微生物学报 Acta Microbiologica Sinica 2020, 60(3): 533–544 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20190227

Research Article 研究报告

干湿交替对生物滞留系统中氮素功能微生物群落的影响

陈垚^{1,2*},程启洪¹,郑爽¹,余雪花¹,任萍萍¹

1重庆交通大学河海学院,重庆 400074

2重庆交通大学环境水利工程重庆市工程实验室,重庆 400074

摘要:【目的】为探究生物滞留系统干湿交替下环境因子对氮素功能微生物群落的影响。【方法】应用高 通量测序技术(Illumina MiSeq PE300),并以 amoA 和 nirS 功能基因为分子标记,对无植物型和植物型生 物滞留系统在干湿交替下不同土壤空间位置(种植层、淹没层)的硝化和反硝化细菌的多样性和群落结构 进行研究,并对微生物群落与环境因子的相互关系进行相关性分析。【结果】微生物种群的功能基因存 在显著的空间差异,相比淹没层,种植层的功能细菌更丰富。种植层的 OTUs 高于淹没层,而进水再湿 润促使两种功能基因在种植层和淹没层的 OTUs 占比差异性增大。群落组成分析表明, amoA 型硝化细 菌和 nirS 型反硝化细菌的优势细菌门均为变形菌门(Proteobacteria)。虽然植物根系对氮素功能微生物的 多样性指数影响不显著,但在属水平上,植物系统种植层的反硝化菌群种类高于淹没层,而无植物系统 则刚好相反。CCA/RDA 分析表明,土壤空间位置是影响硝化和反硝化菌群结构的最重要环境因子。【结 论】本研究证实干湿交替运行下生物滞留系统中的氮素功能微生物群落受土壤空间位置、水分含量和植 物根系的共同调控,其机制有待进一步研究。

关键词: 生物滞留系统, 干湿交替, amoA, nirS, 细菌多样性, 群落结构

雨水生物滞留系统由植物、土壤、微生物等 多介质组成,降雨径流中的氮素进入系统后,经 过一系列与多介质相关的生物地球化学过程而逐 渐存储和衰减。在氮素的生物地球化学循环过程 中,生物转化比非生物转化更重要,微生物是氮 循环的驱动引擎,一方面使氮循环不被中断,另 一方面维持生态系统的氮素平衡^[1]。生物过程涉及 同化、氨化、硝化、反硝化、厌氧氨氧化、硝酸 盐异化还原成铵(DNRA)和固氮等作用^[2-3],而固 氮、氨化、硝化和反硝化作用是氮循环的 4 个主

收稿日期: 2019-05-22; 修回日期: 2019-08-07; 网络出版日期: 2019-12-05

基金项目: 国家自然科学基金(51709024); 重庆市研究生科研创新项目(CYS18219); 重庆市基础科学与前沿技术研究项目 (cstc2017jcyjAX0292); 重庆市留创计划(cx2017065); 重庆市教育委员会科学技术研究项目(KJ170540) *通信作者。Tel: +86-23-62652714; Fax: +86-23-62650204; E-mail: chenyao@cqjtu.edu.cn

要过程,均由微生物所驱动。其中,硝化作用是 连接固氮作用与反硝化作用的中间环节,不仅决 定着植物对氮素的利用程度,并可直接造成硝酸 盐淋洗和温室气体一氧化二氮(N₂O)释放等一系 列生态环境问题^[4]。通过为反硝化作用提供底物, 硝化和反硝化作用通常耦合发生,二者作用构成 土壤氮素损失的最主要途径^[5]。由此可见, 硝化和 反硝化作用共同决定着雨水生物滞留系统中氮素 的平衡和归趋。生物滞留系统会因气候变化和降 雨特性呈现出随机的干湿交替过程,而这种高度 变异的土壤水分波动可能会对土壤微生物造成不 规则和极端性的水分胁迫作用^[6]。干湿交替形成的 水分动力学过程可增强土壤有机质的矿化作用, 促进土壤在长时间内维持较高的有机质^[7],从而提 高微生物活性及其多样性[8-10],还可通过影响土壤 中的氧含量直接影响土壤微生物活性,进而影响 硝化和反硝化过程[11-12]。干湿交替还会驱动植物 根系构型特征发生演替,通过根系诱导作用改变 土壤中的土壤氧动力学并使其与非根际土壤在空 间上产生异质性,影响根际功能微生物的空间分 布特性,调控氮素的微生物转化过程^[13]。因此, 干湿交替过程形成的土壤水分波动可直接或间接 影响微生物的空间分布特性,调控功能菌群与氮 素过程的耦合。

