微生物学报 Acta Microbiologica Sinica 2020, 60(5): 924–938 http://journals.im.ac.cn/actamicrocn DOI: 10.13343/j.cnki.wsxb.20190368

Research Article 研究报告

基于比较基因组学分析嗜热链球菌的遗传多样性和防御系统

王宇,赵洁,孙志宏,孙天松,张和平*

内蒙古农业大学乳品生物技术与工程教育部重点实验室,农业农村部奶制品加工重点实验室, 内蒙古 呼和浩特 010018

摘要:【目的】嗜热链球菌(Streptococcus thermophilus)是发酵乳制品的基础发酵菌种之一,全基因组水 平解析嗜热链球菌的遗传多样性和工业发酵特性对于优良发酵菌株的筛选意义重大。【方法】本研究通 过比较基因组学方法对 27 株嗜热链球菌的遗传多样性和防御系统进行分析。【结果】全基因组分析结果 显示嗜热链球菌群体内具有较高的遗传多样性;基于核心基因集构建的系统发育树划分为 2 个分支,其 中分支 2 菌株缺乏完整的组氨酸合成途径,经验证,分支 2 菌株在缺乏组氨酸的培养基中不能正常生长。 通过对嗜热链球菌不同菌株的防御系统进行分析发现,同类型的 CRISPR 基因座和限制修饰系统在基因 组中出现的位置相对固定。CRISPR-Cas 系统(P<0.05, r=0.43)和限制修饰系统(P<0.01, r=-0.59)的数量 与编码转座酶基因的数量均显著相关,表明嗜热链球菌为了阻止外源 DNA 入侵会进化出多种防御系统 来保护自身遗传完整性。此外,分支 1 菌株的 CRISPR-Cas 系统数量极显著(P<0.001)多于分支 2,而限 制修饰系统无显著差异,表明分支 1 菌株在噬菌体抗性方面可能更具优势。【结论】本研究基于核心基 因构建的系统发育分析将 27 株嗜热链球菌分为 2 个分支,不同分支菌株在组氨酸代谢能力和防御系统

关键词: 嗜热链球菌, 比较基因组学, 遗传多样性, CRISPR-Cas 系统, 限制修饰系统

嗜热链球菌作为一种重要的工业发酵剂,是 链球菌属中唯一公认的安全菌种^[1],被广泛应用于 各种发酵乳制品中。基因组学研究为解析嗜热链 球菌在发酵过程中的许多关键生理功能提供了新 的见解,全基因组序列有助于更好地了解嗜热链 球菌的生产特性,如胞外多糖合成、代谢途径、 产酸能力和防御系统等重要的工业表型性状^[1-3]。

噬菌体污染是乳制品发酵过程中最常见的问题,它会导致产酸变慢和发酵失败,并造成巨大的经济损失^[4]。因此,菌株抵抗噬菌体污染的能力

基金项目: 国家自然科学基金(31430066, 31771954)

^{*}通信作者。Tel: +86-471-4300593; E-mail: hepingdd@vip.sina.com

收稿日期: 2019-08-11; 修回日期: 2019-11-13; 网络出版日期: 2019-11-20

成为优良商业发酵剂的筛选标准之一^[5]。嗜热链球 菌为了保护自身免受噬菌体的侵害进化出多种抗 噬菌体机制,其中限制修饰系统(restricted modification system, R-M)和 CRISPR-Cas 系统都 是通过专门切割进入宿主细胞的外源 DNA 来发 挥作用^[6]。CRISPR 位点与噬菌体特异性获得性免 疫的关系最早在嗜热链球菌中得到证实[7],其通过 获得新的间隔序列以应对噬菌体攻击,具有较强 CRISPR 介导防御能力的嗜热链球菌菌株在乳制 品发酵过程中抵抗噬菌体侵染的能力也较强^[8]。此 外, CRISPR-Cas 系统具有对物种进行基因分型的 潜力^[9],特别是在优良发酵剂和益生菌的筛选方 面^[10-11]。与 CRISPR-Cas 系统不同, R-M 系统是 细菌生来就有的一种先天性免疫系统。Binetti 等^[5] 对 9 株商业嗜热链球菌菌株的噬菌体抗性进行研 究,发现 R-M 系统在细胞死亡之前就中断并除去 噬菌体感染颗粒,是一种强大且有效的防御机制。 此外, R-M 系统的多样性对于细菌菌群之间遗传 信息的传递非常重要^[12]。

