微生物学报 Acta Microbiologica Sinica 2020, 60(4): 679–694 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20190278

Research Article

海藻酸裂解酶高产菌株 *Microbulbifer* sp. SH-1 的分离、鉴定及 其产酶条件优化

杨锦1, 沈宏1.2*

¹华南农业大学资源与环境学院,广东 广州 510642 ²广东省生态循环农业重点实验室,广东 广州 510642

摘要:【目的】筛选一株海藻酸裂解酶高产菌株,并通过优化产酶条件提高海藻酸裂解酶活性。【方法】 以海藻酸钠为唯一碳源的培养基,对福建漳州滨海土壤中的微生物进行筛选和分离,获得海藻酸裂解酶 高产菌株;依据形态、生理生化特征及 16S rDNA 序列分析对目的菌株进行鉴定;然后通过单因素和正 交试验对其产酶条件进行优化。【结果】十六烷基吡啶(CPC)染色得到 4 株透明圈与菌落直径比值 (D/d) > 3 的菌株;DNS 法测定 4 菌株发酵液中海藻酸裂解酶活力,其中菌株 SH-1 的海藻酸裂解酶活性 最高,达到 315.52 U/mL;经形态、生理生化和 16S rDNA 测序鉴定,将其命名为 *Microbulbifer* sp. SH-1; 通过单因素和正交试验优化,确定该菌株最适产酶培养基为:海藻酸钠 10 g/L, NaCl 5 g/L, (NH₄)₂SO₄ 5 g/L, MgSO₄ 0.2 g/L, K₂HPO₄ 1 g/L, FeSO₄ 0.02 g/L。对培养条件的进一步优化结果发现,在初始 pH 7.5、温度 32 ℃条件下,以 1%的接种量将 SH-1 菌株接入 50 mL 优化培养基中,240 r/min 转速下振 荡培养 24 h, SH-1 菌株产酶最大活性可达 757.90 U/mL,比优化前提高了 2.4 倍。【结论】SH-1 最佳产 酶条件的建立,为海藻酸裂解酶的大规模制备以及更深层次研究提供了试验基础和理论依据。

关键词:海藻酸裂解酶,微泡菌,产酶条件优化

随着生活水平的提高,人们对于天然、健康 的海洋食品、药品和保健品也是更加青睐^[1]。海洋 藻类由于其特殊的生存环境,富含陆生植物所不 具有的特异生物活性物质,是天然海洋食药产品 的重要来源^[2]。因此,海藻资源的综合开发利用, 具有广泛的市场价值^[3]。海藻酸是褐藻中含量最为 丰富的多糖,约占其干物质总量的 30%-60%,是 海藻细胞壁的重要组成部分^[1,4]。海藻酸是由β-D-甘露糖醛酸(β-D-mannuronate)及其 C5 差分异构体 α-L-古罗糖醛酸(α-L-guluronate)两种单体通过 1,4-糖苷键连接聚合而成的酸性多糖,聚合度在 1000-10000 之间^[5],其包含 3 种聚合体:聚甘露

基金项目: 国家重点研发计划(2016YFD0200405-5); 广东省科技计划项目(2019B030301007)

^{*}通信作者。E-mail: hshen@scau.edu.cn

收稿日期: 2019-06-19; 修回日期: 2019-10-09; 网络出版日期: 2019-10-25

糖醛酸(polyM),聚古罗糖醛酸(polyG),以及甘露 糖醛酸和古罗糖醛酸形成的杂聚物(polyMG)^[6]。然 而其高粘、高凝胶和不易降解的特点限制了其广 泛的应用^[7]。越来越多的研究结果表明,海藻酸盐 的降解产物褐藻寡糖,具有特殊的生理活性和功 能,如抗氧化活性、抗菌性、抗肿瘤、免疫调节 等^[8-9]。因此,褐藻寡糖作为海藻酸盐的深加工产 物,值得进一步深入研究。

海藻酸盐的降解方式主要有酸解、碱解、热 解、微波降解以及酶降解等^[8,10-12]。其中酶降解主 要依赖海藻酸裂解酶,通过β消去反应机制生成 不饱和的褐藻寡糖,并在非还原末端C4和C5之 间形成双键^[13]。这一结构是其他降解方式所不具 有的,因此酶解源褐藻寡糖具有优于其他降解方 式的生理活性。酶解不饱和海藻寡聚物能够诱导 小鼠巨噬细胞(RAW264.7)分泌瘤坏死因子 (TNF-α),而酸水解制备的饱和褐藻寡糖对其诱导 量较低,或仅在微量水平^[14]。此外,海藻酸裂解 酶具有高效、特异、反应温和的特点,适合于工 业化制备褐藻低聚糖^[5]。

海藻裂解酶来源广泛,种类多样,已接近100 种海藻酸盐裂解酶从海洋和陆地细菌、海洋软体 动物和藻类等不同物种中被分离、鉴定、克隆和 纯化^[15]。海藻酸裂解酶按照产酶位置可分为胞内 酶和胞外酶,按照酶切方式可分为内切酶和外切 酶,按照降解偏好可分为聚古罗糖醛酸专一性酶、 聚甘露糖醛酸专一性酶以及双功能酶^[16-17]。海洋 细菌和土壤细菌是海藻酸裂解酶最主要的来源, 如黄杆菌属(*Flavobacterium* sp.)、海洋弧菌(*Vibrio* sp.)、白蚁菌属(*Isoptericola* sp.)、假单胞菌属 (*Pseudomonas* sp.)、假 交 替 单 胞 菌 属 (*Pseudoalteromonas* sp.)、紫色链霉菌(*Streptomyces* violaceoruber sp.)等^[18-23]。然而,目前报道的微生物源海藻酸裂解酶依然存在着酶活性较低、降解位点单一等缺陷,限制了酶解法制备海藻提取物的发展。因此,筛选高效降解褐藻胶的新菌种,寻找适合海藻提取物生产的褐藻胶裂解酶,是开发褐藻资源,探索其高值化利用新途径的必然要求^[17]。本研究从福建沿海海带种植区附近的土壤中筛选得到一株高产海藻酸裂解酶的微泡菌SH-1,该菌株产酶发酵时间短,酶活性高,鉴于发酵条件对微生物产酶能力的影响,对菌株SH-1的产酶条件进行研究,为海藻酸裂解酶工业化生产和应用提供科学依据。

