底物专一性强^[20]。这些特性预示着该 类植酸酶将有广泛的应用前景。BPP 是一类碱性 植酸酶,大部分水生动物的胃肠道是碱性的,因 此,碱性植酸酶制剂在水产养殖领域受到了研究 者的关注。另外,BPP 在常温下表现出较好的稳 定性,所以在生产操作时有较大的优势,在土壤 的改良、饲料的加工等诸多方面都有良好的应用 前景。

双功能域 BPP 区别于单功能域的 BPP,具有 两个功能域以及相对较高的催化活性。一些双功 能域 BPP 在 NCBI 数据库的微生物基因组被发现, 并且以 2 个功能域为其分类的一个特性,具有 2 个保守的半胱氨酸残基。这一类植酸酶广泛存在于 γ-Proteobacteria 中如 *Shewanella* sp.,*Pseudomonas* sp. 和 *Idiomarina* sp.^[6]。

本研究所涉及到的双功能域 β-折叠桶植酸酶 (phyHT),由氮末端一个不完整的植酸酶功能域以 及一个碳末端的完整的植酸酶结构域构成。是在 *Bacillus* sp. HJB17 中发现的第一个有报道的芽孢 杆菌属的双功能域 BPP^[11],其催化活性高于单功 能域植酸酶。研究发现,其N末端功能域不能直 接发挥催化功能,但是它的存在提高了单功能域 植酸酶的整体酶活性。将其基因与其他单功能域 BPP 基因以及其他类型的单功能域植酸酶(HAP 和 CP)基因构建连接,表达纯化蛋白后,酶活性提 高了 1.0-2.5 倍。C 末端功能域为典型的 BPP 结构 域,具有催化植酸的功能。当 2 个功能域协同作 用时,可以显著提高 1.17-2.49 倍的催化活性^[11]。

1589

因此,我们推测2个功能域的协同作用是其发挥 较高催化活性的关键,双功能域植酸酶可能是 由单功能域的基因复制进化而来的,具有高的 催化活性,有着非常重要的研究意义。双功能域 β-折叠桶植酸酶的研究,为整体碱性植酸酶活 性的提高,以及将来的工业化生产提供良好的 依据。

我们对 phyHT 蛋白序列进行生物信息学分 析,结果显示, phyHT 其含有 2 个典型的植酸酶 结构域,二级结构中, phyHT 中 α -螺旋(Helix)、 β -片层(Sheet)占主要的比例,高级结构以 β-片层形 成的桶状结构为主,是典型的双功能域 β-折叠桶 植酸酶。研究发现 BPP 具有保守的 2 个序列 D-A-[A/T/E]-D-D-P-A-[I/L/V]-W(钙离子的结合位 点)和 N-N-[V/I]-D-[I/L/V]-R-[Y/D/Q](催化活性中 心)^[10],序列对比结果显示 phyHT 在 324-332 氨基 酸残基的位置为钙离子的结合位点(图 1), 酶学性 质研究表明, Ca²⁺对酶活性有促进作用, 说明 phyHT 的催化活性对钙离子有依赖作用, 推测可 能是钙离子结合位点在催化反应中发挥了作用。 另外,对 phyHT 三维结构进行模拟,得到了 3 个 三维结构预测图(图 3),结果显示 phyHT 的 2 个功 能域 PhyH-DI与 PhyH-DII 均由 β-折叠桶状结构构 成,三维结构中钙离子与活性中心的结合可以促 进 phyHT 催化活性的发挥。

本研究以 phyHT 为研究对象^[13,15],进行了生物信息学分析及结构的预测,明确了 phyHT 基本特性,并通过模拟了解其主要的结构特点,为 phyHT 结构的深入研究以及功能与结构关系的阐释奠定基础。经过表达纯化,得到了植酸酶的蛋白,进行酶学特性的研究,阐释了 phyHT 主要的催化特性,为将来广泛的应用提供理论依据。

参 考 文 献

- Gilbert N. Environment: The disappearing nutrient. *Nature*, 2009, 461(7265): 716–718.
- [2] Vance CP, Uhde-Stone C, Allan DL. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. *New Phytologist*, 2003, 157(3): 423–447.
- [3] Lung SC, Lim BL. Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (*Nicotiana tabacum*) is affected by the availability of soluble phytate. *Plant and Soil*, 2006, 279(1/2): 187–199.
- [4] 崔富昌. 米曲霉植酸酶的分离纯化、性质研究及其基因的 克隆. 山东大学硕士学位论文, 2006.
- [5] Li XL, Yang HT, Hu JD, Wu YZ, Li JS, Ren Y. Diversity and classification of phytases. *Microbiology China*, 2010, 37(5): 738–747. (in Chinese)
 李晓龙,杨合同,扈进冬,吴远征,李纪顺,任艳. 植酸酶 的多样性及其分类. 微生物学通报, 2010, 37(5): 738–747.
- [6] Lim BL, Yeung P, Cheng CW, Hill JE. Distribution and diversity of phytate-mineralizing bacteria. *The ISME Journal*, 2007, 1(4): 321–330.
- [7] Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from *Bacillus subtilis*. *Applied and Environmental Microbiology*, 1998, 64(6): 2079–2085.
- [8] Gulati HK, Chadha BS, Saini HS. Production and characterization of thermostable alkaline phytase from *Bacillus laevolacticus* isolated from rhizosphere soil. *Journal* of Industrial Microbiology & Biotechnology, 2007, 34(1): 91–98.
- [9] Zhang R, Yang PL, Huang HQ, Yuan TZ, Shi PJ, Meng K, Yao B. Molecular and biochemical characterization of a new alkaline β-propeller phytase from the insect symbiotic bacterium *Janthinobacterium* sp. TN115. *Applied Microbiology and Biotechnology*, 2011, 92(2): 317–325.

