微生物学报 Acta Microbiologica Sinica 2020, 60(3): 525-532 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20190225

Research Article

球孢白僵菌种内比较线粒体基因组学分析

张永杰*,侯嘉玮,张姝*

山西大学生命科学学院,山西太原 030006

摘要:【目的】明确球孢白僵菌种内线粒体基因组的分化程度。【方法】从 GenBank 下载已知的球孢白 僵菌 6 个菌株线粒体基因组序列,详细分析基因组的组成结构,比较外显子区、内含子区和基因间区的 碱基变异情况,分析菌株间的系统发育关系。【结果】球孢白僵菌不同菌株的线粒体基因组大小为 28.8-32.3 kb,都有 14 个常见的核心蛋白编码基因、2 个 rRNA 基因和 25 个 tRNA 基因,具有很强的共 线性关系。但是,不同菌株含有的线粒体内含子数目存在差异(2-5 个/菌株),在 cox1、cox2 和 nad1 基 因中表现出内含子插入/缺失多态性,这是导致线粒体基因组大小变化的主要因素。对外显子、内含子 和基因间区的碱基变异情况进行分析,发现内含子和基因间区相对变异较大,而外显子区相对变异较小。 系统发育分析发现,这些球孢白僵菌菌株以很高的支持度聚在一起,具有相同内含子分布规律的菌株也 具有较近的聚类关系。【结论】本研究首次报道球孢白僵菌因内含子数目不同、插入缺失突变和单核苷 酸变异等在线粒体基因组上表现出较大程度的遗传分化,为认识真菌种内线粒体基因组分化提供了新的 证据。

关键词: 球孢白僵菌, 线粒体基因组, 遗传分化, 内含子, 系统发育

线粒体 DNA 通常具有多拷贝、基因组较小、 单亲遗传、较高的碱基变异速率等特性,常被用 作真核生物生态学、群体遗传学等研究的分子标 记^[1]。真菌属于低等真核生物,在细胞核和线粒体 中都含有遗传物质。近年来,随着测序成本的降 低,有越来越多真菌的线粒体基因组被测序。真 菌线粒体基因组的大小大体上介于动物和植物之间,但其线粒体基因组大小的变化倍数远超过动物和植物^[2]。在真菌已知的线粒体基因组中,最小的只有 12.1 kb^[3],最大的达到 235.8 kb^[4],相差近20 倍。除大小差异外,不同真菌的线粒体基因组还在基因排列顺序、遗传密码、内含子数目和插

基金项目: 国家自然科学基金(31872162); 山西省回国留学人员科研资助(2017-015) *通信作者。E-mail: 张永杰, zhangyj2008@sxu.edu.cn; 张姝, zhangshu@sxu.edu.cn 收稿日期: 2019-05-21; 修回日期: 2019-08-12; 网络出版日期: 2019-12-04

入位点等方面存在差异^[5-6]。在种内水平,真菌线 粒体基因组也可能存在较大变化。在开展过种内 比较线粒体基因组学分析的真菌中,多数真菌因 内含子数目不同引起种内线粒体基因组大小的差 异^[7-8],而少数真菌未在种内发现内含子数目的 变化^[9]。

球孢白僵菌是隶属虫草科的一种全球广布的 昆虫病原真菌,拥有广泛的寄主范围(可侵染 700多种昆虫和10余种蜱螨)^[10],易人工大量生产, 已在许多国家作为真菌杀虫剂广泛用于害虫生物 防治^[11]。该菌还能以内生菌的形式存在于多种植 物中,可能在植物抵御病虫害中发挥作用^[12-13]。 中药中的白僵蚕即为球孢白僵菌感染家蚕幼虫而 形成的僵虫。将球孢白僵菌开发成真菌杀虫剂时, 以及将开发的真菌杀虫剂施用于田间后分析持久 性及进行溯源分析时,都需要对菌株的遗传特性 有深入的认识,从而有必要开展球孢白僵菌遗传 多样性的分析。目前已有大量有关该菌遗传多样 性分析的研究工作,主要使用 RAPD、ISSR、AFLP 等遗传标记。这些研究中的球孢白僵菌种群或大 或小(即使用的菌株数量或多或少),但大都表明, 球孢白僵菌表现出丰富的遗传多样性, 且与地理 或寄主的相关性较差[14-16]。