1 材料和方法

1.1 试验材料

1.1.1 材料来源:沙土,采自福建漳州海带养殖区(117.95 E; 24.15 N),4 °C 保存。

1.1.2 培养基:(1) 富集培养基(g/L):海藻酸钠 5, 蛋白胨 1, NaCl 15, (NH₄)₂SO₄ 5, K₂HPO₄ 1, MgSO₄·7H₂O 1, FeSO₄·7H₂O 0.01, pH 7.5; (2) 初 筛培养基(g/L):海藻酸钠 10, NaCl 15, (NH₄)₂SO₄
5, K₂HPO₄ 1, MgSO₄·7H₂O 1, FeSO₄·7H₂O 0.01, 添加 1.8% (W/V)的琼脂, pH 7.5; (3) 复筛培养基 与初筛培养基成分相同,只是不加入琼脂; (4) 种 子培养基(g/L):蛋白胨 5, NaCl 10, 酵母提取物 5。
1.1.3 主要试剂及仪器:海藻酸钠购自青岛明月 股份有限公司;16S rDNA 引物由生工生物工程(上 海)股份有限公司合成;细菌基因组 DNA 提取试 剂盒、PCR 产物回收试剂盒购自生工生物工程(上 海)股份有限公司; 实验中用于扩增及克隆所有 试剂,均购自 TaKaRa 公司; 其他试剂均为国产分 析纯。 分光光度计(UV-2450), Shimadzu 公司制造; 恒温摇床(BSD-YX(F)3200)、电热恒温培养箱 (BPX-82)、超净工作台(BJ-1CD),上海博迅实业 公司制造;台式高速离心机(HC-3618R),中科中 佳科学仪器有限公司制造;凝胶成像系统 (Tanon-4100),上海天能科技有限公司制造;PCR 仪(MyCycler),Bio-Rad 公司制造;恒温水浴锅 (HWS-5A),上海百典仪器设备有限公司制造。

1.2 菌株的筛选

(1) 富集:称取采自福建海藻养殖区附近的沙 土 5 g 与 100 mL 灭菌水混合均匀。吸取 1 mL 菌 液接种于 50 mL/250 mL 富集培养基中, 28 ℃、 180 r/min 条件下摇瓶富集培养 48 h。

(2) 初筛:将富集的菌液按照 10⁻¹-10⁻⁷梯度 稀释,然后将 10⁻⁴-10⁻⁷稀释度的菌液涂布到初筛 培养基平板上,28 °C 恒温培养 48 h,观察平板上 的菌落形态,挑取生长状况较好的单菌落平板划 线,进一步纯化,利用 10% (*W/V*)氯代十六烷基 吡啶对已纯化的菌落染色,根据透明圈与菌落直 径比值,初步判断菌株降解褐藻胶的能力。

(3) 复筛:挑选透明圈与菌落直径比值较大的 菌株,接入 50 mL 复筛培养基中,28 °C、180 r/min 培养 24 h 后,将发酵液于 4 °C、10000 r/min 条件 下离心 15 min,取上清液利用 DNS 法测定酶活, 从而筛选出酶活性较高的菌种。然后将菌株与甘 油混合使其终浓度为 20%,保藏于-80 °C 的冰箱 中备用。

1.3 菌株的鉴定

1.3.1 形态学观察及生理生化鉴定:将复筛得到的菌株在褐藻胶固体培养基上划线,30°C培养48h,观察其固体培养基上菌落形态。用光学显微镜对菌株的菌体形态进行显微观察(革兰氏染色

法)。部分生理生化特征鉴定参照《常见细菌系统鉴定手册》^[24]。

1.3.2 分子生物学鉴定:采用细菌基因组快速抽 提试剂盒抽提该细菌的基因组,然后采用细菌 16S rDNA 通用引物(正向引物 5'-TGGCGGCGTGCC TAATACATGCAAGT-3',反向引物 5'-TGCTGATC CGCGATTACTAGCGATTCC-3')进行 16S rDNA 的 PCR 扩增,扩增程序为:94 °C 5 min;98 °C 10 s,55 °C 30 s,72 °C 1 kb/1 min,35 个循环; 72 °C 10 min;12 °C 保存。获得的 PCR 产物经割 胶回收试剂盒纯化后与 TA 克隆载体连接,连接液 转化感受态细胞后,挑选阳性克隆由广州伯信生 物科技有限公司测序。将测序结果提交到 GenBank 数据库,并利用 Blast 程序搜索同源序 列,选出同源性高的典型菌株的 16S rDNA 序列为 参比对象,再用 MEGA7.0 软件利用 Neighbor-Joining 法构建系统发育树^[20]。

1.4 菌株生长曲线的测定

将保藏的菌体接入种子培养基中活化,待细菌至对数期,转接入装有 50 mL 筛选培养基的 250 mL 的三角瓶中,28 °C、180 r/min 条件下振 荡培养,每隔 4 h 取样,在 600 nm 处测定吸光度,测定其生长状况^[25]。

1.5 海藻酸裂解酶活性测定

采用 DNS 比色法^[26]。取 0.1 mL 粗酶液,加 入到盛有 0.9 mL 0.6%海藻酸钠底物(用 pH 7.5 的 PBS 缓冲液配制)的比色管中,充分混匀,40 ℃ 水浴条件下反应 10 min 后,加入 0.5 mL DNS 溶 液,然后迅速于沸水浴煮沸 5 min,冷却后定容至 10 mL;空白管由灭活的酶液代替粗酶液。然后于 540 nm 下测定各管吸光度。酶活力单位(U)定义 为:每分钟产生 1 μg 还原糖所需的酶量。发酵液 酶活力单位定义为每毫升发酵液含酶活单位 (U/mL)。