近年来,乳酸菌领域内关于遗传多样性和种 群结构等微生物基础研究逐渐受到人们的重视。 2018年,赵洁^[7]对分离自自然发酵乳的185株 *Streptococcus thermophilus*基因组进行多样性分析,结果显示分离自酸牦牛奶和酸牛奶的菌株遗 传多样性更高。同年,宋宇琴^[13]通过构建200株 德氏保加利亚乳杆菌(*Lactobacillus delbrueckii* subsp. *bulgaricus*)的泛-核心基因集,发现随着基因 组数量的增加,*L. delbrueckii* subsp. *bulgaricus*的 泛基因集呈现增加的趋势,由此说明该物种具有 较高的遗传多样性。基因组学是研究乳酸菌遗传 多样性的重要工具,从全基因组水平上了解嗜热 链球菌的遗传信息对菌株发酵特性的研究有重要 作用。 现代测序技术使得微生物全基因组分析更加 便捷。本研究中的菌株 S. thermophilus ND07 分离 自青海地区自然发酵酸牦牛奶样品,本实验室前 期的研究揭示 S. thermophilus ND07 较商业发酵菌 株 S. thermophilus YC-X11 在发酵乳中具有弱后酸 化、高黏度和高持水性的特性,具有成为一株优 良商业化发酵菌株的潜力。本研究利用比较基因 组学手段构建了 27 株嗜热链球菌的泛-核心基因 集,并对其核心、附属和特异基因进行功能注释, 为研究嗜热链球菌遗传多样性的研究提供基本思 路;同时对嗜热链球菌重要的工业表型性状如氨 基酸生物合成、限制性修饰系统以及 CRISPR-Cas 系统等进行深入分析,为工业生产中快速筛选优 良乳品发酵剂提供借鉴。

1 材料和方法

1.1 试验材料

S. thermophilus ND07 分离自青海地区自然发 酵酸牦牛奶样品,由内蒙古农业大学乳品生物技 术与工程教育部重点实验室提供,其具体的全基 因组 DNA 提取方法和全基因组序列参考钟智等^[3] 的文章。选择已完成全基因组测序的 26 株嗜热链 球菌进行比较基因组学分析,菌株序列从 NCBI 数 据库(https://www.ncbi.nlm.nih.gov/genome/?term=) 下载。26 株嗜热链球菌菌株具体信息见表 1。

1.2 组氨酸缺陷试验

将 S. thermophilus ND07、MN-BM-A01 (蒙牛乳 业(集团)股份有限公司提供, 菌粉)和 EPS (光明乳业 股份有限公司提供)以 2%接种量接种于 M17 液体培 养基(Oxoid Ltd., Basingstoke, United Kingdom)中, 42 ℃ 厌氧培养 18 h, 扩大培养至三代后将其以 2% 的接种量接种于添加(含量 0.15 g/L)或不添加