虽然在同样具有干湿交替的湿地、消落带等 土壤系统研究中指出,土壤水分可调控土壤中固 氮功能基因(*nifH*)、硝化功能基因(*amoA、amoB*) 和反硝化功能基因(*nirK、nirS、nosZ*)等氮素功能 基因丰度^[14],如适当延长干旱持续时间可显著增 加硝化和反硝化功能基因丰度^[15]。但也有研究认 为,土壤水分的增加才能提高反硝化功能基因丰 度^[16]。显然,即使在同样具有干湿交替且广泛研 究的土壤系统中,土壤水分对氮素功能微生物的 影响也未形成统一结论。而生物滞留系统固有的 特殊性还会改变氮素发生迁移转化的时刻和区 位,使氮素代谢功能菌在土壤中的存在形态及群 落结构更加复杂^[13]。这一特殊性使生物滞留系统 不可完全照搬和借用其他土壤系统在微生物方面 的研究结果与结论,需对干湿交替过程中氮素行 为的微生态机制进行系统研究。但目前缺乏对生 物滞留系统中氮素功能微生物群落特征的解析研 究,尤其尚未掌握干湿交替对功能微生物群落的 影响,仅有少量研究关注湿润期氮素功能微生物 群落的时空分布特性^[17]。

鉴于此,利用无植物和有植物的生物滞留系统,在干湿交替条件下收集不同空间的土壤样品, 采用 Illumina MiSeq PE300 测序技术研究 amoA 和 nirS 功能基因菌群结构和多样性,对比分析干湿交 替下硝化和反硝化功能菌群的时空演替情况,探析 植物对功能菌群在时空分布特性上的调控作用。研 究有助于进一步探明生物滞留系统干湿交替过程 对氮素功能微生物多样性和菌群结构的影响。

1 材料和方法

1.1 样品采集

土样分别采自无植物生物滞留系统和栽种风 车草的植物生物滞留系统(分别简称为无植物系 统和植物系统,试验装置如图1所示)在进水湿润 后和排水落干2d后种植层和淹没层土壤,土壤类 型分别为沙壤土和细沙。在本研究采用的干湿交 替周期下,种植层水分含量呈现波动状态,而位 于储水层的淹没层,其水分含量基本处于饱和状 态。采样时,在不干扰土壤层结构的基础上,利用 PVC 塑焊枪沿滤柱上的贯穿缝将焊缝热熔并小心

图 1. 装置示意图

Figure 1. Schematic diagram of devices. A: un-vegetated system; B: vegetated system.

剖开滤柱。每一土样采用五点采样法采集 0-30 cm 种植层或 30-50 cm 淹没层混合样,充分混匀后装 袋并对土样编号(表 1)备用。

1.2 主要试剂和仪器

FastDNA Spin Kit for Soil 土壤 DNA 提取试剂 盒, MP Biomedicals 公司; ABI GeneAmp® 9700 型 PCR 仪, ABI 公司; TransStart Fastpfu DNA Polymerase 聚合酶, TransGen 公司; NanoDrop 2000 分光光度计, Thermo Scientific 公司; 高速冷冻离 心机(J-251 型), Beckman 公司; ChemiDocTM XRS 凝胶成像仪, Bio-Rad 公司。

1.3 土壤微生物基因组 DNA 提取

DNA 的提取采用土壤 DNA 提取试剂盒,按

照说明书的提取步骤进行。将提取到的土壤微生物总 DNA 在冰上融化后,充分混匀并离心,取适量样品利用 NanoDrop2000 分光光度计检测 DNA 纯度和相对浓度,并利用 1%琼脂糖凝胶电泳(电压 5 V/cm,时间 20 min)检测 DNA 的完整性。

表 1. 土样采集编号一览表

Table	1. Soil sample collection number list
Sample	e Sample plot
s0_1	Planting layer of un-vegetated system after rewetting
s0_2	Submerged layer of un-vegetated system after rewetting
s1_1	Planting layer of vegetated system after rewetting
s1_2	Submerged layer of vegetated system after rewetting
g0_1	Planting layer of un-vegetated system after drying
g0_2	Submerged layer of un-vegetated system after drying
g1_1	Planting layer of vegetated system after drying
g1_2	Submerged layer of vegetated system after drying