利用 RFLP 技术对球孢白僵菌线粒体 DNA 分 析的结果显示,该菌在线粒体 DNA 上也表现出较 大的遗传分化^[17-18]。截止目前,在 GenBank 数据 库中已有 6 个球孢白僵菌菌株的线粒体基因组数 据,但是,该菌种内线粒体基因组的分化程度尚 不清楚。此前,通过对隶属虫草科的蛹虫草和蝉 花进行种内比较线粒体基因组分析,发现这两种 真菌中都因内含子数目不同引起线粒体基因组的 分化^[8,19]。我们推测球孢白僵菌也可能存在内含子 插入缺失多态性。为了验证该假设,本文下载了 球孢白僵菌已知的6个菌株的线粒体基因组序列, 详细分析了基因组的组成结构,比较了外显子区、 内含子区和基因间区的碱基变异情况,并分析了 这些菌株的系统发育关系,为认识真菌种内线粒

1 材料和方法

1.1 菌株信息

目前,GenBank 数据库中保存了球孢白僵菌 6个菌株的线粒体基因组信息(表 1)。这些菌株来 源于多个不同的地点和寄主昆虫,由多家单位提 交线粒体基因组序列。

表 1.	球孢白僵菌菌株及其线粒体基因组信息

					0	
Accession No.	Strain	Host	Locality	Size/bp	Institute	Ref.
NC_010652	Bb13	Dendrolimus punctatus	Anhui, China	29961	Anhui Agricultural University	[20]
EU100742	Bb147	Ostrinia nubilalis	France	32263	University of Athens	[21]
ANFO01001745	D1-5	Ostrinia furnacalis	Jilin, China	32315	Jilin Academy of Agricultural Sciences	N/A
KT201148	K4	N/A	N/A	28816	University of New Zealand	N/A
KT201149	e17	N/A	N/A	29944	University of New Zealand	N/A
KU869769	N/A	N/A	N/A	29922	South China Agricultural University	N/A

N/A: not available.

1.2 数据分析

为比较6个球孢白僵菌菌株的线粒体基因组, 将来自不同菌株的同一线粒体基因的序列整理在 一起, 使用 MAFFT (https://mafft.cbrc.jp/alignment/ server/index.html?1801071719)进行序列比对。当 发现 GenBank 数据库中的基因注释结果有误时, 使用 MFannot (http://megasun.bch.umontreal.ca/ cgi-bin/mfannot/mfannotInterface.pl)重新注释,并 辅以必要的人工校对^[22]。蛋白编码基因中的内含 子采用 Zhang & Zhang (2019)推荐的系统命名^[23], rRNA 中的内含子采用 Johansen & Haugen (2001) 推荐的系统命名^[24]。内含子类型使用 RNAweasel (http://megasun.bch.umontreal.ca/cgi-bin/RNAweasel/ RNAweaselInterface.pl)分析。使用 BRIG^[25]对不同 菌株的线粒体基因组进行全序列比对和图形化展 示。使用 DnaSP^[26]统计外显子区、内含子区和基因 间区的碱基变异情况。将14个蛋白编码基因的核苷 酸序列拼接起来, 以蛹虫草和蝉花为外群, 使用 RAxML^[27]基于 GTR+G 模型构建系统发育树。

2 结果和分析

2.1 球孢白僵菌线粒体基因组的组成及大小变化

6 个球孢白僵菌菌株的线粒体基因组大小各

不相同,从 28.8 kb 到 32.3 kb,最大相差 3.5 kb (表 1)。造成不同菌株线粒体基因组大小差异的原 因主要是不同菌株含有的内含子数目不同。每个 菌株含有 2-5 个内含子,内含子平均长度 1367 bp。 在 cob、cox1、cox2、nad1 和 rnl 基因中均有内含 子插入,每个基因最多存在 1 个内含子插入位点, 不同菌株相同插入位点的内含子基本上属于同 一内含子类型(表 2)。6 个菌株共展现出 3 种不同 的内含子分布模式(表 2,图 1)。此外,不同菌株 间还存在一些短的插入缺失突变,这也是造成线 粒体基因组大小差异的原因之一,具体见 2.2 中 的分析。

