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Abstract: Ralstonia solanacearum causes lethal wilting disease in many economic plants, threatening food security 
in tropical and subtropical agriculture. It injects type III effectors (T3Es) into the host cells via the type III secretion 
system. T3Es act as molecular double agents that are involved in either pathogenicity in the susceptible host plants 
or induction of hypersensitive response in the resistant host plants. A notable feature in this T3E repertoire is the 
existence of several multigenic families and their various internal repeats. T3Es from multigenic family of R. 
solanacearum contribute differently to pathogenicity towards the host plants and localize on the plant cell plasma 
membrane or nucleus. Previous researches demonstrate that the multigenic effectors jointly contribute to the plant 
disease development but are barely activated individually. However, the pathogenicity mechanism on the most 
multigenic effectors remains unclear. This review summarizes the recent achievements on elucidating the function 
of T3Es from multigenic family (GALA, HLK, SKWP, AWR and PopP) in R. solanacearum. 
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In a recent survey, Ralstonia solanacearum has 
been ranked the top two most important bacterial 
plant pathogen, following the first one Pseudomonas 
syringae[1]. This pathogen threatens the food safety 
in tropical and subtropical agriculture, especially in 
China, Bolivia, Bangladesh, Uganda and a number 
of other countries. R. solanacearum is a 
Gram-negative β-proteobacterium pathogenic to 
plants and responsible for the development of 
bacterial wilt disease on more than 200 plant species 

from 50 families, including economical crops such 
as eggplant, tomato, tobacco and banana, etc[2–3]. 
This pathogen infects the host plants by entering 
through the wounds or natural openings on the plant 
surface. Normally it first attaches to the host root, 
finds nutrients, multiplies and accumulates quickly, 
eventually migrates into the plant tissues and 
penetrates the xylem with the production of 
exopolysaccharides (EPS) which block xylem 
vassels, the water traffic routes of the plant[4]. 
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R. solanacearum infects plants by a type III 
secretion system (T3SS) to cause symptoms on their 
respective hosts[5]. This T3SS is a syringe needle-like 
structure with double-layer membrane rings and a 
protruding filament which delivers the repertory of 
bacterial proteins into the host cells. These bacterial 
proteins, termed as Type III effectors (T3Es), either 
manipulate the host defense signaling pathways 
and/or promote the disease development[6–7]. Studies 
have revealed that T3Es could betray the bacterium to 
the plant surveillance system. Some effectors could 
be recognized by a cognate resistance protein (R 
protein), thereby triggering the host defenses and 
resulting in a rapid programmed cell death (PCD). 
This intense host defense response is known as the 
hypersensitive response (HR)[8–10].  

Studies over the last decade have identified 
more than 70 T3Es in R. solanacearum strains but 
only a few T3Es have been biochemically 
characterized. Some effectors are from the 
multigenic family with overlapping properties and 
may also combine with each other to orchestrate the 
specific responses in the host cells[11]. An array of 
effectors which can elicit plant resistance system are 
identified as the avirulence (Avr) proteins. These 
Avr proteins could be recognized by plant resistance 
(R) proteins, and then trigger the plant defense 
immunity system, such as popP1 and popP2. Most 
effectors from multigenic family synergistically 
contribute to the plant disease development[12]. 

The authors have been focused on studying 
T3Es from the multigenic family for many years. In 
this review, our current understandings that how 
mutants lacking of single or multiple effector genes 
affect disease development and plant immunity 
system are summarized. 

1  Generals of T3Es in R. 
solanacearum 
1.1  Identification methods of T3Es 

Generally, T3Es have been identified through 

either consensus sequence screening in upstream 
promoters, like PIP box described in X. camperstris 
or transcriptomic studies by HrpB-deficient 
strains[13]. Most effector candidates have been 
identified by translocation analysis with a 
calmodulin-dependent adenylate cyclase (CyaA) 
reporter in Japanese R. solanacearum strain 
RS1000[14–15]. So far, more than 70 effectors of R. 
solanacearum strains, which belong to 57 families 
including 32 core effectors, have been found. 
1.2  Structure feature of T3Es 

Genomics is a powerful tool and it helps to 
complete the identification of motifs and the 
structural features of T3Es in R. solanacearum strain 
OE1-1. The T3Es exhibit the distinguished protein 
structures carrying various internal repeats which 
can be suggestive of effector function[16]. As shown 
in Table 1, these effectors are classified into several 
families based on their related sequences. The 
recognized multigenic families till now include 
GALA (seven members), AWR (five), PopP (two), 
SKWP (six), and HLK (three).  