1.4 土壤细菌功能基因 PCR 扩增

以稀释后的基因组 DNA 为模板,分别选用 功能引物 bamoA1F (5'-GGGGTTTCTACTGGTG GT-3')和 bamoA2R (5'-CCCCTCKGSAAAGCCT TCTTC-3')^[18], nirS4F (5'-TTCRTCAAGACSCAYC CGAA-3')和 nirS6R (5'-CGTTGAACTTRCCGGT-3')^[19], DNA Polymerase 聚合酶进行 *amoA* 基因和 *nirS* 基因的扩增。PCR 反应体系为 20 μ L包括: 5×FastPfu Buffer (4 μ L)、2.5 mmol/L dNTPs (2 μ L)、Forward Primer (5 μ mol/L) (0.8 μ L)、 Reverse Primer (5 μ mol/L) (0.8 μ L)、 FastPfu Polymerase (0.4 μ L)、BSA (0.2 μ L)、Template DNA (10 ng),并用 ddH₂O 补至 20 μ L。反应条件: 95 °C 3 min; 95 °C 30 s, 55 °C 30 s, 72 °C 45 s, 35 个 循环; 72 °C 10 min。

1.5 土壤基因测序

将扩增后的土壤基因组 DNA 送至上海美吉 生物医药科技有限公司进行 Illumina MiSeq PE300高通量测序。

1.6 数据分析

利用 Usearch 7.0 软件按照 97%相似水平对非 重复序列进行 OTUs (operational taxonomic units) 聚类,通过 QIIME 平台上 RDP Classifier 贝叶斯 算法对 OTUs 代表序列进行生物信息统计分析, 所用比对数据库为来源于 GenBank 整理的 FRG/amoA-bacteria 和 FRG/nirS 功能基因数据库 (置信度阈值为 0.7)^[20]。利用 Mothur 软件包以 97% 为阈值对 amoA 和 nirS 基因序列划分分类单元, 并计算序列随机抽样下各 OTUs 的 Alpha 多样性 指数,并以抽到的序列数与其对应的对应性指数 构建稀释曲线。其中,Sobs、Chao 和 ACE 指数反 映群落丰富度,其值越高表明群落物种的丰富度 越高; Shannon 和 Simpson 指数反映群落多样性, Shannon 指数越高、Simpson 指数越低表明群落物 种的多样性越高; 而 Coverage 指数反映群落覆盖 度,其值越高表明微生物类群覆盖度越高。

2 结果和分析

2.1 测序结果质量分析

通过对土样的 amoA 和 nirS 基因测序,7 个样 品(其中编号为 s1_2 的土壤因 DNA 扩增产物目的 条带太弱无法进行后续测序而舍弃)的 amoA 基因 经优化筛选后有效序列的总数为 103149,8 个样 品的 nirS 基因经优化筛选后有效序列的总数为 115553。分析时选用相似度为 97%的 OTUs,按最 小样本序列数抽平,amoA 和 nirS 基因的样品分别 产生 97 和 854 个 OTUs。稀释曲线反映了样品的 取样深度,可用以评价测序量是否足以覆盖所有 类群^[21]。从各样品基因的 Shannon-Wiener 稀释曲 线(图 2)可知,曲线趋向平坦,说明测序数据量足 够大。同时 Coverage 指数均达到 99%以上,表明 测序量能基本覆盖所有类群,可较好反映土壤样 本细菌群落的真实情况。

2.2 氮素功能细菌多样性及相关性分析

2.2.1 硝化功能菌群(amoA 基因): 各样品 amoA 基因的 Alpha 多样性指数见表 2。综合 Sobs、Chao 和 ACE 指数可知, 硝化功能菌群的丰富度受土壤 空间的显著影响(P<0.05), 且种植层的丰富度远高 于淹没层。而植物根系和土壤水分短暂变化对其 丰富度有一定影响但均不显著。其中, 植物系统 和进水湿润会略微增加硝化功能微生物的丰富 度。Shannon 和 Simpson 指数表明, 干湿交替下土 壤空间位置、水分变化和植物根系对硝化功能菌 群多样性指数的影响并不显著。

图 2. 各土壤样品功能基因稀释曲线(相似度 0.97) Figure 2. Dilution curves of genes of each soil sample (similarity 0.97). A: *amoA* gene; B: *nirS* gene.