尽管不同菌株的线粒体基因组大小存在差 异,但是线粒体基因数目与排列顺序却非常保守, 都含有 14 个常见的核心蛋白编码基因(排列顺序 为 nad2、nad3、atp9、cox2、nad4L、nad5、cob、 cox1、nad1、nad4、atp8、atp6、cox3、nad6)、 2 个 rRNA 基因(rnl 和 rns)和 25 个 tRNA 基因 (图 2)。这些 tRNA 基因主要聚集在 rnl 基因的上 游(trnV、I、S1、W、P)和下游(trnT、E、M1、M2、 L1、A、F、K、L2、Q、H、M3),以及 rns 基因 的下游(trnY、D、S2、N)。然而,不同菌株间由于 碱基的变化,在 trnM1/M2 基因间区和 cox1/trnR2

表 2. 不同球孢白僵菌菌株含有的内含子及其类型

				_		
Accession No.	cob	coxl	cox2	nad1	rnl	No. introns
NC_010652	P393 (ID)		P228 (IB)		mL2450 (IA)	3
EU100742	P393 (ID)	P1057 (IB)	P228 (IB)	P636 (I derived, B1)	mL2450 (IA)	5
ANFO01001745	P393 (ID)	P1057 (IB)	P228 (IB)	P636 (IB)	mL2450 (IA)	5
KT201148	P393 (ID)				mL2450 (IA)	2
KT201149	P393 (ID)		P228 (IB)		mL2450 (IA)	3
KU869769	P393 (ID)		P228 (IB)		mL2450 (IA)	3

For protein-coding genes, the number after P represents the intron insertion site (relative to the corresponding genes of *Tolypocladium inflatum*). For *rnl*, the number after mL represents the intron insertion site (relative to the corresponding genes of *Escherichia coli*). Intron types are given in parentheses after insertional sites.

图 1. 不同球孢白僵菌菌株线粒体基因组的比较

Figure 1. Comparison of mitochondrial genomes of different isolates of *B. bassiana*. Each ring represents a strain (represented by accession number), and they are NC_010652, EU100742, ANFO01001745, KT201148, KT201149 and KU869769 from inside to outside. There are intron presence/absence variations in *cox1*, *cox2* and *nad1* among different strains. When drawing the map using BRIG, EU100742 was used as the reference (because it has introns in all 5 intron insertional loci), and all other strains were compared to EU100742 by BLAST.

基因间区存在 ORF 的有无及其长短方面的差异 (图 2)。基于全线粒体基因组序列的比对显示,除 3个内含子位点外,这些菌株间具有非常好的共线 性关系(图 1)。

2.2 球孢白僵菌线粒体基因组的碱基变异

在外显子区,不同菌株间在除 nad4L 外的其 他基因均有碱基变异,在 cox1、nad1、nad2、rnl 和 rns 中还存在碱基的插入/缺失突变(表 3)。在这 些线粒体基因中,cox1、cox3、nad1、nad2 和 nad5 相比其他基因变异要快一些。在多数蛋白编码基 因中,碱基变异引起氨基酸的变化(表 3)。相比外 显子区(平均变异频率 1.16%),内含子区和基因间 区的碱基变异更大(平均变异频率分别为 4.51%和 5.43%),且多数内含子区和基因间区存在碱基的 插入/缺失突变(表 4)。在外显子区,单核苷酸变异 (SNP)多于插入/缺失突变,而在内含子区和基因间 区正好相反。整体来看,6个菌株线粒体基因组的 碱基变异频率是 13.06% (4247/32529,包括插入/ 缺失位点和 SNP 位点),SNP 频率是 1.24% (356/28638,不考虑插入/缺失位点)。

2.3 不同球孢白僵菌菌株间的系统发育关系

利用14个线粒体蛋白编码基因构建系统发育 树,发现球孢白僵菌的6个菌株以100%的支持度 聚在一起,但内部各分支除 NC_010652 和 KU869769以100%支持度聚在一起外,其他分支 的支持度都不是很高(图3)。尽管如此,从图中仍 可看出,具有相同内含子分布规律的菌株具有较 近的亲缘关系。