相对酶活力:将实验组中最高的酶活性定义为 100%,其余条件下的酶活力与最高酶活的比值为相对酶活力。

1.6 产酶条件优化

本研究以复筛液体培养基作为出发培养基, 优化结果用于后续试验。研究碳源的种类及浓度、 氮源的种类及浓度、NaCl及其他无机盐及浓度等 对菌株产酶能力的影响。在单因素实验的基础上 选取对海藻酸钠、(NH₄)₂SO₄、NaCl和 MgSO₄进 行四因素三水平正交试验,确定最优培养基组成。 在最优培养基条件下,研究培养 pH、培养温度、 转速、装液量、接种量等培养条件对菌株产酶的 影响。

2 结果和分析

2.1 产海藻酸裂解酶菌株的筛选

通过富集培养,共获得 12 株可在初筛平板培 养基上出现凹陷或透明圈的菌株。平板培养 2 d 后,经十六烷基吡啶(CPC)染色发现,透明圈/菌 落直径(D/d)>3 的菌株共4株,分别编号为 SH-1、 WGD、WGX 和 RL,其中 SH-1、WGD、WGX 菌 株为 *Microbulbifer* sp.菌属(微泡菌属),RL 菌株为 *Isoptericola* sp.菌属(白蚁菌属),见图 1、表1。RL 菌株 D/d 值最大为4.13,透明圈直径 D为11.11 mm, 菌落直径 d 为 2.22 mm,见表 1。CPC 染色法可初 步判定细菌产海藻酸裂解酶的能力,然而并不能准 确表征酶活力的大小。因此,将这4种菌株用于酶 活的测定,进一步评价其降解海藻酸的能力。

图 1. 不同产海藻酸裂解酶菌株 CPC 染色结果

Figure 1. CPC staining of different alginate lyases-producing strain. A, E: SH-1; B, F: WGX; C, G: WGD; D, H: RL; Bar=1 cm.

表 1.	不同海藻酸裂解酶产生菌株 CPC 染色透明圈大小比较
表 1.	不同海藻酸裂解酶产生菌株 CPC 染色透明圈大小比较

Table 1.	Comparison	of the	sizes	of transparent	rings	with CP	C staining
10010 11	companioon	01 0110	01200	or manopulou			

Strain number Genus D/mm d/mm D/d	
SH-1 Microbulbifer sp. 29.49±0.89 7.14±0.16 4.13±0.11	
WGX Microbulbifer sp. 21.83±0.65 4.98±0.14 4.39±0.12	
WGD Microbulbifer sp. 23.92±0.50 7.46±0.23 3.23±0.12	
RLIsoptericola sp.11.11±0.862.22±0.195.24±0.52	

actamicro@im.ac.cn

2.2 海藻酸裂解酶活性测定

细菌经复筛培养基发酵培养后,测定发酵上 清液中的粗酶活性。如图 2-A 所示, SH-1、WGX、 WGD 菌株生长速度较快,培养4h进入生长对数 期,20h进入稳定期,28h后进入衰亡期,三者 生物量变化无显著差异。其中 SH-1 产酶速率与生 长速率耦合,在生长8h时即可检测到酶活,20h 时达到产酶高峰,酶活性为 315.52 U/mL,并在 20-28h 内保持稳定, 28h 后酶活性开始降低 (图 2-B)。WGX 与 WGD 菌株产酶速率不仅明显滞后 于 SH-1 菌株, 且产酶活性显著低于 SH-1 菌株, 培养周期内其最大酶活性分别为 76.61 U/mL 和 64.93 U/mL。RL 菌生长周期较 SH-1 菌株长, 培 养12h进入生长对数期,24h进入稳定期,发酵 28h其OD600为3.51,显著高于SH-1菌株生物量。 此时 RL 酶活性达到最大值,为 157.26 U/mL,显 著低于 SH-1 菌株(图 2)。综上,后续研究中选择

菌株 SH-1 为潜在的海藻酸裂解酶高产菌株。

2.3 高产海藻酸裂解酶菌株 SH-1 鉴定

2.3.1 形态学及生理生化鉴定: 30 ℃ 条件下,菌株 SH-1 在平板培养基上培养 48 h 后菌落形态如图 3-A 所示,该菌株单菌落为规则的圆形,呈乳白色,边缘整齐,菌苔隆起,表面湿润光滑,不易挑起。100×油镜下观察,该细菌呈长杆状,长度为 2–3 µm,革兰氏染色结果为阴性,如图 3-B 所示。SH-1 可在 25–45 °C、pH 4.5–9.5 的条件下生长,最适温度为 32 °C,最适 pH 为 7.5。最高能够耐受 5.5%的 NaCl 溶液,在 5 g/L 的 NaCl 溶液中生长最旺盛。SH-1 与 Yoon 等^[27]报道的微泡菌有效种 *M. elongatus* DSM 6810^T 的生理生化特征比较如表 2 所示。两者生理生化特征基本相同,进一步验证菌株 SH-1 菌株属于微泡菌属。但其在运动性、H₂S 产生、果糖和阿拉伯糖利用试验存在差异性,表明 SH-1 菌株可能是微泡菌属潜在的新种。

Figure 2. The growth (A) and enzyme production (B) curves of different alginate lyase producing strains. Error bars show SE (n=4).

图 3. 菌株 SH-1 形态学特征

Figure 3. Morphological characteristics of strain SH-1. A: Colony morphology, Bar=1cm; B: Cellular morphology, Bar=2 μ m.