<i>农 4</i> , 个凹上场件如阳化切能困什夕件比11 蚁	表 2.	不同土壤样品硝化功能菌群多样性指数
----------------------------------	------	-------------------

T 11 A	D' '/ ' 1'	C '' 'C '	C 1 1	1	•	1.00	• 1	1
Table /	Diversity indices	of nitritving	functional	hacteria	1n	different	SOL	samples
10010 2.	Diversity manees	or munying	runctionar	ouctoria		uniterent	5011	Sumpres
	2							

Sample plot	Sobs index	Shannon index	Simpson index	ACE index	Chao index
Planting layer	48.500±1.26a	2.633±0.08a	0.114±0.01a	51.202±1.84a	50.688±1.99a
Submerged layer	25.333±1.76b	1.917±0.65a	0.329±0.22a	27.993±3.54b	25.667±2.03b
Un-vegetated system	36±6.481a	2.538±0.05a	0.117±0.008a	39.297±6.585a	37.625±7.267a
Vegetated system	42±8.083a	2.044±0.708a	0.325±0.226a	43.868±8.974a	43.083±8.761a
After drying	37±5.802a	2.163±0.515a	0.269±0.169a	39.479±5.442a	37.438±5.781a
After rewetting	40.667±9.404a	2.544±0.060a	0.122±0.005a	43.625±10.445a	43.333±10.682a

Results from ANOVA analysis and the different lowercase letters in the same column indicate significant difference at the 0.05 level.

在 0.97 相似度下,可获得各土壤样品的 OTUs,并绘制分类水平上的 Venn 图,该图可显 示多样品相同和各自特有的 OTUs,以直观获得样 品间 OTUs 的重叠情况,如图 3 所示。对于无植 物系统而言,排水落干后的种植层和淹没层共有 22 个相同 OTUs,分别占据总 OTUs 的 74.2%和 45.2%;而进水湿润后的种植层和淹没层共有 18 个相同 OTUs,分别占据总 OTUs 的 77.7%和 35.5%。在排水落干后的植物系统中,种植层和淹 没层共有 3 个相同 OTUs,分别占据总 OTU 数的 58.5%和 31.7%。相关性分析结果表明,种植层 OTUs 高于淹没层的 OTUs,且进水湿润后会使硝 化功能菌群在种植层和淹没层的 OTUs 差值增大。 2.2.2 反硝化功能菌群(nirS 基因): 各样品 nirS 基因的 Alpha 多样性指数见表 3。综合 Sobs、Chao 和 ACE 指数可知,反硝化功能菌群的群落丰富度 受空间位置的显著影响(P<0.05),且种植层反硝化 功能菌群的丰富度远高于淹没层。而植物根系和土 壤水分短暂变化对其丰富度有一定影响但并不显 著。其中,排水落干过程可略微增加反硝化功能菌 群的群落丰富度,无植物系统的反硝化功能菌群丰 富度略高于植物系统。Shannon 和 Simpson 指数表 明,土壤空间位置、植物根系和水分变化对于反硝 化功能菌群多样性指数的影响并不显著。

图 3. 土壤样品 amoA 基因在 OTUs 分类水平上的 Venn 图

Figure 3. Venn diagram of *amoA* gene in soil samples at OTUs classification level. A: un-vegetated system; B: vegetated system.

不同模式下反硝化功能菌群多样性指数

表 3.

Table 5. Diversity indices of denitritying functional bacteria under different modes							
Sample plot	Sobs index	Shannon index	Simpson index	ACE index	Chao index		
Planting layer	400.750±9.578a	4.525±0.037a	0.028±0.003a	489.220±20.574a	484.783±17.994a		
Submerged layer	281.500±44.356b	4.085±0.198a	0.041±0.006a	312.529±43.296b	307.623±43.655b		
Un-vegetated system	375.000±13.241a	4.437±0.083a	0.035±0.005a	419.558±26.265a	417.850±80.643a		
Vegetated system	307.250 ±59.067a	4.173±0.233a	0.034±0.007a	382.191±81.108a	396.218±39.979a		
After drying	343.000±40.708a	4.277±0.144a	0.036±0.005a	413.012±49.307a	406.693±50.752a		
After rewetting	339.250±52.628a	4.333±0.227a	0.034±0.006a	388.737±70.510a	385.743±69.352a		
	1 1 1 1 00	. 1	.1	1.00	1		

Results from ANOVA analysis and the different lowercase letters in the same column indicate significant difference at the 0.05 level.

