微生物学报 Acta Microbiologica Sinica 2019, 59(7): 1266–1274 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20180373

Research Article

珊瑚病原菌株 XSBZ03 和 XSBZ14 双重 PCR 检测方法的建立

杨思悦^{1,3},符亚楠^{1,3},龙昊³,章翔^{1,3},谢珍玉^{1,2,3*}

¹海南大学海洋学院,海南 海口 570228 ²海南省热带水生生物技术重点实验室,海南 海口 570228 ³南海海洋资源利用国家重点实验室,海南 海口 570228

摘要:【目的】建立珊瑚病原菌株 XSBZ03 和 XSBZ14 的双重 PCR 检测方法。【方法】以 XSBZ03 和 XSBZ14 的特异靶序列为对象,开展引物设计和双重 PCR 检测方法的构建,并确定该双重 PCR 方法的 特异性、敏感性及可靠性。【结果】该检测方法可特异识别菌株 XSBZ03 和 XSBZ14,对 XSBZ03 和 XSBZ14 基因组 DNA 样品的检测极限分别为 1.7 pg/µL 和 2.0 pg/µL;对 XSBZ03 和 XSBZ14 在海水样 品中的检测极限分别为 6×10³ CFU/mL 和 8×10³ CFU/mL。【结论】该方法具有特异性强、灵敏度高等优 点,可对由菌株 XSBZ03 和 XSBZ14 引起的珊瑚疾病进行准确快速的诊断,为今后开展珊瑚疾病防控 和无特定病原的珊瑚移植提供了可靠手段。

关键词:珊瑚病原,双重 PCR,诊断

处于热带海洋的珊瑚礁具有丰富的生物多样 性和重要的生态服务功能,是最重要的生态系统 之一^[1-2],享有"蓝色沙漠中的绿洲"、"海洋中的 热带雨林"等美誉^[3]。然而,近20余年来,由于 气候和环境变化造成了世界各地的珊瑚礁正以 惊人的速度减少,现已有三分之二的珊瑚礁处于 灭绝的危险之中^[4-7]。珊瑚的白化将直接导致珊 瑚礁生态系统结构的瓦解,因此珊瑚白化死亡的 原因一直深受人们的关注,其中细菌感染是导致 珊瑚白化的重要原因之一^[8-10]。研究表明由病原 微生物引起的珊瑚疾病已成为全球珊瑚礁的主 要威胁^[11],当前共有 54 个国家和地区报道了各 类珊瑚疾病 3200 余例,涉及患病珊瑚达 113 种, 其中 80%以上为细菌性病原引起^[12-13]。但是有 关珊瑚细菌性病原准确快速的检测方法报道较 少, 仅溶珊瑚弧菌(*Vibrio coralliilyticus*)、施罗 氏弧菌(*V. shilonii*)等少量珊瑚病原建立了快速 检测方法^[10,14-16]。

本研究对象是溶藻弧菌菌株 XSBZ03 和 XSBZ14, 它们是从白化的扁枝滨珊瑚中分离得

基金项目:国家自然科学基金(41466002, 31660744);国家海洋局海洋经济创新示范城市项目(HHCL201802, HHCL201813) *通信作者。Tel:+86-898-66256212; E-mail: xiezyscuta@163.com

收稿日期: 2018-08-27; 修回日期: 2019-01-07; 网络出版日期: 2019-02-19

到,并且经过科赫法则验证为扁枝滨珊瑚白化的 病原,XSBZ03 和 XSBZ14 对扁枝滨珊瑚的致病 性是其他分离菌株所不具备的^[17]。扁枝滨珊瑚作 为南中国海诸多海域的优势珊瑚种,也是南中国 海珊瑚礁人工生态修复最重要的移植物种之一, 要预防细菌性病原所导致的南中国海扁枝滨珊瑚 白化综合征的发生,首先要对病原进行准确的诊 断。本研究从两株病原菌的全基因组序列中分别 筛选到的一段特异性高的靶序列,并以之为对象 设计合理的引物,拟建立可同时检测 XSBZ03 和 XSBZ14 的双重 PCR 方法,为丰富我国珊瑚疾病 快速诊断方法奠定基础。