2.3.2 分子生物学鉴定:对菌株 SH-1 的 16S rDNA 进行 PCR 扩增,产物测序后获得长度为 1398 bp。同源性比较发现该菌株 SH-1 与 *Microbulbifer* sp. BN3 序列的相似性为 99%。该菌 与其近源菌株 16S rDNA 序列构建的系统发育进 化树如图 4 所示,菌株 SH-1 与 *Microbulbifer* sp. BN3、*Microbulbifer* sp. SW-2-6、*Microbulbifer* sp. Strain HB161719 在同一分支。结合菌株 SH-1 的 形态学特征,初步鉴定其属于微泡菌属

(*Microbulbifer* sp.),并命名为 *Microbulbifer* sp. SH-1,保藏于中国微生物菌种保藏管理委员会普 通微生物中心,保藏编号为 CGMCC No. 16906。

2.4 培养基优化

2.4.1 碳源种类及浓度对 Microbulbifer sp. SH-1 产酶的影响:碳源的主要功能包括为细胞内的大 分子合成提供碳素骨架以及为细胞的新陈代谢 提供能量。本研究将海藻酸钠、葡萄糖、蔗糖、 甘露醇、甘油、淀粉等分别作为菌株 Microbulbifer sp. SH-1 生长的唯一碳源,探究不同碳源对产酶 的影响。结果表明,只有以褐藻酸钠为唯一碳源 时,才能在发酵液中检测到酶活性,表明菌株 SH-1 所产的褐藻胶裂解酶属于诱导酶。在此基础 上,进一步研究了不同质量浓度的褐藻酸钠对菌 株 SH-1 菌株产酶的影响。如图 5 所示,随着褐 藻酸钠质量浓度的增加,菌株的产酶量逐渐增 加,但是当质量浓度超过 12 g/L 时,菌株的产酶 量反而逐渐下降,因此褐藻酸钠适宜质量浓度 为 12 g/L。

Characteristics	SH-1	DSM 6810 ^T	Characteristics	SH-1	DSM 6810 ^T
Growth pH	4.5–9.5	5-10	M.R	+	+
Growth Temperature	25–45 °C	25–30 °C	H ₂ S production	_	+
NaCl concentration for growth	0-5.5%	2%-3%	Amylolysis	+	ND
Motility	-	+	Glucose	+	+
Oxidase	+	ND	D-mannitol	+	ND
Catalase	+	+	D-mannose	_	ND
Uricase	-	-	D-fructose	_	+
Nitrate reduction	-	-	Arabinose	_	+
Indole production	-	-	Galactose	+	+
Gelatin liquefaction	+	+	Sucrose	+	+
V.P	+	+	Cellulose	+	+

表 2. 菌株 SH1 生理生化特征 Table 2. Physiological and biochemical characteristics of strain SH-1

+: positive reaction; -: negative reaction; ND: Not described.

图 4. 菌株 SH1 的 16S rDNA 序列系统进化树

Figure 4. Phylogenetic tree of the 16S rRNA sequence of strain SH-1. Numbers in parentheses represent accession numbers in GenBank. Numbers at each branch point represent the bootstrap values on Neighbor-joining analysis of 1000 replication deta sets. Bar 0.01 is the sequence divergence.

图 5. 海藻酸钠浓度对菌株 SH-1 生长和产酶的影响 Figure 5. Effect of sodium alginate concentration on growth and enzyme production of strain SH-1. Error bars show SE (*n*=4).

2.4.2 氮源种类及浓度对 Microbulbifer sp. SH-1 产酶的影响:氮源主要用于构成菌体细胞物质如氨 基酸、蛋白质、核酸等和含氮代谢物。本研究将 (NH₄)₂SO₄、NH₄Cl、(NH₄)₂CO₃、尿素、蛋白胨、酵 母提取物作为氮源,考察不同氮源对菌株 SH-1 生长 和产酶的影响。如图 6-A 所示,选择无机氮源时菌 株 SH-1 酶活性较高,而选择有机氮源时酶活性较 低。菌株 SH-1 在三种无机氮源中均可表达出较高的 海藻酸裂解酶活性,考虑到成本及原料的稳定性, 故选择(NH₄)₂SO₄作为培养基中的氮源。进一步研究 了不同氮源浓度对菌株产酶的影响,结果表明,当 硫酸铵浓度为 7 g/L 时,菌株产酶能力最强,当其 浓度过大时则会造成酶活性的降低(图 6-B)。

Figure 6. Effect of nitrogen source and concentration on growth and enzyme production of strain SH-1. A: Type of nitrogen source; B: $(NH_4)_2SO_4$ concentration. Error bars show SE (*n*=4).

2.4.3 NaCl浓度对菌株产酶的影响:由图 7-A 可知,适宜SH-1菌株生长的NaCl浓度范围为5-45 g/L,当NaCl浓度为5 g/L时,菌株SH-1生长旺盛,产酶活性达到最大。而当NaCl浓度超过5 g/L时,虽然菌体生物量虽不受影响,但酶活性迅速降低。NaCl浓度为过高(55 g/L)或过低(0 g/L)时,SH-1菌株生长和产酶均受到明显抑制。

2.4.4 MgSO4 浓度对菌株产酶的影响: Mg²⁺一般 认为是对细菌产酶或酶活性提高的激活剂,为确 定 Mg²⁺对 SH-1 产酶的影响,本文研究了 MgSO4 浓度和产酶之间的关系。如图 7-B 所示,当 MgSO4 浓度低于 0.4 g/L 时,菌株生长及菌株产酶受到明 显抑制。当 MgSO4浓度高于 0.4 g/L 时,虽然菌体 生长不受影响,但会显著抑制酶的活性。当 MgSO4 浓度为 0.4 g/L 时,菌体产酶活性最高。

2.4.5 K₂HPO₄ 浓度对菌株产酶的影响: K₂HPO₄ 是发酵培养基中广泛应用的无机盐成分, K₂HPO₄ 浓度对菌株 SH-1 产酶也可能存在一定的影响。通过不同 K₂HPO₄ 添加量研究发现,当培养基中不添

加 K₂HPO₄时,细菌不能正常生长。K₂HPO₄添加 量为1g/L 时菌株产酶活性最高,随着其浓度的增 大,菌株产酶稍微有所降低,因此1g/L K₂HPO₄ 为最适添加量(图 7-C)。

2.4.6 FeSO₄ 浓度对菌株产酶的影响:从图 7-D 可以看出,FeSO₄ 对菌体生长并无明显影响,但 0.02–0.06 g/L 范围内的 Fe²⁺能够促进产酶活性的 提高,过高或过低时酶活性均受到一定的抑制。因此确定 0.02 g/L FeSO₄ 为最适添加量。

2.4.7 正交试验: 单因素试验确定了对该菌株产 酶较为主要的因素有褐藻酸钠、(NH₄)₂SO₄、NaCl 及 MgSO₄质量浓度,因此进行四因素三水平 L₉(3⁴) 的正交试验,试验设计及结果见表 3。