根据反硝化功能菌群在 OTUs 分类水平上的 Venn 图(图 4)可知,对于无植物系统而言,排水落 干后的种植层和淹没层共有 155 个相同 OTUs,分 别占据总 OTUs 的 51.2%和 49.3%;而进水湿润后 的种植层和淹没层共有 161 个相同 OTUs,分别占 据总 OTUs 的 56.7%和 48.8%。对于植物系统而言, 排水落干后的种植层和淹没层共有 94 个相同 OTUs,分别占总 OTUs 的 64.0%和 34.9%;而进 水湿润后的种植层和淹没层共有 73 个相同 OTUs, 分别占据总 OTUs 的 62.4%和 28.8%。相关性分析 结果表明,种植层 OTUs 高于淹没层的 OTUs,植 物根系可调控反硝化功能菌群的空间分布特性, 造成种植层和淹没层的 OTUs 存在较大差异;而 无植物系统中反硝化功能菌群的空间分布主要受 水分变化的调控,特别是进水湿润可促使种植层 和淹没层的 OTUs 差异性增大。

1.00

2.3 干湿交替对氮素功能细菌群落结构的影响

2.3.1 硝化功能菌群结构:7个土壤样品中共检测 到硝化细菌门4个和属12个,如图5所示。在所 有样本中相对丰度占比均小于1%的物种归为 others。在门级上,硝化菌群丰度最高的是变形菌 门(Proteobacteria),相对丰度均超过60%。在属级 上,相对丰度大于1%的有亚硝化螺菌属 (Nitrosospira)、亚硝酸弧菌属(Nitrosovibrio)、变形

图 4. 土壤样品 nirS 基因在 OTUs 分类水平上的 Venn 图

Figure 4. Venn diagram of *nirS* genes in soil samples at OTUs classification level. A: un-vegetated system; B: vegetated system.

图 5. 4004 圣凶贼王彻珀构组成

Figure 5. Microorganism composition of *amoA* gene. A: phylum level; B: genus level.

菌β亚纲亚硝化细菌(Betaproteobacteria),以及亚 硝化单胞菌目(Nitrosomonadales)亚硝化单胞菌科 (Nitrosomonadaceae)下的亚硝化单胞菌属 (Nitrosomonas)等,这些细菌均属于氨氧化细菌 (ammonia oxidizing bacteria, AOB),参与硝化作 用的第一步氧化过程。排水落干后,植物系统淹 没层的优势硝化功能菌为亚硝化单胞菌属 (unclassfied_o_Nitrosomonadales),其相对丰度高 达87.9%。

通过 CCA 分析土壤空间位置、水分含量和植物根系等环境因子与 amoA 型硝化菌群落之间的相互关系(图 6)。CCA 分析表明,土壤空间位置(以

土层中心距离地面高度表示) (r²=0.852, P=0.029) 和植物根系(以根系长度表示,无植物系统根系长 度视为 0) (r²=0.830, P=0.049)与微生物群落结构 具有显著相关性, 而水分含量(r²=0.632, P=0.115) 对微生物群落结构有一定影响但不显著。这是由 于种植层氧浓度明显高于淹没层,更有利于硝化 功能微生物的生长繁殖,从而造成不同空间位置 对硝化菌群结构影响显著。干湿交替过程中硝化 功能菌结构演替结果表明,土壤水分含量的增加 在一定程度上可提高系统硝化功能菌的种群丰富 度,这与相关研究结果一致^[22-23]。分析认为,土 壤水分含量的升高可通过降低水分胁迫压力^[24],从 而使硝化菌丰度及其优势菌群发生变化。但也有研 究认为,土壤水分含量的进一步增加反而会降低氧 气在土壤中的扩散能力,从而降低硝化菌群的丰 度[25],导致丰度随含水量的增加而降低[26]。从研究 结果来看, AOB 丰度并未随土壤水分含量的进一 步增加而显著降低,这主要是由于生物滞留系统的 土壤含水率并未达到限制硝化功能微生物丰度的 阈值。排水落干期间,光照引起的植物蒸腾作用会 改变植物体内与大气的压强梯度,促使氧气通过植 物组织到达根系,增强根系泌氧能力^[27]。根系泌氧 作用也会激发某类好氧微生物的活性,导致种植层 硝化菌群种类更丰富,而淹没层则较为单一。同时, 排水落干造成的水流势能也会将根系周围的氧气 不断运移,从种植层移至淹没层,营造出适合硝化 细菌生长的氧环境,从而表现为排水落干2d后植 物系统淹没层仍存在大量的亚硝化单胞菌属 (unclassified o Nitrosomonadales)。上述结果充分 说明,土壤空间位置、植物根系和水分含量等环 境因子共同影响雨水生物滞留系统中 amoA 型硝 化菌群结构。

图 6. *amoA* 基因的 CCA 相关性分析 Figure 6. CCA correlation analysis of *amoA* gene.