材料和方法

1.1 供试菌株

1

珊瑚病原溶藻弧菌(V. alginolyticus) XSBZ03 和 XSBZ14;溶藻弧菌 ATCC17749,副溶血弧菌(V. Parahaemolyticus) ATCC17802,创伤弧菌(V. vulnificus) ATCC27562,需钠弧菌(V. natriegens) ATCC33788, 河流弧菌(V. fluvialis) ATCC33810 均购自美国菌种 保藏中心;其余 37 株溶藻弧菌,15 株哈维氏弧菌 (V. harveyi),2 株副溶血弧菌,1 株轮虫弧菌(V. rotiferianus),主要由自然海水、养殖海水、病亡的水 生生物中分离得到,并已进行16S rRNA 菌种鉴定以 及各项生理生化指标检测,现由本实验室保存(表1)。

Table 1. Bacterial strains tested				
No.	Strains	No.	Strains	
1	V. alginolyticus XSBZ03	32	V. alginolyticus HN07010	
2	V. alginolyticus XSBZ14	33	V. alginolyticus HN13001	
3	V. alginolyticus HN07011	34	V. alginolyticus PBVAY40119	
4	V. alginolyticus HN08809	35	V. alginolyticus HN08202	
5	V. alginolyticus HN08304	36	V. alginolyticus PBVAY41120	
6	V. alginolyticus HN08307	37	V. alginolyticus PBVAY38117	
7	V. alginolyticus HN08805	38	V. alginolyticus PBVAY39118	
8	V. alginolyticus HN07005	39	V. alginolyticus PBVAY12023	
9	V. alginolyticus XSE381	40	V. alginolyticus PBVAY42121	
10	V. alginolyticus HN08803	41	V. harveyi NS131241	
11	V. alginolyticus HN08801	42	V. harveyi NS131751	
12	V. alginolyticus HN08201	43	V. harveyi NS131651	
13	V. alginolyticus PBVAY30031	44	V. harveyi NS131451	
14	V. alginolyticus HN08203	45	V. harveyi NS131632	
15	V. alginolyticus HN07006	46	V. harveyi NS131631	
16	V. alginolyticus HN08811	47	V. harveyi WC13D121	
17	V. alginolyticus HN08155	48	V. harveyi HNH11011	
18	V. alginolyticus HN07002	49	V. harveyi HNH11001	
19	V. alginolyticus TG06003	50	V. harveyi WC13DH21	
20	V. alginolyticus HN08306	51	V. harveyi WC13H252	
21	V. alginolyticus HN07009	52	V. harveyi HNH11009	
22	V. alginolyticus HN08813	53	V. harveyi HNH11013	
23	V. alginolyticus E001	54	V. harveyi WC13DH52	
24	V. alginolyticus HN08335	55	V. harveyi PBVH78461	
25	V. alginolyticus HN08303	56	V. Parahaemolyticus PBVPY07150	
26	V. alginolyticus HN07014	57	V. Parahaemolyticus PBVPY06106	
27	V. alginolyticus HN08806	58	V. Parahaemolyticus ATCC 17802	
28	V. alginolyticus E167	59	V. rotiferianus HN076	
29	V. alginolyticus HN08305	60	V. vulnificus ATCC 27562	
30	V. alginolyticus HN08156	61	V. natriegens ATCC 33788	
31	V. alginolyticus ATCC17749	62	V. fluvialis ATCC 33810	

表 1. 供试菌株 Table 1. Bacterial strains tested

http://journals.im.ac.cn/actamicrocn

1.2 主要试剂和仪器

TCBS 培养基(Solarbio),细菌基因组提取试剂 盒(TaKaRa), DNA Marker (TaKaRa)、2×AceTaq Master Mix (Vazyme), Multiplex PCR Kit (Vazyme), pMD-19-T 载体试剂盒(TaKaRa), PCR 仪(Applied Biosystems), DYY-6D 型电泳仪(北京六一), 全自 动凝胶成像系统(Tanon 3500R)。