NC_010652	VISWP rnl TEM orf107 MLAFKLQHM nc	d2 nad3 atp9 cox2 R nad4I nad5 cob C cox1 orf412 R nad1 nad4 atp8 atp6 rns YNSD cox3 G nad6
EU100742		orf387
ANFO0100174	15	orf387
KT201148	orf107	orf387
KT201149	orf106	orf387
KU869769	orf107	orf387

图 2. 不同球孢白僵菌菌株线粒体基因及其排列顺序

Figure 2. Mitochondrial genes and their order in different isolates of *B. bassiana*.

Cana	Exon						Protein				
Gene	Length/bp	Pi	S	Indel	Total	%	Length/aa	Pi	S	Indel	Total
atp6	792	0	7	0	7	0.88	263	0	4	0	4
atp8	147	0	1	0	1	0.68	48	0	0	0	0
atp9	225	0	2	0	2	0.89	74	0	2	0	2
cob	1176	0	5	0	5	0.43	391	0	3	0	3
cox1	1590-1608	2	26	24	52	3.23	529-535	0	8	8	16
cox2	750	0	3	0	3	0.40	249	0	2	0	2
cox3	810	2	7	0	9	1.11	269	0	6	0	6
nad1	1104-1107	1	12	3	16	1.45	367-368	1	6	1	8
nad2	1698-1704	4	12	6	22	1.29	565-567	2	7	2	11
nad3	420	0	1	0	1	0.24	139	0	0	0	0
nad4	1449	1	11	0	12	0.83	482	0	6	0	6
nad4L	270	0	0	0	0	0.00	89	0	0	0	0
nad5	1986	9	22	0	31	1.56	661	3	9	0	12
nad6	639	1	2	0	3	0.47	212	1	0	0	1
rnl	3210-3215	6	8	11	25	0.78					
rns	1563-1567	4	8	6	18	1.15					
Combined	17843-17860	30	128	50	208	1.16	4341-4346	7	53	11	71

表 3. 不同球孢白僵菌菌株在外显子区的碱基和氨基酸变异

Table 3. Variations at exonic regions of each mitochondrial gene among different isolates of B. bassiana

Pi: parsimony informative sites; S: singleton sites; indel, insertion/deletion sites; %: the percentage of total variable sites (Pi, S, and indels).

夜4. 个问球把日僮困困休住内召士区州奉囚问区的侧奉受;

Region in comparison		No. strains	Length/bp	Pi	S	Indel	Total	%
Intronic regions	cobP393	6	1236–1240	5	14	6	25	2.01
	cox1P1057	2	1265	0	0	0	0	0.00
	cox2P228	5	1036-1116	0	13	128	141	12.57
	nad1P636	2	1075-1076	0	5	1	6	0.56
	mL2450	6	1827-1898	3	37	86	126	6.60
	Combined		3113-6565	8	69	221	298	4.51
Intergenic regions	rnl-nad2	6	1922-1953	3	26	64	93	4.74
0 0	nad3-atp9	6	260-302	0	5	43	48	15.89
	atp9-cox2	6	111-116	1	7	9	17	14.41
	cox2-nad4L	6	184	1	0	0	1	0.54
	nad5-cob	6	154	1	1	0	2	1.30
	cob-cox1	6	406-412	0	0	8	8	1.94
	cox1-nad1	6	1861-1937	5	16	93	114	5.85
	nad1-nad4	6	371-386	1	10	22	33	8.42
	nad4-atp8	6	71	0	0	0	0	0.00
	atp8-atp6	6	106-107	1	2	4	7	6.42
	atp6-rns	6	429–442	2	6	13	21	4.75
	rns-cox3	6	494–496	1	2	3	6	1.21
	cox3-nad6	6	169	2	0	0	2	1.18
	nad6-rnl	6	1248-1287	6	25	54	85	6.58
	Combined		7846-7967	24	100	313	437	5.43

Table 4. Variations at intronic and intergenic regions among different isolates of B. bassiana

The so-called "intergenic regions" in this table include possible tRNA genes and free-standing ORFs (see Figure 2). For all tRNA genes, only 2 and 1 SNP sites are present in *trnE* and *trnM1*, respectively, while all other tRNA genes are conserved.