2.3.2 反硝化功能菌群结构:8个土壤样品中共检 测到反硝化细菌门3个和属24个,如图7所示。 在门级上,反硝化菌群结构较为简单,丰度最高 的为变形菌门(Proteobacteria),所有样品的相对丰 度均达 60%以上。在属级上,反硝化细菌的优势 菌属有脱氯单胞菌属(Dechloromonas)、变形杆菌 门下的属类(Proteobacteria)、β亚纲变形杆菌纲下 的属类(Betaproteobacteria)、红环菌科下的属类 (Rhodcyclaceae)、固氮弧菌属(Azoarcus)、红杆菌 属(Rhodobacter)、产黄杆菌属(Rhodanobacter)和趋 磁螺菌属(Magnetospirillum)。

土壤空间位置、植物根系和水分含量均会影 响反硝化菌群结构。从门级看,淹没层的变形菌 门(Proteobacteria)的丰度总高于种植层。从属级 看,由于低氧浓度更适合趋磁螺菌属 (Magnetospirillum)的生长,所以其仅存于淹没层;植物系统的脱氯单胞菌属(Dechloromonas)和红环 菌属(Rhodcyclaceae)的丰度均高于无植物系统;植物系统种植层的反硝化菌的种群丰富度高于淹没 层,而无植物系统则刚好相反。为进一步研究环境因子与 nirS 型反硝化菌群间的相互关系,对其进行 RDA 分析(图 8)。RDA 分析表明,第一、二排序轴解释率分别为 50.38%和 13.54%,说明排序

图 7. *mrs* 盔凶版主初组构 Figure 7. Microorganism composition of *nirS* gene. A: phylum level; B: genus level.

图 8. *nirS* 基因的 RDA 相关性分析 Figure 8. RDA correlation analysis of *nirS* gene.

轴能较好地反映出反硝化菌群与环境因子之间的 相互关系。土壤空间位置(r²=0.966, P=0.032)和水 分含量(r²=0.753, P=0.036)与微生物群落结构具有 显著相关性,而植物根系(r²=0.907, P=0.053)对微 生物群落结构的影响不显著。分析认为,淹没层 氧浓度明显低于种植层,更有利于反硝化功能微 生物的生存,从而导致土壤空间位置对反硝化菌 群结构影响显著。植物系统可通过根系诱导作用 改变土壤中的氧动力学和水分运移过程造成土壤 特性的空间异质性,影响根际功能微生物的空间 分布特性^[28],形成反硝化菌群生长微环境,从而 表现为种植层的菌群种类高于淹没层。而无植物 时,由于淹没层水分含量远高于种植层,且排水 落干形成的水分运移作用将硝化产物运移储存于 淹没层,从而增加了该空间的反硝化菌群种类。 可见,在无植物系统中,*nirS*型反硝化功能微生 物群落结构主要受土壤水分含量影响。相关研究 也表明,水分含量对以*nirS*基因为代表的反硝化 菌群结构影响显著^[29–30]。

3 结论

研究表明,干湿交替运行下生物滞留系统中 的氮素功能微生物群落受土壤空间位置、水分含 量和植物根系等环境因子的共同调控,但相关机 制需进一步研究。其中,环境因子会影响硝化和 反硝化功能微生物的群落丰富度及多样性,种植 层的功能细菌比淹没层更丰富;不同环境因子与 氮素功能微生物群落结构的相关性有所不同,土 壤空间位置是影响硝化和反硝化菌群结构的最主 要环境因子,而反硝化菌群结构还与水分含量显 著相关。

参考文献

[1] Zeng J, Yang LY, Xiao L, Yin DQ, Qin BQ. Biogeochemical cycling of nitrogen in lakes and the role of microorganisms in conversion of nitrogen compounds. *Journal of Lake Sciences*, 2007, 19(4): 382–389. (in Chinese)

曾巾,杨柳燕,肖琳,尹大强,秦伯强.湖泊氮素生物地球 化学循环及微生物的作用.湖泊科学,2007,19(4): 382-389.