1.3 引物设计

利用 Hcluster-sg、Muscle 软件对 XSBZ03 和 XSBZ14 全基因组序列(注: XSBZ03 全基因组序 列已在 NCBI 数据库公布, XSBZ14 全基因组序列 未公布)进行基因家族的 TreeFam 聚类分析,结果 显示两株菌基因家族共 3497 个。利用 perl 脚本对 两株菌的单拷贝基因家族的基因序列进行筛选以 用于特异引物的设计,其中 XSBZ03 单拷贝基因 序列 145 条, XSBZ14 单拷贝基因序列 131 条。然 后利用 NCBI 的 BLAST 功能对每条序列进行特异 性分析,结果显示 XSBZ03 序列 S1 (GenBank 序列 号: CP019959.1;位置: 796711-797418)和 XSBZ14 序列 S2 (GenBank 序列号: MH702378)具有较高特 异性,与其他菌株最高相似性分别为 96%和 95%。 然后针对这两条序列分别设计特异引物(表 2)。

1.4 细菌培养及其基因组 DNA 提取

使用 TCBS 培养基对各菌株纯化培养,挑取 单克隆于 2216E 液体培养基中 30 ℃、180 r/min

表 2. 双重 PCR 检测引物

Table 2.	Primers	used	for	the	dur	olex	PCR

Primer	ner Primer sequences $(5' \rightarrow 3')$	
names	* × ·	sizes/bp
Z03F1	TGTCGGCGTTAAGCTCGAAT	122
Z03R1	TCAACAAAGGCATTGCCACG	123
Z14F1	CTGAGCAGACGCTAGGACT	244
Z14R1	TGCGTATTCTCACGAACGAGG	244

actamicro@im.ac.cn

培养 18 h。取 1.5 mL 菌液于 2 mL 离心管中,采 用细菌基因组 DNA 提取试剂盒说明书进行基因 组 DNA 的提取。

1.5 引物特异性验证

单重 PCR 反应体系为 50 μL: 2×AceTaq Master Mix 25 μL, 上下游引物各 2 μL, 超纯水 19 μL, 模板 2 μL, 反应程序为: 94 °C 5 min; 94 °C 30 s, 58 °C 30 s, 72 °C 60 s, 30 个循环; 最后 72 °C 延伸 5 min。产物电泳检测后在凝胶成像系统上拍 照。使用引物 XSBZ03 和 XSBZ14 分别扩增各参 试菌株, 对 PCR 产物用 2.5%琼脂糖凝胶(含万分之 — goldview)电泳进行检测, 电泳时间为 30 min, 电压 120 V。

1.6 双重 PCR 反应条件优化

参考单重 PCR 反应条件,利用正交实验对影 响 PCR 反应的主要因素温度、循环数、引物浓度 进行优化(表 3)。

1.7 双重 PCR 特异性检测

以供试菌株的基因组 DNA 为模板,利用已建 立的双重 PCR 反应体系,检测双重 PCR 反应体系 的特异性。同时以 XSBZ03 和 XSBZ14 混合 DNA 为模板,进行双重 PCR 检测,产物电泳检测后在

表 3. 双重 PCR 反应条件优化

Table 3.	The of	otimization	of dup	lex PCR	condition

<i>T</i> /°C		Cvcle	Final concentration of Z03F1/Z03R1/	Final concentration of Z14F2/Z14R2/		
		5	(µmol/L)	(µmol/L)		
	56	30	0.16/0.16	0.16/0.16		
	58	32	0.20/0.20	0.20/0.20		
	60	34	0.24/0.24	0.24/0.24		
	62	36	0.28/0.28	0.28/0.28		
	64	38	0.32/0.32	0.32/0.32		
	66	40	0.36/0.36	0.36/0.36		