	ısposase																													
	Trai	42	36	36	52		43	52	47	52	50	52	31	49	33	39	50	45	53		42	51	42	32	37	68	31	26	51	40
Table 1. Summary of completely sequenced genomes of S . <i>thermophilus</i> strains	Restriction- modification (RM) systems	4	4	4	2		2	3	3	2	3	2	.0	3	3	3	3	2	3		2	2	3	3	2	1	.0	4	3	3
	CRISPR-Cas system	2	2	1	3		3	3	4	3	4	С	2	4	1	ю	4	3	2		2	4	2	2	3	2	.0	1	2	3
	s Pseudogenes	196	215	209	230		200	211	234	220	224	273	203	224	207	271	236	206	253		269	230	241	240	246	324	203	217	308	247
	As ncRNA	4	4	4	4		4	4	4	4	4	4	4	4	4	4	4	4	4		4	4	4	4	4	4	4	4	4	4
	tRN≜	67	67	67	67		57	57	55	67	57	67	67	67	57	68	57	67	68		67	56	68	67	67	67	67	56	56	67
	rRNAs	18	18	18	18		15	15	15	18	15	18	18	18	15	18	15	18	18		18	15	18	18	18	18	18	15	15	18
	CDSs	2033	1925	1936	2000		1968	1982	1974	1993	1977	2023	1922	1984	1924	2037	1996	1982	1982		1925	1962	1952	1937	1906	2006	1916	1847	2237	1950
	b GC/%	38.9	39.1	39.1	39.1		39.0	39.1	39.1	39.1	39.0	39.1	39.1	39.1	39.0	38.9	39.0	39.1	39.0		39.1	39.0	39.1	39.0	39.2	39.3	39.2	39.2	39.0	39.1
	Size/M	1.93	1.80	1.80	1.86		1.83	1.85	1.85	1.86	1.85	1.88	1.79	1.86	1.79	1.90	1.87	1.84	1.87		1.82	1.85	1.86	1.81	1.79	1.86	1.79	1.73	2.10	1.83
	Source	Dairy (France)	Yogurt (UK)	Yogurt (UK)	Danisco (USA)		Yak milk (China)	Yogurt block (China)	ASCRC (Australia)	Dairy	Dairy Fan (China)	Yogurt block (China)	Dairy (China)	Yogurt (China)	Rubing (China)	Yogurt (China)	Yak milk (China)	Intestine (Ireland)	Commercial dietary	supplements (South Korea)	Raw milk (USA)	Dairy culture	Milk (China)	Milk (China)	Raw milk (USA)	Raw milk (USA)	Cheese (South Korea)	Yogurt (Greece)	UK	France
	Accession	NC_017581	NC_006448	NC_006449	NC_008532	P1:NC_008500 P2:NC_008501	NC_017563	NC_017927	NZ_CP006819	NZ_CP011217	NZ_CP010999	NZ_CP012588	NZ_CP013939	NZ_CP016026	NZ_CP016439	NZ_CP016877	NZ_CP016394	NZ_CP019935	NZ_CP017064		NZ_CP022547	NZ_CP025216	NZ_CP025399	NZ_CP025400	NZ_CP031545	NZ_CP031881	NZ_CP035306	NZ_LT604076	NZ_LS483339	NZ_LS974444
	Strains	JM8232	LMG18311	CNRZ1066	LMD-9		ND03	MN-ZLW-002	ASCC1275	SMQ-301	MN-BM-A02	MN-BM-A01	S9	KLDS SM	CS8	KLDS 3.1003	ND07	APC151	ST3		B59671	DGCC7710	GABA	EPS	ST109	ST106	IDCC2201	ACA-DC 2	NCTC12958	N4L

表 1. 27 株完全测序的嗜热链球菌基因组的基本信息表

actamicro@im.ac.cn

组氨酸的化学限定培养基(CDM)^[14]中,42 °C 厌氧 培养,从0h开始每隔2h在600 nm 处测定 OD 值。

1.3 基因预测和注释

采用 Prokka 软件对菌株基因组序列进行基因 预测^[15],根据预测得到的 CDS (编码序列)位置信 息提取氨基酸序列,与 NCBI 非冗余蛋白数据库 比对。氨基酸同源性判断阈值:(a) identity:≥60%; (b) *E* value≤1e⁻⁶;(c) 比对上的序列长度大于总长 度的 90%。利用 BLASTx 对嗜热链球菌核心、附 属和特异基因序列进行 COG (同源基因簇)功能注 释^[16],*E* 值截止值为 1e⁻⁶。随后在 KAAS 网站^[17] 通过 BBH (bi-directional best hit)方法对 27 株嗜热链 球菌基因组中的蛋白质编码基因进行 KEGG 注释。

1.4 ANI 值和 TNI 值的计算

平均核苷酸一致性(average nucleotide identity, ANI)不仅可以用来评估物种的遗传多样性程度, 还可以用于判断菌株是否为同一个种或亚种^[13]。 总核苷酸一致性(total nucleotide identity, TNI)是 对 ANI 进行优化之后的一种计算方法,其准确度 更高。本研究采用 Goris 等^[18]和 Chen 等^[19]提出的 方法来计算嗜热链球菌的 ANI 值和 TNI 值。