GALA family possesses a group of seven genes 
that are homologies with plant-specific leucine-rich 
repeats (LRR). Members of this family contain a 
conserved GAxALA sequence in their LRR and an 
F-box domain[17]. 

Another multigenic family called AWR 
contains the genes of RSc2139, RSp0099, RSp0846, 
RSp0847, and RSp1024 for the alanine-tryptophan- 
arginine tryad and a highly conserved region has 
been found in the primary sequences of the genes in 
this family.  

The genes (RSc3401, RSp1374, RSp0930, 
RSc1839, RSp0296, RSc2130) in SKWP family 
contain 12–18 tandem repeats of a novel 42aa motif 
and certain designated SKWP repeats which are 
related to the heat/armadillo repeats from 
eukaryotes, a type of α-helices structure[18].  

HLK (RSc1386, RSp0215, RSp0160) effectors 
are not only found in the several sequenced R. 
solanacearum strains, but also are homologues to  
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Table 1.  Some T3Es from multigenic family of R. solanacearum and their functions (modified according to Deslandes[19]) 
Genes of T3Es Family Structure feature Function Reference
RSc1386(hlk1) 
RSp0215(hlk2) 
RSp0160(hlk3) 

HLK HLK2 contains 6 tandem 
repeats of a 9-nucleotide 
element 

Collectively contribute to pathogenicity (tomato) [20] 

RSc0826(popP1) 
RSc0868(popP2) 

YopJ 
(popP) 

Serine/Threonine 
acetyltransferase domain 

PopP1, HR-eliciting factor on some Petunia genotypes 
and tobacco species 
PopP2, avirulence factor on Arabidopsis genotypes 
carrying the RRS1-R resistance gene; contribution to 
bacterial fitness on eggplant 

[22–23] 
 
[26–30] 

RSp0914(gala1) 
RSp0672(gala2) 
RSp0028(gala3) 
RSc1800(gala4) 
RSc1801(gala5) 
RSc1356(gala6) 
RSc1357(gala7) 

GALA Leucine Rich Repeats—F 
box domain 

Components of ubiqutin-ligase complexes in host cells; 
GALA2,3,6,7 collectively contribute to pathogenicity 
(tomato and Arabidopsis); 
GALA7 required for pathogenicity on M. truncatula and 
for invasion of its root cortical cells; 
GALA4 suppresses callose deposition (Arabidopsis) 
GALA2,7 interacted with chloroplastic proteins (N. 
tabacum and N. benthamiana) 

[17] 
[33–34] 
 
[35] 
 
[35] 
[36] 

RSc2139(awr1) 
RSp0099(awr2) 
RSp0846(awr3) 
RSp0847(awr4) 
RSp1024(awr5) 

AWR Alanine-tryptophan-arginine 
tryad 

AWR2 contributes to pathogenicity (tomato) and has 
necrogenic activity on tobacco 
AWR5 acts as a HR-like eliciting factor on some 
tobacco species 

[37–38] 

RSc3401(skwp1) 
RSp1374(skwp2) 
RSp0930(skwp3) 
RSc1839(skwp4) 
RSp0296(skwp5) 
RSc2130(skwp6) 

SKWP Heat/armadillo repeats from 
eukaryotes, a type of 
α-helices structure 

Contributes to bacterial proliferation in eggplant tissues [39] 

 
those of another plant pathogen genus Xanthomonas. 
HLK2 genes contain 6 tandem repeats of a 
9-nucleotide element which are presumably involved 
in protein-protein interaction or in DNA/RNA 
binding[20]. So far, there are still a large number of 
T3Es having long disordered regions of which their 
secondary structure and functional clues have not yet 
been predicted. 