0.005

图 3. 基于线粒体 DNA 序列的不同球孢白僵菌菌株间的系统发育关系

Figure 3. Phylogeny of different isolates of *B. bassiana* based on mitochondrial nucleotide sequences. Nucleotide sequences of 14 protein-coding genes (total length 12889 nt) are used to construct the phylogenetic tree. The dots in the figure represent the presence of introns in corresponding genes (see also Table 2).

3 讨论

真菌线粒体基因组不但在物种间有较大差 异,而且在相同物种的不同菌株间也可能存在差 异。虫草科目前至少有 10 种真菌已知线粒体基因 组,但只有 2 种真菌(蛹虫草和蝉花)开展过种内比 较线粒体基因组学分析^[19]。本研究对球孢白僵菌 开展了种内比较线粒体基因组学研究。在这 3 种 真菌中,都发现了内含子插入/缺失多态性现象。 由于线粒体内含子通常都比较长(如球孢白僵菌 每个内含子平均长度约 1.3 kb),因此导致线粒体 基因组大小较大的变化。球孢白僵菌不同菌株的 线粒体基因组相差可达 3.5 kb,而蛹虫草和蝉花不 同菌株的线粒体基因组相差最大可达约 7 kb^[8,19]。 相信随着研究菌株的增多,在这些真菌中可能发 现更多线粒体基因组大小变化的信息。

通过对球孢白僵菌线粒体基因组不同区域碱 基变异的分析,我们发现内含子区和基因间区的 碱基变异频率大于外显子区。该结论与蛹虫草中 的报道一致^[8]。在球孢白僵菌中,*rnl-nad2*、 *nad3-atp9、atp9-cox2、cox1-nad1、nad1-nad4、 atp8-atp6、atp6-rns、nad6-rnl*这几个基因间区比 其他基因间区具有更大的变异频率(表 4)。这些片段有可能作为今后开展球孢白僵菌遗传多样性分析的分子标记。从全线粒体基因组水平看,球孢白僵菌的 SNP 频率是 1.24%,大于蛹虫草中报道的 0.7%^[8]和蝉花中报道的 0.1%^[19]。

曾有研究分析不同球孢白僵菌菌株在 atp6-rns 和 nad3-atp9 这两个基因间区片段上的变异,发现 二者都比核糖体 DNA ITS 片段的变异大^[21,28]。本研 究的 6 个球孢白僵菌菌株无法从公共数据库中全部 找到 ITS 序列,因此不能进行线粒体 DNA 与 ITS 序列变异的比较。有研究通过比较 5 个球孢白僵菌 菌株,发现其在核基因组上的 SNP 频率(以其中 一个指定的菌株作为参照)为 2.85-16.8 SNPs/kb^[29]。 对于本研究分析的 6 个球孢白僵菌菌株的线粒体 基因组, 外显子区、内含子区和基因间区的平均 SNP 频率分别为 8.8、11.6 和 15.4 SNPs/kb (表 3, 表 4)。这与报道的球孢白僵菌核基因组 SNP 频率 相当。毫无疑问,若要准确比较核基因组和线粒体 基因组的变异频率,使用选定的球孢白僵菌菌株同 时进行这种比较才更具说服力。根据已有的报道, 真菌线粒体 DNA 的进化速率可能比核 DNA 进化 快,也可能比核 DNA 进化慢^[2]。