- [2] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. *Nature Reviews Microbiology*, 2018, 16(5): 263–276.
- [3] Gold AC, Thompson SP, Piehler MF. Nitrogen cycling processes within stormwater control measures: A review and call for research. *Water Research*, 2019, 149: 578–587.
- [4] He JZ, Zhang LM. Key processes and microbial mechanisms of soil nitrogen transformation. *Microbiology China*, 2013, 40(1): 98–108. (in Chinese) 贺纪正,张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98–108.
- [5] Zhu YG, Wang XH, Yang XR, Xu HJ, Jia Y. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. *Environmental Science*, 2014, 35(2): 792–800. (in Chinese)

朱永官, 王晓辉, 杨小茹, 徐会娟, 贾炎. 农田土壤 N₂O 产 生的关键微生物过程及减排措施. 环境科学, 2014, 35(2): 792-800.

- [6] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. *Global Change Biology*, 2010, 15(4): 808–824.
- [7] Dosskey MG, Vidon P, Gurwick NP, Allan CJ, Duval TP, Lowrance R. The role of riparian vegetation in protecting and improving chemical water quality in streams. *JAWRA Journal* of the American Water Resources Association, 2010, 46(2):

261-277.

- [8] West AW, Sparling GP, Feltham CW, Reynolds J. Microbial activity and survival in soils dried at different rates. *Soil Research*, 1992, 30(2): 209–222.
- [9] Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. *Soil Biology and Biochemistry*, 2001, 33(12/13): 1599–1611.
- [10] Denef K, Six J, Paustian K, Merckx R. Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles. *Soil Biology and Biochemistry*, 2001, 33(15): 2145–2153.
- [11] 郑莹莹.干湿交替对土壤氮素转化及生物学特性的影响. 东华大学学位论文, 2013.
- [12] Pinay G, Clément JC, Naiman RJ. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems. *Environmental Management*, 2002, 30(4): 481–491.
- [13] Chen Y, Cheng QH, Gan CJ, Ren PP. Research and prospect on processes of nitrogen removal in bioretention systems. *Environmental Engineering*, 2018, 36(7): 11–16. (in Chinese) 陈垚,程启洪,甘春娟,任萍萍.雨水生物滞留系统氮素过 程研究现状与展望.环境工程, 2018, 36(7): 11–16.
- [14] Morugán-Coronado A, García-Orenes F, McMillan M, Pereg L. The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. *Science of the Total Environment*, 2019, 655: 158–167.
- [15] Chen J, Nie YX, Liu W, Wang ZF, Shen WJ. Ammonia-oxidizing archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil. *Frontiers in Microbiology*, 2017, 8: 1384, doi: 10.3389/fmicb.2017.01384.
- [16] Liu RX, He JZ, Zhang LM. Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil. *Environmental Science*, 2014, 35(11): 4275–4283. (in Chinese)
 刘若萱,贺纪正,张丽梅. 稻田土壤不同水分条件下硝化/ 反硝化作用及其功能微生物的变化特征. 环境科学, 2014, 35(11): 4275–4283.

- [17] Chen XL, Peltier E, Sturm BSM, Young CB. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. *Water Research*, 2013, 47(4): 1691–1700.
- [18] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene *amoA* as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. *Applied and Environmental Microbiology*, 1997, 63(12): 4704–4712.
- [19] Vilar-Sanz A, Puig S, García-Lledó A, Trias R, Balaguer MD, Colprim J, Bañeras L. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell. *PLoS One*, 2013, 8(5): e63460, doi: 10.1371/journal.pone.0063460.
- [20] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Research*, 2013, 41(D1): D590–D596.
- [21] Oren A, Jiao ZW, Janbolat, Mu GL, Yang XR. Determination of bacteria diversity of degraded grassland in Xinyuan county by high-throughput sequencing technology. *Microbiology China*, 2017, 44(3): 545–553. (in Chinese)
 吾尔恩·阿合别尔迪, 焦子伟, 江波拉提, 木古丽, 杨晓绒. 高通量测序技术分析新疆新源县过度放牧土壤细菌多样性. 微生物学通报, 2017, 44(3): 545–553.
- [22] Marcos MS, Bertiller MB, Cisneros HS, Olivera NL. Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte. *Pedobiologia*, 2016, 59(1/2): 1–10.
- [23] Di HJ, Cameron KC, Podolyan A, Robinson A. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide

emissions in a grassland soil. *Soil Biology and Biochemistry*, 2014, 73: 59–68.