结果显示,正交试验所考察的影响酶活力的4 个因素对酶活性影响均达到显著水平,且主次大 小为: NaCl > (NH₄)₂SO₄ > 褐藻酸钠 > MgSO₄ (表 3; 表 4)。SH-1 菌株产海藻酸裂解酶的理论最优 组合为 A₁B₁C₁D₁,进行的 9 组试验中实测最优也为 第 1 组试验(A₁B₁C₁D₁),即褐藻酸钠 10 g/L、NaCl 5 g/L、(NH₄)₂SO₄ 5 g/L 及 MgSO₄ 0.2 g/L。在该条件下, 菌株发酵粗酶液酶活显著提高, 可达 700.83 U/mL。

2.5 培养条件优化

本文研究优化培养基初始 pH 对菌株 SH-1 产 酶的影响,结果如图 8-A 所示,在 pH 4.5-7.5 范 围内,海藻酸裂解酶活性随 pH 的上升而增大; pH 为 7.5 时,酶活力达到最大;当 pH 大于 7.5 时, 酶活力开始下降。因此,SH-1 产酶最适 pH 为 7.5。 温度是影响菌株生长代谢的重要环境因子。在上 述优化条件下,选择 25、28、32、35、40 °C 进行 发酵培养,结果如图 8-B 所示,菌株 SH-1 的最适 产酶温度为 32°C。如图 8-C 所示,接种量较低时, 其对细菌生长及产酶无明显影响,当接种量过高 时由于细菌间的竞争,造成产酶能力的下降,考 虑到节约成本,最佳的接种量为 1%。装瓶量是制 约菌株生长及产酶的重要因素,装瓶过少,水分 易于蒸发,装瓶过多溶氧减少,不利于菌体生长。 试验发现当 250 mL 锥形瓶装液量为 50 mL 时, 菌株 SH-1 产酶能力最强(图 8-D)。本研究还测定 了摇床不同转速对菌株产酶的影响,结果发现, 随着摇床转速的提高,菌株 SH-1 发酵产酶活性增 强,最佳的摇床转速为 240 r/min (图 8-E)。

图 7. 不同无机盐浓度对菌株产酶的影响

Figure 7. Effect of different inorganic mineral concentration on growth and enzyme production of strain SH-1. A: Meal; B: MgSO₄; C: K_2 HPO₄; D: FeSO₄. Error bars show SE (*n*=4).

http://journals.im.ac.cn/actamicrocn

N	A/Sodium alginate	B/NaCl	C/(NH ₄) ₂ SO ₄	D/MgSO ₄	Enzyme activity/(U/mL)			
NO. 7					Ι	II	III	Average
1	1(10)	1(5)	1(5)	1(0.2)	682.66	715.99	703.84	700.83
2	1(10)	2(10)	2(7)	2(0.4)	392.41	341.37	352.83	362.20
3	1(10)	3(15)	3(9)	3(0.6)	326.10	342.76	247.63	305.49
4	2(12)	1(5)	2(7)	3(0.6)	456.99	400.39	472.61	443.33
5	2(12)	2(10)	3(9)	1(0.2)	351.79	391.37	417.41	386.85
6	2(12)	3(15)	1(5)	2(0.4)	363.59	346.23	343.45	351.09
7	3(14)	1(5)	3(9)	2(0.4)	556.98	502.12	533.02	530.70
8	3(14)	2(10)	1(5)	3(0.6)	383.03	375.05	393.10	383.72
9	3(14)	3(15)	2(7)	1(0.2)	233.05	228.53	259.78	240.45
K1	456.18	558.29	478.55	442.71				
K2	393.76	377.60	348.66	414.67				
К3	384.96	299.01	407.69	377.52				
R	71.21	259.28	129.89	65.20				

表 3. 正交表试验结果 Table 3. Results of orthogonal experiment

表 4. 正交实验方差分析表

.1

Table 4. variance analysis of orthogonal experiment						
Source of variation	SS	DF	MS	F		
Block	646.79	2	323.40	0.37		
A(Sodium alginate)	27133.94	2	13566.97	15.42**		
B(NaCl)	318149.54	2	159074.77	180.85**		
$C((NH_4)_2SO_4)$	76130.44	2	38065.22	43.27**		
D(MgSO ₄)	19251.19	2	9625.59	10.94**		
Error	14073.87	16	879.62			
Total	455385.77	26				

*: $F_{0.05}(2, 16)=3.63$; **: $F_{0.01}(2, 16)=6.23$.

2.6 菌株 SH-1 优化前后产酶曲线

对菌株 SH-1 发酵培养基及发酵条件优化前后 的生长及产酶曲线进行比较,结果如图 9 所示。优 化后菌株 SH-1 较优化前提前进入稳定期和衰亡 期,稳定期变短,最大生物量无明显差异(图 9-A)。 优化后菌株发酵 12h后进入海藻酸裂解酶迅速积累 期,并持续至 24h,发酵 24h时酶活力达到最大值 757.90 U/mL,24h后酶活力逐渐降低。相较于未优 化前发酵 20h 出现产酶高峰(315.17 U/mL)稍有滞 后,但酶活力比优化前提高了 2.4 倍(图 9-B)。

图 8. 培养条件优化

Figure 8. Effect of fermentation conditions on enzyme production of strain SH-1. A: Initial pH; B: Temperature; C: Inoculation concentration; D: Liquid volume; E: Shaking speed. Error bars show SE (*n*=4).

图 9. 菌株 SH-1 优化前、后生长及产酶曲线 Figure 9. Growth (A) and enzyme production curve (B) of strain SH-1. Error bars show SE (*n*=4).