参 考 文 献

- Galtier N, Nabholz B, Glémin S, Hurst GDD. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. *Molecular Ecology*, 2009, 18(22): 4541–4550.
- [2] Sandor S, Zhang YJ, Xu JP. Fungal mitochondrial genomes and genetic polymorphisms. *Applied Microbiology and Biotechnology*, 2018, 102(22): 9433–9448.
- [3] James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. Shared signatures of parasitism and phylogenomics unite cryptomycota and microsporidia. *Current Biology*, 2013, 23(16): 1548–1553.
- [4] Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, Hostetler J, Pakala SM, Zafar N, Thomas E, Rodriguez-Carres M, Dean R, Vilgalys R, Nierman WC, Cubeta MA. Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen *Rhizoctonia solani* AG-3. *FEMS Microbiology Letters*, 2014, 352(2): 165–173.
- [5] Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldón T. High variability of mitochondrial gene order among fungi. *Genome Biology and Evolution*, 2014, 6(2): 451–465.
- [6] Nie Y, Wang L, Cai Y, Tao W, Zhang YJ, Huang B. Mitochondrial genome of the entomophthoroid fungus *Conidiobolus heterosporus* provides insights into evolution of basal fungi. *Applied Microbiology and Biotechnology*, 2019, 103(9): 1379–1391.
- [7] Xiao SJ, Nguyen DT, Wu BJ, Hao WL. Genetic drift and indel mutation in the evolution of yeast mitochondrial genome size. *Genome Biology and Evolution*, 2017, 9(11): 3088–3099.
- [8] Zhang S, Hao AJ, Zhao YX, Zhang XY, Zhang YJ. Comparative mitochondrial genomics toward exploring molecular markers in the medicinal fungus *Cordyceps militaris*. *Scientific Reports*, 2017, 7: 40219.
- [9] Zhang YJ, Yang XQ, Zhang S, Humber RA, Xu J. Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus *Tolypocladium inflatum*. *Applied Microbiology and Biotechnology*, 2017, 101(23/24): 8517–8531.
- [10] Imoulan A, Hussain M, Kirk PM, El Meziane A, Yao YJ. Entomopathogenic fungus *Beauveria*: Host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. *Journal of Asia-Pacific Entomology*, 2017, 20(4): 1204–1212.
- [11] de Faria MR, Wraight SP. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation

types. Biological Control, 2007, 43(3): 237-256.

- [12] Vidal S, Jaber LR. Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. *Current Science*, 2015, 109(1): 46–54.
- [13] Lefort MC, McKinnon AC, Nelson TL, Glare TR. Natural occurrence of the entomopathogenic fungi *Beauveria bassiana* as a vertically transmitted endophyte of *Pinus radiata* and its effect on above and belowground insect pests. *New Zealand Plant Protection*, 2016, 69: 68–77.
- [14] Serna-Dominguez MG, Andrade-Michel GY, Rosas-Valdez R, Castro-Felix P, Arredondo-Bernal HC, Gallou A. High genetic diversity of the entomopathogenic fungus *Beauveria bassiana* in Colima, Mexico. *Journal of Invertebrate Pathology*, 2019, 163: 67–74.
- [15] Hu XL, He LM, Chen X, Zhang SL, Luan FG, Li ZZ. Genetic diversity and population genetic structure of *Beauveria bassiana* in South China. *Chinese Journal of Biological Control*, 2013, 29(1): 31–41. (in Chinese) 胡晓磊,何玲敏,陈雪,张胜利,栾丰刚,李增智. 中国 南方球孢白僵菌的遗传多样性和种群遗传结构. 中国生 物防治学报, 2013, 29(1): 31–41.
- [16] Garrido-Jurado I, Márquez M, Ortiz-Urquiza A, Santiago-Álvarez C, Iturriaga EA, Quesada-Moraga E, Monte E, Hermosa R. Genetic analyses place most Spanish isolates of *Beauveria bassiana* in a molecular group with word-wide distribution. *BMC Microbiology*, 2011, 11: 84.
- [17] Uribe D, Khachatourians G. Analysis and applications of the molecular typification of the mitochondrial genome of *Beauveria bassiana*. *Revista Colombiana De Entomología*, 2007, 33(2): 89–97.
- [18] Uribe D, Khachatourians GG. Restriction fragment length polymorphism of mitochondrial genome of the entomopathogenic fungus *Beauveria bassiana* reveals high intraspecific variation. *Mycological Research*, 2004, 108(9): 1070–1078.
- [19] Fan WW, Zhang S, Zhang YJ. The complete mitochondrial genome of the Chan-hua fungus *Isaria cicadae*: a tale of intron evolution in Cordycipitaceae. *Environmental Microbiology*, 2019, 21(2): 864–879.
- [20] Xu JZ, Huang B, Qin CS, Li ZZ. Sequence and phylogenetic analysis of *Beauveria bassiana* with mitochondrial genome. *Mycosystema*, 2009, 28(5): 718–723.
- [21] Ghikas DV, Kouvelis VN, Typas MA. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5. 8S-ITS2 of the entomopathogenic fungi *Beauveria bassiana* and *B. brongniartii. BMC Microbiology*, 2010, 10: 174.
- [22] Zhang YJ, Zhang S, Zhang GZ, Liu XZ, Wang CS, Xu JP. Comparison of mitochondrial genomes provides insights