2  Function of T3Es as avirulence 
factors in plant-R. solanacearum 
interaction  
2.1  Avirulence of T3Es and effector-triggered 
immunity (ETI) 

Some T3Es act as avirulence factors or trigger 

defense responses in plants. They possess 
corresponding R genes and recognize individual 
effector proteins. This interaction is now termed as 
effector-triggered immunity (ETI), which leads to a 
strong disease resistance response that is often 
associated with HR. Loss or inactivation of an 
avirulence gene often extends the host range of a 
pathogen to induce plants previously found to be 
resistant. For R. solanacearum, only Gala4 and 
PopS have been described as being able to suppress 
the plants defense responses[19]. Awr5 acts as a 
HR-like eliciting factor on some tobacco species. 
AvrA and Rip36 are HR-eliciting factor on tobacco 
species and eggplant S. torvum respectively. PopP 
members, from YopJ family of R. solanacearum, are 
found to encode avirulence determinants[21]. 
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2.2  PopP1 and PopP2 functional analysis 
PopP1 protein controls the host specificity 

towards some petunia lines but is not essential for 
pathogenicity on tomato or Arabidopsis. 
Furthermore, popP1 is a canonical avirulence gene 
in controlling host specificity at the plant species 
level. It acts as an avirulence gene toward Petunia 
St40 line but not toward sensitive Petunia Tr66 
line[22]. In R. solanacearum strain GMI1000, avrA 
and popP1 are both responsible in restricting the 
host range on different Nicotiana species, although 
they differ in their respective contribution to the HR 
elicitation[23]. PopP1 is the major avirulence factor 
on N. glutinosa, whereas avrA is the major 
determinant on N. tabacum and N. benthamiana. 
Most of the Japanese virulent strains do not contain 
popP1, although a previous report mentions that 
popP1 is present in most Asiatic and African isolates 
(phylotypes I and III)[24]. In our study, when popP1 
of HR-eliciting strain 8107 was transferred into the 
virulent strain OE1-1, the transconjugant strain had 
significantly reduced virulence and showed a 
HR-like phenotype[25]. 

PopP2 is pinpointed as the GMI1000 avirulence 
protein recognized by the Arabidopsis thaliana 
resistant-to-Ralstonia solanacearum 1-R (RRS1-R) 
resistance protein and targets RD19 which is an 
Arabidopsis lytic vacuole-targeted cysteine 
protease[19, 26]. RRS1 is strongly suspected to act as a 
negative transcriptional regulator of disease 
resistance signaling through its WRKY DNA 
binding -domain[27–29]. PopP2-mediated stabilization 
of RRS1 might reflect a bacterial strategy aimed at 
the down-regulation of plant defense-related genes. 
Further study shows that the C-terminal extension of 
RRS1-R is essential for popP2-dependent defense 
activation and RRS1-RSLH1 auto-immunity[30]. 
PopP2 recognition triggers a conformational switch 
of the immune receptor that initiates resistance 
signaling. 

Generally, the plasma membrane and the plant 
nucleus are major sites of action for the 

phytopathogen effectors[31]. PopP family members 
might not be functionally equivalent because of their 
different subcellular localization. PopP2 is addressed 
to the plant nucleus because of its predicted nuclear 
localization signal[32]. PopP3 has a potential 
myristoylation site at the N-terminus, suggesting that 
this protein could be addressed to the plant cell 
membrane[32]. PopP1 is predicted to remain in the 
cytoplasm after translocation into the plant cell.  

So far, popP1 and popP2 have been well 
characterized but the study on popP3 is scarce due to 
its limited distribution. 

3  Function of T3Es as virulence 
factors in pathogenicity or in 
suppression of plant immune 
responses 

Several T3Es have been proved to be involved 
in R. solanacearum disease development and 
identified as virulence factors. These T3Es are 
classified into several families based on their related 
sequence features. So far, there are four T3Es 
families have been well characterized to contribute 
to pathogenicity, such as GALA, AWR, SKWP and 
HLK. The virulence function of these four T3Es 
families has been well summarized in this review. 
3.1  GALA family collectively contributes to 
pathogenicity 

Effectors from GALA family possess an F-box 
domain and Leu-rich repeat (LRR) which is 
component of E3-ubiquitin ligase complexes in 
eukaryotes and interacts with Arabidopsis ASK 
proteins (Table 1). GALA effectors collectively 
contribute to pathogenicity but are individually 
dispensable on Arabidopsis and tomato plants[33–34]. 
GALA7 is required for pathogenicity on M. 
truncatula and for invasion of its root cortical 
cells[35]. Our study indicated that GALA effectors, 
especially for GALA2 and GALA7, interacted with 
chloroplastic proteins of N. tabacum and N. 
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benthamiana[36]. It is speculated that SCF-GALA 
complex interacting Skp1 with GALA effectors 
would target the plant chloroplastic proteins for 
ubiquitination and subsequent degradation which 
indicated that GALA effectors might target the 
chloroplastic proteins of the host plants to inhibit 
photosynthesis and impair plant immunity for the 
disease development. 
3.2  AWR family synergistically contributes to 
pathogenicity 