3 讨论

海藻酸裂解酶是以褐藻中海藻酸为底物制备 具有多功能活性褐藻寡糖的关键酶,对海藻资源 的高效利用具有重要意义^[28-29]。本研究从海带养 殖区的滨海土壤中筛选得到一株高效产酶菌株 SH-1。经生理生化及 16S rDNA 鉴定其为微泡菌 属,命名为 *Microbulbifer* sp. SH-1。微泡菌最开始 由 González 发现并定义,典型存在于海洋沉积物、 盐沼、滨海土壤和红树林中^[30-31]。已有报道中, Sun 等发现 *Microbulbifer elongatus* strain HZ11 能 够降解海带为单细胞碎屑,并在其基因组中发现 9个海藻酸裂解酶基因^[32]。Yang 等对 *Microbulbifer* sp. Q7 的测序也发现 5 个海藻酸裂解酶基因^[33]。 这些结果表明 *Microbulbifer* sp.是一个潜在的海藻 酸裂解酶生产菌属。然而,目前针对 *Microbulbifer* sp.菌属菌株产酶活性的研究较少, Masayuki 等发 现海带降解菌株 Microbulbifer sp. 6532A, 培养 2 d 以后,其海藻酸裂解酶活力达 114.8 U/mL^[34]。李 永幸采用单因素和影响面法对 Microbulbifer sp. ALW1 发酵进行优化,优化后发酵 60 h 产酶活性 为130 U/mL^[35]。与之相比, Microbulbifer sp. SH-1 发酵 24 h 粗酶活性为 315.52 U/mL, 优化后产酶 活性为 757.90 U/mL, 不仅发酵速度快, 而且酶活 性远高于菌株 6532A 和 ALW1。微泡菌属内的不 同菌株,在海藻酸裂解酶产酶能力上存在一定差 异,这可能与海藻酸裂解酶相关基因的差异有关。 在其他产海藻酸裂解酶的菌株研究中, 菌株 Bacillus amyloliquefaciens HB12274 在最适发酵条 件下, 培养 42 h 粗酶活性可达 721.2 U/mL, 与 本研究产酶活力相近^[25]。Bacillus weihaiensis Alg07 优化培养 24 h 粗酶活性可达 563 U/mL, 与本研究产酶周期一致,但酶活性略低,其他高 活性菌株未见报道^[36]。

微生物发酵过程中培养基成分对细菌产酶活 力具有决定性影响,合适的碳、氮、金属离子能 够促进菌株的生长和产酶^[37]。Microbulbifer sp. SH-1 产酶受海藻酸钠的诱导,产酶活力随海藻酸 钠浓度增加呈先升高后降低的趋势,这可能与 Microbulbifer sp.菌属菌株好氧性有关,海藻酸钠 浓度过高,造成培养基中溶氧降低,影响细菌生 长,目前报道海藻酸裂解酶产生菌多为好氧型细 菌。不同海藻酸裂解酶产生菌对氮源的代谢有不 同的偏好,大多数菌株当以有机氮(蛋白胨)为氮源 时产酶活力最强,如芽孢杆菌 HB172198^[38]和芽孢 杆菌 Alg07 等^[36]、海科贝特氏菌 HQZ08^[39]等;而 少数产酶细菌表现出无机氮源偏好,如假交替单 胞菌 B1 在以 NH4Cl 为氮源时产酶活性最高^[40]。 本文 SH-1 菌株在以硫酸铵和氯化铵为氮源时均 表现出较高产酶活性,培养基成本相对较低。 Microbulbifer sp. SH-1 能够藻在 5-45 g/L NaCl 浓 度范围内正常生长,表现出海洋细菌嗜盐的特点。 然而海藻酸裂解酶随着盐浓度的增大而降低,可 能与高浓度的 NaCl 抑制酶活有关。适合浓度的 Mg⁺、K⁺、Fe²⁺对产酶起到了促进作用,这与前人 的研究结果相一致。此外,值得一提的是菌株 SH-1 几乎不能在无 K⁺的培养基中生长和产酶, 表明 K⁺ 是其生长和产酶所必需的无机盐。Microbulbifer sp. SH-1 适宜生长条件为 pH 7-8.5, 温度 25-32 °C, 最适产酶条件为 pH 7.5, 温度 32 ℃, 该条件温和 可控易于实现。

经培养基及培养条件优化后,确定其最佳产 酶条件为海藻酸钠 10 g/L, NaCl 5 g/L, (NH₄)₂SO₄ 5 g/L, MgSO₄ 0.2 g/L, K₂HPO₄ 1 g/L, FeSO₄ 0.02 g/L, pH 7.5, 温度 32 °C, 接种量 1%, 装瓶 量 50 mL, 摇床转速 240 r/min, 在此条件下可获 得最大酶活为 757.90 U/mL,比优化前提高了 2.4 倍。这为高活性海藻酸裂解酶工业制备和海藻酸 寡糖生产提供了理论依据。

参 考 文 献

- Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu XB, Guo Z. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. *Food Chemistry*, 2014, 164: 185–194.
- [2] Augusto A, Dias JR, Campos MJ, Alves NM, Pedrosa R, Silva SFJ. Influence of *Codium tomentosum* extract in the properties of alginate and chitosan edible films. *Foods*, 2018, 7(4): 53.
- [3] Cian RE, Salgado PR, Drago SR, González RJ, Mauri AN. Development of naturally activated edible films with antioxidant properties prepared from red seaweed *Porphyra columbina* biopolymers. *Food Chemistry*, 2014, 146: 6–14.
- [4] Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. *Nature*, 2014, 505(7482): 239–243.
- [5] Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: substrates, structure, properties, and prospects of application. *Russian Journal of Bioorganic Chemistry*, 2018, 44(4): 386–396.
- [6] Gao S, Zhang ZL, Li SY, Su H, Tang LY, Tan YL, Yu WG, Han F. Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. *International Journal of Biological Macromolecules*, 2018, 120: 729–735.
- [7] Zhu BW, Ni F, Ning LM, Sun Y, Yao Z. Cloning and characterization of a new pH-stable alginate lyase with high salt tolerance from marine *Vibrio* sp. NJ-04. *International Journal of Biological Macromolecules*, 2018, 115: 1063–1070.
- [8] He XJ, Li R, Huang GM, Hwang HM, Jiang XL. Influence of marine oligosaccharides on the response of various

biological systems to UV irradiation. *Journal of Functional Foods*, 2013, 5(2): 858–868.