凝胶成像系统上拍照。产物回收、纯化后进行连 接转化,然后送到华大基因进行测序。

1.8 双重 PCR 敏感性试验

使用 NanoDrop 2000 超微量分光光度计测定 XSBZ03 和 XSBZ14 基因组 DNA 浓度,使用超 纯水对它们进行 10 倍稀释,分别取 3 μL 作为模 板进行双重 PCR,检测双重 PCR 方法的 DNA 敏 感性。

1.9 海水样品检测

采集珊瑚养殖缸中的人工海水。将菌株 XSBZ03 和 XSBZ14 分别接种至 2216E 液体培养 基中培养过夜,再用所采集的人工海水对菌株 XSBZ03 和 XSBZ14 进行不同浓度的稀释:(1)将 稀释后的各稀释液取 100 μL 分别涂布于 TCBS 平板上进行菌落计数;(2)同时将各稀释液分别 取 3 μL 作为双重 PCR 的扩增模板。

2 结果和分析

2.1 单重 PCR 引物的特异性检测

使用上述单重 PCR 反应体系验证 Z03F1/Z03R1、Z14F2/Z14R2的特异性,XSBZ03 引物 Z03F1/Z03R1 特异性验证结果如图 1,仅有 XSBZ03 扩增出了 123 bp 的预期产物。XSBZ14 引物 Z14F2/Z14R2 特异性验证结果如图 2,仅有 XSBZ14 扩增出了 244 bp 的预期产物。

2.2 双重 PCR 方法的建立

设计不同的退火温度、引物量、循环次数, 对双重 PCR 反应条件进行优化,综合考虑检测时 间、非特异性条带和引物二聚体、检测成本,经 过筛选,最佳反应体系: 2 × Multiplex Buffer 25 μ L; Multiplex DNA Polymerase 1 μ L; Z03F1/Z03R1 1 μ L (10 μ mol/L); Z14F1/Z14R1 1.6 μ L (10 μ mol/L); 模板 3 μ L; ddH₂O 添加至 50 μ L。最佳反应程

图 1. 引物 Z03F1/Z03R1 特异性检测结果

Figure 1. Specificity of PCR with specific primers Z03F1/Z03R1 for detection of coral pathogenic strain XSBZ03. M: Marker DL500; lane 1–62: the strains of 1 to 62 can be known in Table 1; lane 63: Negative control.

Figure 2. Specificity of PCR with specific primers Z14F1/Z14R1 for detection of coral pathogenic strain XSBZ14. M: Marker DL500; lane 1–62: the strains of 1 to 62 can be known in Table 1; lane 63: Negative control.

序: 94 °C 5 min; 94 °C 30 s, 60 °C 30 s, 72 °C 60 s, 36 个循环; 72 °C 5 min。利用优化的双 重 PCR 体系对目标菌株进行扩增可特异性扩增 出目的条带,且与预期扩增基因片段大小一致 (图 3)。

图 3. 双重 PCR 方法的建立

Figure 3. Development of duplex PCR assay. M: Marker DL500; lane 1: Products of duplex PCR; lane 2: XSBZ03; lane 3: XSBZ14; lane 4: Negative control.

2.3 双重 PCR 的特异性检测

结果显示阳性菌株 XSBZ03 和 XSBZ14 均 扩增出单一目的条带,连接转化后测序结果显 示为目标序列。而阴性菌株均未扩增出目的 片段(图 4),表明双重 PCR 方法具有较好的特 异性。

2.4 双重 PCR 敏感性检测

分别以稀释的阳性菌株基因组 DNA 为模板 进行双重 PCR 扩增,结果显示该方法对 XSBZ03 基因组 DNA 检测限为 1.7 pg/µL,对 XSBZ14 基 因组 DNA 检测限为 2.0 pg/µL (图 5)。