- [10] Huang HQ, Shi PJ, Wang Y, Luo HY, Shao N, Wang GZ, Yang PL, Yao B. Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. *Applied* and Environmental Microbiology, 2009, 75(6): 1508–1516.
- [11] Li ZY, Huang HQ, Yang PL, Yuan TZ, Shi PJ, Zhao JQ, Meng K, Yao B. The tandemly repeated domains of a β-propeller phytase act synergistically to increase catalytic efficiency. *The FEBS Journal*, 2011, 278(17): 3032–3040.
- [12] Jain J, Sapna, Singh B. Characteristics and biotechnological applications of bacterial phytases. *Process Biochemistry*, 2016, 51(2): 159–169.
- [13] Lu F, Guo GG, Li QQ, Feng D, Liu Y, Huang HQ, Yang PL, Gao W, Yao B. Preparation, purification, crystallization and preliminary crystallographic analysis of dual-domain β-propeller phytase from *Bacillus* sp. HJB17. *Acta Crystallographica Section F*, 2014, 70(12): 1671–1674.
- [14] Li QQ, Li ZY, Feng D, Huang HQ, Han CX, Yang PL, Yao B, Gao W. Optimizing soluble expression and inclusion body renature research of β-propeller phytase of *Bacillus* sp. HJB17 in *E. coli. China Biotechnology*, 2012, 32(8): 49–55. (in Chinese)

李倩倩,李中媛,冯舵,黄火清,韩翠晓,杨培龙,姚斌, 高伟.芽孢杆菌 β-折叠桶植酸酶的原核可溶性表达优化 及包涵体复性研究.中国生物工程杂志,2012,32(8): 49-55.

- [15] Gao W, Lu F, Li QQ, Guo GX. Method for preparing dual-functional-domain β-propellar phytase (BPP) disomes in quantity: China, CN103740672B. 2017-07-14. (in Chinese) 高伟, 鲁芳, 李倩倩, 郭刚兴. 一种大量制备双功能域 β-折叠 桶 植 酸 酶 二 体 的 方 法: 中国, CN103740672B. 2017-07-14.
- [16] Choi YM, Suh HJ, Kim JM. Purification and properties of extracellular phytase from *Bacillus* sp. KHU-10. *Journal of Protein Chemistry*, 2001, 20(4): 287–292.
- [17] Lineweaver H, Burk D. The determination of enzyme dissociation constants. *Journal of the American Chemical Society*, 1934, 56(3): 658–666.
- [18] Ha NC, Oh BC, Shin S, Kim HJ, Oh TK, Kim YO, Choi KY, Oh BH. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. *Nature Structural Biology*, 2000, 7(2): 147–153.
- [19] Zhang R, Yang PL, Huang HQ, Shi PJ, Yuan TZ, Yao B. Two types of phytases (histidine acid phytase and β-propeller phytase) in *Serratia* sp. TN49 from the gut of *Batocera horsfieldi* (Coleoptera) Larvae. *Current Microbiology*, 2011, 63(5): 408–415.
- [20] Kumar V, Yadav AN, Verma P, Sangwan P, Saxena A, Kumar K, Singh B. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. *International Journal of Biological Macromolecules*, 2017, 98: 595–609.

Sequencing and characterization of dual-domain β-propeller alkaline phytase

Fang Lu^{1,2}, Bei Zhang², Yong Liu², Ying Song², Gangxing Guo², Peilong Yang³, Bin Yao³, Sujuan Guo^{1*}, Wei Gao^{2*}

¹ Key Laboratory of Forest Cultivation and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
 ² School of Sciences, Beijing Forestry University, Beijing 100083, China

³ Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract: [Objective] The aim of this study was to purify and characterize a dual-domain β -propeller alkaline phytase (phyHT) from *Bacillus* sp. HJB17 and to analyze the sequence features for application of the enzyme. **[Methods]** The amino acid sequence of phyHT was analyzed by bioinformatics methods. PhyHT protein was expressed, refolded, purified and the enzymatic properties were determined by ferrous sulfate and molybdenum blue method. **[Results]** Sequence analysis suggested that phyHT consisted of 633 amino acids and contained 2 phytase domain and belonged to typical BPP phytase. PhyHT was a hydrophilic protein and the molecular weight and theoretical isoelectric point were 69321.68 Da and 5.37, respectively. In the secondary structure, phyHT mainly consists of α -helix and β -sheet. Its three-dimensional structure mainly consists of β -sheet propeller. The optimum temperature of phyHT was 37 °C, and stable at 45 °C. PhyHT has an optimum pH of 8.0, and stable between pH 6.0 and 12.0. Low concentration of Ca²⁺ and Mg²⁺ promoted the enzymatic activity, whereas phytase activity was strongly inhibited by Fe²⁺, Mn²⁺, Zn²⁺, Cu²⁺ and Ni²⁺. **[Conclusion]** phyHT has important applications in theoretical research and in industry.

Keywords: β-propeller alkaline phytases, bioinformatics analysis, enzyme properties

(本文责编:张晓丽)

Supported by the Fundamental Research Funds for the Central Universities (2018ZY18, 2015ZCQ-LY-02) and by the National Natural Science Foundation of China (31070651)

^{*}Corresponding authors. Sujuan Guo, Tel: +86-10-62338128, E-mail: gwangzs@263.net; Wei Gao, Tel: +86-10-62338136, E-mail: w_gao@bjfu.edu.cn

Received: 1 November 2017; Revised: 26 December 2017; Published online: 20 March 2018