- [9] Chen JY, Hu Y, Zhang LR, Wang YJ, Wang SC, Zhang YZ, Guo HY, Ji DG, Wang YT. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. *Frontiers in Pharmacology*, 2017, 8: 623.
- [10] Watthanaphanit A, Saito N. Effect of polymer concentration on the depolymerization of sodium alginate by the solution plasma process. *Polymer Degradation and Stability*, 2013, 98(5): 1072–1080.
- [11] Kelishomi ZH, Goliaei B, Mahdavi H, Nikoofar A, Rahimi M, Moosavi-Movahedi AA, Mamashli F, Bigdeli B. Antioxidant activity of low molecular weight alginate produced by thermal treatment. *Food Chemistry*, 2016, 196: 897–902.
- [12] Naeem M, Idrees M, Aftab T, Khan MMA, Moinuddin, Varshney L. Irradiated sodium alginate improves plant growth, physiological activities and active constituents in *Mentha arvensis* L. *Journal of Applied Pharmaceutical Science*, 2012, 2(5): 28–35.
- [13] Boucelkha A, Petit E, Elboutachfaiti R, Molinié R, Amari S, Zaidi-Yahaoui R. Production of guluronate oligosaccharide of alginate from brown algae *Stypocaulon scoparium* using an alginate lyase. *Journal of Applied Phycology*, 2017, 29(1): 509–519.
- [14] Iwamoto M, Kurachi M, Nakashima T, Kim D, Yamaguchi K, Oda T, Iwamoto Y, Muramatsu T. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. *FEBS Letters*, 2005, 579(20): 4423–4429.
- [15] Han WJ, Gu JY, Cheng YY, Liu HH, Li YZ, Li FC. Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, *Flammeovirga* sp. strain MY04: effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. *Applied and Environmental Microbiology*, 2016, 82(1): 364–374.
- [16] Zhu BW, Yin H. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. *Bioengineered*, 2015, 6(3): 125–131.
- [17] Kim HS, Lee CG, Lee EY. Alginate lyase: structure, property, and application. *Biotechnology and Bioprocess Engineering*, 2011, 16(5): 843–851.

- [18] Inoue A, Nishiyama R, Ojima T. The alginate lyases FlAlyA, FlAlyB, FlAlyC, and FlAlex from *Flavobacterium* sp. UMI-01 have distinct roles in the complete degradation of alginate. *Algal Research*, 2016, 19: 355–362.
- [19] Zhu XY, Li XQ, Shi H, Zhou J, Tan ZB, Yuan MD, Yao P, Liu XY. Characterization of a novel alginate lyase from marine bacterium *Vibrio furnissii* H1. *Marine Drugs*, 2018, 16(1): 30.
- [20] Zhu BW, Ning LM, Jiang YC, Ge L. Biochemical characterization and degradation pattern of a novel endo-type bifunctional alginate lyase AlyA from marine bacterium *Isoptericola halotolerans. Marine Drugs*, 2018, 16(8): 258.
- [21] Lundqvist LCE, Jam M, Barbeyron T, Czjzek M, Sandström C. Substrate specificity of the recombinant alginate lyase from the marine bacteria *Pseudomonas alginovora*. *Carbohydrate Research*, 2012, 352: 44–50.
- [22] Li JW, Dong S, Song J, Li CB, Chen XL, Xie BB, Zhang YZ. Purification and characterization of a bifunctional alginate lyase from *Pseudoalteromonas* sp. SM0524. *Marine Drugs*, 2011, 9(1): 109–123.
- [23] Kim DE, Lee EY, Kim HS. Cloning and characterization of alginate lyase from a marine bacterium *Streptomyces* sp. ALG-5. *Marine Biotechnology*, 2009, 11(1): 10–16.
- [24] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001.
- [25] Gao WY, Huang HQ, Liu M, Zhu J, Bao SX. Identification and fermentation optimization of an alginate lyase-producing strain HB12274. Genomics and Applied Biology, 2018, 37(10): 4365–4371. (in Chinese) 高王宇,黄惠琴,刘敏,朱军,鲍时翔. 产褐藻胶裂解酶 菌株 HB12274 的鉴定和发酵优化. 基因组学与应用生物 学, 2018, 37(10): 4365–4371.
- [26] Zhu YB, Wu LY, Chen YH, Ni H, Xiao AF, Cai HN. Characterization of an extracellular biofunctional alginate lyase from marine *Microbulbifer* sp. ALW1 and antioxidant activity of enzymatic hydrolysates. *Microbiological Research*, 2016, 182: 49–58.
- [27] Yoon JH, Kim H, Kang KH, Oh TK, Park YH. Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(5): 1357–1361.

692

- [28] Sun YB, Chen HJ, Jiang GL. Research progress of alginate lyase. *China Brewing*, 2017, 36(3): 14–18. (in Chinese) 孙艳宾,陈洪基,姜国良. 褐藻酸裂解酶的研究进展. 中国酿造, 2017, 36(3): 14–18.
- [29] Wei D, Dou WF, Li H, Li H, Xu ZH, Shi JS. Isolation, identification, and fermentation optimization of a high efficient novel alginate-degrading strain. *Food and Fermentation Industries*, 2012, 38(7): 26–31. (in Chinese) 魏丹, 窦文芳, 李恒, 李会, 许正宏, 史劲松. 高效降解 褐藻胶新菌种的筛选、鉴定及产酶条件优化. 食品与发酵 工业, 2012, 38(7): 26–31.
- [30] González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. Nov., and Marinobacterium georgiense gen. nov., sp. Nov., Two marine bacteria from a lignin-rich pulp mill waste enrichment community. International Journal of Systematic and Evolutionary Microbiology, 1997, 47(2): 369–376.
- [31] Moh TH, Lau NS, Furusawa G, Amirul AAA. Complete genome sequence of *Microbulbifer* sp. CCB-MM1, a halophile isolated from Matang Mangrove Forest, Malaysia. *Standards in Genomic Sciences*, 2017, 12: 36.
- [32] Sun C, Chen YJ, Zhang XQ, Pan J, Cheng H, Wu M. Draft genome sequence of *Microbulbifer elongatus* strain HZ11, a brown seaweed-degrading bacterium with potential ability to produce bioethanol from alginate. *Marine Genomics*, 2014, 18: 83–85.
- [33] Yang M, Yu Y, Jin TY, Mou HJ, Li L. Genomic analysis of *Microbulbifer* sp. Q7 exhibiting degradation activity toward seaweed polysaccharides. *Marine Genomics*, 2018, 39: 7–10.
- [34] Wakabayashi M, Sakatoku A, Noda F, Noda M, Tanaka D, Nakamura S. Isolation and characterization of *Microbulbifer* species 6532A degrading seaweed thalli to single cell detritus particles. *Biodegradation*, 2012, 23(1): 93–105.
- [35] Li YX, Yang F, Jiang ZD, Ni H, Yang QM, Xiao AF. Response surface optimization of fermentation conditions for alginate lyase production by *Microbulbifer* sp. ALW1. *Bulletin of Fermentation Science and Technology*, 2016, 45(2): 75–80. (in Chinese)