2.5 海水样品检测

于海水样品中分别添加 XSBZ03 和 XSBZ14 以制备模拟样品。经平板计数, XSBZ03 和 XSBZ14 初始浓度分别为 6×10⁸ CFU/mL、8×10⁸ CFU/mL, 然后分别进行 10 倍梯度稀释,再以不同稀释度 作为模板进行双重 PCR。凝胶电泳结果显示, 在模拟海水样品中,该方法对 XSBZ03 检测限为

6×10³ CFU/mL, 对 XSBZ14 检测限为 8×10³ CFU/mL (图 6)。

图 4. 双重 PCR 特异性

Figure 4. Specificity of duplex PCR assay. M: Marker DL500; lane 1–62: the strains of 1 to 62 can be known in Table 1.

图 5. 双重 PCR 敏感性试验

Figure 5. Sensitivity of duplex PCR assay. M: Marker DL500; lane 1–8: 1 to 8 represent the mixed genomic DNA concentration of XSBZ03 and XSBZ14 (The order of XSBZ03 genomic DNA is 1.7 ng/ μ L, 170 pg/ μ L, 17 pg/ μ L, 1.7 pg/ μ L, 170 fg/ μ L, 17 fg/ μ L, 1.7 fg/ μ L, 170 ag/ μ L. The order of XSBZ14 genomic DNA concentration is 2 ng/ μ L, 200 pg/ μ L, 20 pg/ μ L, 2 pg/ μ L, 200 fg/ μ L, 2 fg/ μ L, 2 fg/ μ L, 200 ag/ μ L); lane 9: Negative control.

图 6. 双重 PCR 对海水样品的检测极限

Figure 6. The detection limit of duplex PCR assay from sea water. M: Marker DL500; lane 1–8: 1 to 8 represent the mixed bacterial concentration of XSBZ03 bacterial concentration is 6×10^7 , 6×10^6 , 6×10^5 , 6×10^4 , 6×10^3 , 6×10^2 , 6×10^1 , 6×10^0 CFU/mL. The order of XSBZ14 bacterial concentration is 8×10^7 , 8×10^6 , 8×10^5 , 8×10^4 , 8×10^3 , 8×10^2 , 8×10^1 , 8×10^0 CFU/mL); lane 9: Negative control.

3 讨论和结论

珊瑚白化对全球珊瑚礁的健康产生严重威胁,严重影响了珊瑚礁生态系统的平衡。其中,由 细菌性病原引发的白色综合症(White Syndrome, WT)等疾病的大面积流行已成为导致全球珊瑚白 化的主要原因之一^[18-20]。溶藻弧菌 XSBZ03 和 XSBZ14 作为新发现的珊瑚病原,其感染的宿主范 围、流行病学和诊断技术的研究十分有限,因此 建立这两株菌的快速检测方法,对于该疾病的诊 断以及预防珊瑚白化具有重要意义。

传统的 PCR 检测方法其设计引物的靶序列多 是具有种间特异性的基因片段^[10,13-15],该方法适 用于检测遗传型稳定的物种。而溶藻弧菌存在多 种不同遗传型,不同遗传型溶藻弧菌菌株间毒力差 异较大^[20-22],菌株 XSBZ03 和 XSBZ14 可使扁枝滨 珊瑚白化的能力是其他无毒菌株所不具备的^[17]。

本研究利用生物信息学技术结合 NCBI 数据 库对珊瑚病原菌株 XSBZ03 和 XSBZ14 的全基因组 序列进行比较分析,各筛选出一段具有较高种间及 种内特异的靶序列,根据靶序列设计合适引物,对 设计的引物进行进一步的筛选组合以便适用于双 重 PCR,从而利用该方法可同时检测和鉴定珊瑚病 原菌株 XSBZ03 和 XSBZ14。该方法可特异识别菌株 XSBZ03 和 XSBZ14,对 XSBZ03 和 XSBZ14 基因组 DNA 的检测极限分别为 1.7 pg/µL 和 2.0 pg/µL。在 海水样品模拟检测中,该方法对 XSBZ03 和 XSBZ14 的检测极限分别为 6×10³ CFU/mL 和 8×10³ CFU/mL。