- [24] Hastings RC, Butler C, Singleton I, Saunders JR, McCarthy AJ. Analysis of ammonia-oxidizing bacteria populations in acid forest soil during conditions of moisture limitation. *Letters in Applied Microbiology*, 2010, 30(1): 14–18.
- [25] Belser LW. Population ecology of nitrifying bacteria. Annual Review of Microbiology, 1979, 33(1): 309–333.
- [26] Liu R, Hayden HL, Suter H, Hu HW, Lam SK, He JZ, Mele PM, Chen D. The effect of temperature and moisture on the source of N₂O and contributions from ammonia oxidizers in an agricultural soil. *Biology and Fertility of Soils*, 2017, 53(1): 141–152.
- [27] Luo M, Huang JF, Liu YQ, Tong C. Progress in effects of root bioturbation on dissimilatory iron reduction in the rhizosphere of wetland plants. *Acta Ecologica Sinica*, 2017, 37(1): 156–166. (in Chinese)
 罗敏,黄佳芳,刘育全, 仝川. 根系活动对湿地植物根际铁 异化还原的影响及机制研究进展. 生态学报, 2017, 37(1): 156–166.
- [28] Hinsinger P, Bengough AG, Vetterlein D, Young IM. Rhizosphere: biophysics, biogeochemistry and ecological relevance. *Plant and Soil*, 2009, 321(1/2): 117–152.
- [29] Jha N, Saggar S, Giltrap D, Tillman R, Deslippe J. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture. *Biogeosciences*, 2017, 14(8): 4243–4253.
- [30] Hamonts K, Clough TJ, Stewart A, Clinton PW, Richardson AE, Wakelin SA, O'Callaghan M, Condron LM. Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. *FEMS Microbiology Ecology*, 2013, 83(3): 568–584.

Effects of drying-rewetting alternating on nitrogen-related microbial functional communities in bioretention systems

Yao Chen^{1,2*}, Qihong Cheng¹, Shuang Zheng¹, Xuehua Yu¹, Pingping Ren¹

¹ School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China

² Key Laboratory of Hydraulic & Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China

Abstract: [Objective] This study aims to explore the effect of environmental factors on nitrogen-related microbial functional community structure of bioretention systems under the condition of drying-rewetting alternation. [Methods] Soil samples were collected from spatial distribution (planting layer, submerged layer) in vegetated and un-vegetated bioretention systems after drying and rewetting. The amoA and nirS functional genes were used as molecular marker. The diversity and community structure of nitrifying and denitrifying bacteria in different soil samples were studied by high-throughput sequencing technology named Illumina MiSeq PE300. Canonical correlation analysis (CCA) and redundancy analysis (RDA) were performed to assess the relationship between nitrogen-related microbial functional community structure and environmental factors was analyzed. [Results] The functional genes of microbial populations showed significant spatial differences. Nitrogen-related functional bacteria in the planting layer were more abundant and diverse than which in the submerged layer. However, the differences in proportion of operational taxonomic units (OTUs) between the two functional genes in planting layer and submerged layer were increased by rewetting. The results from the community composition analysis of nitrogen-related functional microbes showed that the dominant phylum of amoA-nitrifying and nirS-denitrifying bacteria were the Proteobacteria in all the soil samples. The root system of plants had no significant effect on the diversity index of nitrogen-related functional microbes, but in the plant system layer, the denitrifying bacteria species (at the genus level) were more than that in the submerged layer, and the opposite trend were showed in the plant-free system. The analysis of CCA and RDA showed that soil spatial distribution was the most important environmental factor on the distribution of nitrifying and denitrifying microbial communities. [Conclusion] The nitrogen-related functional microbial community in bioretention system under drying and rewetting alternation was controlled by the soil spatial distribution, water content and plant roots. However, the underlying reasons still await further investigation.

Keywords: bioretention system, drying-rewetting alternating, amoA, nirS, bacterial diversity, community structure

(本文责编:李磊)

Supported by the National Natural Science Foundation of China (51709024), by the Chongqing Scientific Research Innovation Program for Graduate Students (CYS18219), by the Science and Technology Research Program of Chongqing Science and Technology Commission (cstc2017jcyjAX0292), by the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2017065) and by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJ170540)

^{*}Corresponding author. Tel: +86-23-62652714; Fax: +86-23-62650204; E-mail: chenyao@cqjtu.edu.cn Received: 22 May 2019; Revised: 7 August 2019; Published online: 5 December 2019