李永幸,杨帆,姜泽东,倪辉,杨秋明,肖安风.响应面 优化微泡菌 ALW1 产褐藻胶裂解酶的发酵条件.发酵科 技通讯,2016,45(2):75-80.

- [36] Chen P, Zhu YM, Han WJ, Men Y, Jia SR, Sun YX. Screening and identification of a bacterial strain and optimization of medium composition and culture conditions for the production of alginate lyase. *Food Science*, 2015, 36(15): 105–111. (in Chinese) 陈朋,朱玥明,韩文佳,门燕,贾士儒,孙媛霞. 产褐藻 胶裂解酶菌种的筛选、鉴定及发酵条件优化. 食品科学, 2015, 36(15): 105–111.
- [37] Hou SC, Wen SH, Tang ZH, Cui YL, Qin S. The screening, identification of alginate degrading bacteria and optimization of fermentation conditions. *Marine Sciences*, 2014, 38(7): 20–26. (in Chinese) 侯士昌,温少红,唐志红,崔玉琳,秦松. 一株高效褐藻

酸降解菌的筛选、鉴定及其发酵条件的优化.海洋科学, 2014, 38(7): 20–26.

- [38] Zheng ZG, Huang HQ, Zhu J, Zou XX, Bao SX. Optimization of culture medium for alginate lyase produced by *Paenibacillus* HB172198 using response surface methodology. *Genomics and Applied Biology* [2018-11-29]. http://kns.cnki.net/KCMS/detail/45.1369.Q.20181129.1637. 004.html. (in Chinese)
 - 郑志国, 黄惠琴, 朱军, 邹潇潇, 鲍时翔. 响应面法优化 类芽胞杆菌 HB172198 产褐藻胶裂解酶发酵培养基. 基因 组 学 与 应 用 生 物 学 [2018-11-29]. http://kns.cnki.net/KCMS/detail/45.1369.Q.20181129.1637. 004.html.
- [39] Zhao WL, Ye J, Zhang N, Xiao MT, Zhao P, Huang YY. Screening, identification and fermentation optimization of an alginate-degrading strain. *Acta Microbiologica Sinica*, 2019, 59(1): 169–180. (in Chinese)
 赵婉琳, 叶静, 张娜, 肖美添, 赵鹏, 黄雅燕. 褐藻胶降 解菌的筛选、鉴定及产酶条件优化. 微生物学报, 2019, 59(1): 169–180.
- [40] Yan F, Lian YP, Yang G, Wang PS, Wu CS, Chen NX. Screening of alginate lyase-producing strains and optimization of fermentation conditions. *Science and Technology of Food Industry*, 2015, 36(22): 287–292. (in Chinese)

严芬, 连燕萍, 杨光, 王培松, 吴晨烁, 陈宁辛. 高产褐 藻胶裂解酶菌株的筛选及发酵条件优化. 食品工业科技, 2015, 36(22): 287-292.

Isolation, identification and culture optimization of an alginate lyase-producing strain *Microbulbifer* sp. SH-1

Jin Yang¹, Hong Shen^{1,2*}

¹ College of Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong Province, China

2 Guangdong Provincial Key Laboratory of Eco-circular Agriculture, Guangzhou 510642, Guangdong Province, China

Abstract: [Objective] The aim of this study was to screen a strain with high alginate lyase activity and optimize the culture conditions of the strain. **[Methods]** Using sodium alginate as the sole carbon source, we screened and isolated microorganisms from the coastal soil of Zhangzhou, Fujian province, and a high-yield strain of alginate lyase was obtained. According to the morphological, physiological and biochemical characteristics and 16S rDNA sequence analysis, the target strain was identified. Then the enzyme production conditions were optimized by single factor and orthogonal test. **[Results]** Four strains with transparent circle to colony diameter ratio (D/d)>3 were obtained by cetylpyridine staining. DNS method was used to determine the activity of alginate lyase in the fermentation broth of four strains. The enzyme activity of strain SH-1 was the highest, reaching 315.5 U/mL. Based on morphological, physiological, biochemical and 16S rDNA sequencing identification, it was named *Microbulbifer* sp. SH-1. Through single factor and orthogonal test optimization, the optimum enzyme production medium was determined as follows (g/L): sodium alginate 10, NaCl 5, (NH₄)₂SO₄ 5, MgSO₄ 0.2, K₂HPO₄ 1 and FeSO₄ 0.02. Further optimization of culture conditions showed that SH-1 strain could be inoculated into 50 mL medium at initial pH 7.5 and 32 °C with 1% inoculation. The maximum enzyme activity of SH-1 strain could reach 757.9 U/mL under 240 r/min for 24-h shaking, 2.4 times higher than that before optimization. **[Conclusion]** The optimized conditions for SH-1 production provides reference for large-scale preparation of alginate lyase and further research.

Keywords: alginate lyase, Microbulbifer sp., optimization of enzyme production conditions

(本文责编:张晓丽)

Supported by The National Key Research and Development Program of China (2016YFD0200405-5); Guangdong Provincial Key Laboratory of Eco-circular Agriculture/Science and Technology Program of Guangdong (2019B030301007) *Corresponding author. E-mail: hshen@scau.edu.cn

Received: 19 June 2019; Revised: 9 October 2019; Published online: 25 October 2019