本研究建立的双重 PCR 方法可检测菌株 XSBZ03 和 XSBZ14, 并区分常见的海洋菌株, 具 有快速简便、特异性强、敏感性高等优点, 可用 于 XSBZ03 和 XSBZ14 特异性快速检测及其分子

参考文献

 Chen TR, Yu KF, Shi Q, Li S, Price GJ, Wang R, Zhao MX, Chen TG, Zhao JX. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event. *Chinese Science Bulletin*, 2009, 54(6): 812-820.
 陈天然,余克服,施祺,李淑, Price GJ, 王嵘, 赵美霞, 陈 皓田, 赵建东, 士亚湾石珊瑚群英近, 25 年的恋化及其对

特固, 赵建新. 大亚湾石珊瑚群落近 25 年的变化及其对 2008 年极端低温事件的响应. 科学通报, 2009, 54(6): 812-820.

- [2] Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. *Ecological Economics*, 1999, 29(2): 215–233.
- [3] Wang LR, Zhao HT. The general characteristics of the coral reef ecosystem. *Chinese Journal of Ecology*, 2001, 20(6): 41-45. (in Chinese)
 王丽荣,赵焕庭. 珊瑚礁生态系的一般特点. 生态学杂志, 2001, 20(6): 41-45.
- [4] Glynn PW. Coral reef bleaching: ecological perspectives. *Coral Reefs*, 1993, 12(1): 1–17.
- [5] Loya Y. The coral reefs of Eilat-past, present and future: three decades of coral community structure studies//Rosenberg E, Loya Y. Coral Health and Disease. Berlin: Springer, 2004: 1–34.
- [6] Savini A, Vertino A, Marchese F, Beuck L, Freiwald A. Mapping cold-water coral habitats at different scales within the northern Ionian sea (central mediterranean): an assessment of coral coverage and associated vulnerability. *PLoS One*, 2014, 9(1): e87108.
- [7] Schleyer MH, Kruger A, Celliers L. Long-term community changes on a high-latitude coral reef in the Greater St Lucia Wetland Park, South Africa. *Marine Pollution Bulletin*, 2008, 56(3): 493–502.
- [8] Munn CB. The role of vibrios in diseases of corals. *Microbiology Spectrum*, 2015, 3(4).
- [9] Li S, Yu KF. Recent development in coral reef bleaching research. *Acta Ecologica Sinica*, 2007, 27(5): 2059–2069. (in Chinese)

李淑,余克服.珊瑚礁白化研究进展.生态学报,2007,27(5):2059-2069.

- [10] Yang YY, Chen C, Luo P, Ding XQ, Xie M. Detection of Vibrio shilonii by using Loop-mediated isothermal amplification (LAMP). Microbiology China, 2018, 45(9): 1871–1880. (in Chinese)
 杨艺滢, 陈偿, 罗鹏, 丁雄祺, 谢媚. 环介导等温扩增技术 快速检测施罗氏弧菌(Vibrio shilonii). 微生物学通报, 2018, 45(9): 1871–1880.
- [11] Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR. Increased seawater temperature increases the abundance and alters the structure of natural *Vibrio* populations associated with the coral *Pocillopora damicornis. Frontiers in Microbiology*, 2015, 6: 432.
- [12] Willis BL, Page CA, Dinsdale EA. Coral disease on the great barrier reef//Rosenberg E, Loya Y. Coral Health and Disease. Berlin: Springer, 2004: 69–104.
- [13] Nozawa Y, Tokeshi M, Nojima S. Reproduction and recruitment of scleractinian corals in a high-latitude coral community, Amakusa, southwestern Japan. *Marine Biology*, 2006, 149(5): 1047–1058.
- [14] Pollock FJ, Morris PJ, Willis BL, Bourne DG. Detection and quantification of the coral pathogen *Vibrio coralliilyticus* by real-time PCR with TaqMan fluorescent probes. *Applied and Environmental Microbiology*, 2010, 76(15): 5282–5286.
- [15] Wilson B, Muirhead A, Bazanella M, Huete-Stauffer C, Vezzulli L, Bourne DG. An improved detection and quantification method for the coral pathogen *Vibrio*

coralliilyticus. PLoS One, 2013, 8(12): e81800.