It has been demonstrated that effectors of AWR 
family synergistically contributed to bacterial 
virulence, although AWR2 is the major contributor 
to virulence (Table 1). Additionally, AWR4 and 
AWR5 restrict the bacterial growth in Arabidopsis, 
and the later one shows characteristics of a typical 
hypersensitive response on N. benthamiana[37]. 
AWR can specify either virulence or avirulence in 
the interaction of R. solanacearum with its plant 
hosts. AWR2 is the major contributor to virulence 
on tomato and eggplant while AWR5 exhibited a 
typical HR phenotype on tobacco. Furthermore, 
AWR5 has been proved to be an inhibitor of the 
TOR signaling pathway[38]. Solé shows that all AWR 
effectors are evenly localized in the cytoplasm, with 
some association to membranes[37]. 

3.3  SKWP function hypothesis  
SKWP family distributes in all sequenced R. 

solanacearum strains and also appears in other 
bacterial pathogens. We used Competitive Index 
(CI) assay to evaluate the contribution of single 
SKWP effectors to bacterial fitness towards the host 
plants[39–40]. The SKWP effectors were important for 
bacterial proliferation in eggplant tissues while 
SKWP4 appeared to be most important (Table 1). 
Like the leucine-rich repeat and an F-box domain of 
GALA family, it is predicted that the SKWP repeats 
somehow participate in the interaction between 
bacteria and plant, but the mechanism and function 
remains unknown and requires further experiments 
to verify.  

3.4  HLK family jointly contributes to pathogenicity 
The inactivation of the individual T3E genes 

has no detectable impact on virulence on the 
susceptible host, except in two cases (awr2 and 
gala7) for which the corresponding mutants showed 
slightly delayed symptom development on plant. 
Our study showed that single HLK mutants did not 
affect virulence on tomato but the triple HLK mutant 
did[20]. The HLK double deletion mutants caused the 
wilting death on tomato but the one bearing only 
hlk2 exhibited more aggressive than two others 
indicating that hlk2 played an important role in 
bacterial fitness in planta. The existence of 6 tandem 
repeats of a 9-nucleotide element of HLK2 might be 
vital to protein-protein interaction or in DNA/RNA 
binding.  

In addition to a functional overlap among 
effectors, it is also likely that such functional groups 
of T3Es are required to establish host susceptibility 
by suppressing immune responses that may vary 
from one plant to another[41]. GALA effectors 
contribute to pathogenicity much more on 
Arabidopsis than on tomato. AWR effectors are 
capable of restricting the bacterial progression on 
both eggplant and tomato but not on Arabidopsis. 
HLK effectors were jointly important for the 
virulence of R. solanacearum on tomato, and each 
HLK effectors compensated each other.  

4  Perspectives 
Current studies have proven that T3Es of 

multigenic family collectively contribute to the 
bacterial virulence development and individually 
suppress the plant immunity defense. This review 
summarizes the functions of the known T3Es from 
multigenic families to date. However, the most 
studies focus on the disease development, but the 
mechanism and signaling cascade of these T3Es 
remain unknown[42–43]. More investigations of 
biochemical function of multigenic families (SKWP, 
HLK and AWR) are required in future. Consecutive 
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approaches including target protein screening, 
subcellular localization, effector expression and 
translocation during infection, and enzymatic 
activity assay are necessary for us to better 
understand the T3Es functions in the interaction 
between R. solanacearum OE1-1 and its host plants. 
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青枯劳尔氏菌多基因家族 III 型效应蛋白在植物病害发展及防御

系统中的作用 
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摘要：青枯劳尔氏菌是导致多种重要经济作物毁灭性枯萎(bacterial wilt)的一种土传病害，严重危害热带

和亚热带地区食品安全。该细菌通过 III 型分泌系统(T3SS)向寄主细胞注射大量效应蛋白(T3Es)。效应

蛋白是把双刃剑，既可诱导植物感病，又能激活植物防御系统。具有特殊重复结构的效应蛋白被归类成

多基因家族，各家族成员协同致病，但其分子机制尚不清楚。本文围绕近年来有关多基因家族效应蛋白

结构、功能和致病性等方面最新进展进行综述，为青枯菌致病机理和病害防治提供新思路。 
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