into intron dynamics and evolution in the caterpillar fungus *Cordyceps militaris. Fungal Genetics and Biology*, 2015, 77: 95–107.

- [23] Zhang S, Zhang YJ. Proposal of a new nomenclature for introns in protein-coding genes in fungal mitogenomes. *IMA Fungus*, 2019, 10: 15, doi: 10.1186/s43008-019-0015-5.
- [24] Johansen S, Haugen P. A new nomenclature of group I introns in ribosomal DNA. RNA, 2001, 7(7): 935–936.
- [25] Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. *BMC Genomics*, 2011, 12: 402.
- [26] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 2009,

25(11): 1451-1452.

- [27] Stamatakis A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, 2014, 30(9): 1312–1313.
- [28] Kouvelis VN, Ghikas DV, Edgington S, Typas MA, Moore D. Molecular characterization of isolates of *Beauveria bassiana* obtained from overwintering and summer populations of Sunn Pest (*Eurygaster integriceps*). Letters in Applied Microbiology, 2010, 46(3): 414–420.
- [29] Valero-Jiménez CA, Faino L, Veld DSI, Smit S, Zwaan BJ, Van Kan JAL. Comparative genomics of *Beauveria bassiana*: uncovering signatures of virulence against mosquitoes. *BMC Genomics*, 2016, 17: 986.

Intraspecific comparison of mitochondrial genomes in the entomopathogenic fungus *Beauveria bassiana*

Yongjie Zhang^{*}, Jiawei Hou, Shu Zhang^{*}

School of Life Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China

Abstract: [Objective] To understand the intraspecific genetic differentiation of mitochondrial genomes (mitogenomes) in *Beauveria bassiana*. **[Methods]** Mitogenomes of six isolates of *B. bassiana* were downloaded from GenBank. Composition and structure of these mitogenomes, nucleotide variations at exonic, intronic and intergenic regions were compared. Phylogenetic relationship of these isolates was analyzed based on common core protein-coding genes. **[Results]** The mitogenome size of different isolates of *B. bassiana* ranged from 28.8 to 32.3 kb. There were 14 common core protein-coding genes, 2 rRNA genes and 25 tRNA genes in all of these mitogenomes, showing a strong collinear relationship. However, the number of introns in different isolates varied (2 to 5 introns per isolate). Intron insertion/deletion polymorphism was found in *cox1, cox2* and *nad1*, as the main factor contributing to variations of mitogenome size. Based on nucleotide variations at exonic, intronic and intergenic regions, the relative variability at intronic and intergenic regions was larger than that at exonic regions. Phylogenetic analysis revealed that these isolates of *B. bassiana* grouped together with a high support value, and isolates with identical intron distribution tended to cluster closely. **[Conclusion]** *B. bassiana* shows genetic differentiation in its mitogenome due to intron number variations, indel and single nucleotide polymorphism. Our data provide new evidence for understanding the differentiation of mitogenomes in fungal species.

Keywords: Beauveria bassiana, mitochondrial genome, genetic differentiation, intron, phylogeny

(本文责编:李磊)

Supported by the National Natural Science Foundation of China (31872162) and by the Research Project Supported by Shanxi Scholarship Council of China (2017-015)

^{*}Corresponding authors. E-mail: Yongjie Zhang, zhangyj2008@sxu.edu.cn; Shu Zhang, zhangshu@sxu.edu.cn Received: 21 May 2019; Revised: 12 August 2019; Published online: 4 December 2019