- [16] Li HY, Zhang X, Long H, Hu CQ, Zhou YC, Wang SF, Ke SW, Xie ZY. Vibrio alginolyticus 16S-23S intergenic spacer region analysis, and PCR assay for identification of coral pathogenic strain XSBZ03. Diseases of Aquatic Organisms, 2018, 129(1): 71–83.
- [17] Xie ZY, Ke SW, Hu CQ, Zhu ZX, Wang SF, Zhou YC. First characterization of bacterial pathogen, *Vibrio alginolyticus*, for *Porites andrewsi* White syndrome in the South China Sea. *PLoS One*, 2013, 8(9): e75425.
- [18] Arboleda MDM, Reichardt WT. Vibrio sp. causing Porites ulcerative white spot disease. Diseases of Aquatic Organisms, 2010, 90(2): 93–104.
- [19] Ben-Haim Y, Rosenberg E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Marine Biology, 2002, 141(1): 47–55.
- [20] Green E, Bruckner AW. The significance of coral disease epizootiology for coral reef conservation. *Biological Conservation*, 2000, 96(3): 347–361.
- [21] George MR, John KR, Iyappan T, Jeyaseelan MJP. Genetic heterogeneity among *Vibrio alginolyticus* isolated from shrimp farms by PCR fingerprinting. *Letters in Applied Microbiology*, 2005, 40(5): 369–372.
- [22] Ren CH, Hu CQ, Luo P, Chen C, Jiang X, Wang QB. Genotyping of Vibrio alginolyticus isolates from Daya Bay by infrequent-restriction-site PCR and pulsed-field gel electrophoresis. Molecular and Cellular Probes, 2008, 22(4): 267–271.

Duplex PCR assay for detection of coral pathogenic strains XSBZ03 and XSBZ14

Siyue Yang^{1,3}, Yanan Fu^{1,3}, Hao Long³, Xiang Zhang^{1,3}, Zhenyu Xie^{1,2,3*}

¹ College of Marine Science, Hainan University, Haikou 570228, Hainan Province, China

² Key Laboratory of Tropical Aquatic Biotechnology of Hainan Province, Haikou 570228, Hainan Province, China

³ State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, Hainan Province, China

Abstract: [Objective] To establish a duplex PCR assay for detection of the strains XSBZ03 and XSBZ14. **[Methods]** Strain-specific primers were designed according to the target sequence of XSBZ03 and XSBZ14. Subsequently, duplex PCR assay based on the primers was successfully established. **[Results]** The duplex PCR assay could detect accurately strains XSBZ03 and XSBZ14. The detection limit for XSBZ03 and XSBZ14 genomic DNA concentration was 1.7 pg/µL and 2.0 pg/µL. In artificial seawater samples, the detection limit for XSBZ03 and XSBZ14 strain concentration was 6×10^3 CFU/mL and 8×10^3 CFU/mL, respectively. **[Conclusion]** This assay provides a reliable method for the rapid diagnosis of *Porites andrewsi* White Syndrome (PAWS) and the Specific Pathogen Free (SPF) coral transplantation caused by these two pathogens.

Keywords: coral pathogen, duplex PCR, diagnosis

(本文责编:李磊)

*Corresponding author. Tel: +86-898-66256212; E-mail: xiezyscuta@163.com

Supported by the National Natural Science Foundation of China (41466002, 31660744) and by the Marine Economic and Innovative Demonstration City Project of State Oceanic Administration (HHCL201802, HHCL201813)

Received: 27 August 2018; Revised: 7 January 2019; Published online: 19 February 2019