1.5 比较基因组分析

以 S. thermophilus JIM8232 为参考菌株,使用 Mauve 软件^[20]对其余嗜热链球菌基因组进行共线 性分析。

1.6 Core-Pan 基因集及系统发育树的构建

基于前期 Prokka 软件的基因组预测结果,使用 Roary 软件(v3.6.1)^[21]构建 27 株嗜热链球菌的 泛-核心(Core-Pan)基因集。此外,利用 MEGA7 软件^[22]基于核心基因序列构建邻接树,对嗜热链球 菌的系统发育关系进行评估。

1.7 CRISPR-Cas 系统和 R-M 系统分析

使用 CRISPR Finder 网络在线工具(https:// crisprcas.i2bc.paris-saclay.fr/)识别嗜热链球菌基因 组中的 CRISPR-Cas 系统^[23];基于 REBASE 数据 库(http://rebase.neb.com/rebase/rebase.html)预测基 因组中的 R-M 系统^[24]。并采用 Spass 软件根据 Spearman 参数进行相关性分析。

2 结果和分析

2.1 嗜热链球菌基因组的一般特点

27 株 嗜热链球菌全基因组长度平均为 1.85±0.06 Mb, GC 含量通常在 39%左右。在基因 组中共预测到 1973±67 个 CDS,其中(12±1)%个基 因突变为假基因。全基因组长度与 GC 含量显著负 相关(P<0.05, r=-0.44);与 CDS 数量、假基因数 量极显著正相关(P<0.01, r 分别为 0.98 和 0.51)。 CDS 数量与 GC 含量显著负相关(P<0.05, r=-0.40), 而与假基因数量极显著正相关(P<0.01, r=0.52)。 此外,除 S. thermophilus LMD-9 包含 2 个质粒外, 其余嗜热链球菌菌株均不存在质粒。

进一步通过 ANI 和 TNI 对嗜热链球菌群体内 的 序 列 同 源 性 进 行 评 估 。 理 论 上 两 两 序 列 ANI>95%、TNI>70%被视为同一物种。本研究以 S. thermophilus JIM8232 的全基因组序列为参考, 计算了菌株两两间 ANI 和 TNI 值,并绘制了热图 (图 1)。结果显示,27 株嗜热链球菌菌株两两间 ANI 值均>98.27%, TNI 值均>84.95%。

2.2 嗜热链球菌的比较基因组分析

以 S. thermophilus JIM8232 作为参考序列,通过 Mauve 软件分析嗜热链球菌基因组之间的保守性和差异性。如图 2 所示,嗜热链球菌菌种内遗传

http://journals.im.ac.cn/actamicrocn

图 2. 嗜热链球菌的共线性分析

Figure 2. Synteny analysis of *S. thermophilus* using the genome of strain JIM8232 as the reference.

稳定,突变重组较少。27 株嗜热链球菌菌株中, 仅在 S. thermophilus MN-BM-A01和MN-ZLW-002 中观察到小范围的倒位,而其余菌株仅发生小的 插入、缺失或重排等现象,表明这些菌株在进化 过程中只发生过小范围的基因重组和转移。通过 对发生插入和缺失的区域进行比对,发现这些区 域携带编码各种蛋白质的基因,包括假设蛋白质、 应激蛋白、噬菌体相关蛋白和生物合成相关蛋白 质,这些蛋白质小范围的基因缺失与插入可以使 基因组结构多样化,从而有助于基因组获得一些 有用的工业表型性状^[25-26]。

2.3 泛-核心(pan-core)基因集的构建

27 株嗜热链球菌的泛基因集包含 4139 个基因,其中 1192 个基因为 27 株菌所共有,构成了嗜热链球菌的核心基因集;其余 2947 个非核心基因集中,包括 1734 个附属基因和 1213 个特异基因。

由图 3-A 可知,随着基因组数量的增加,核心基因的个数逐渐趋于稳定,而泛基因的个数仍呈现增加的趋势,说明嗜热链球菌基因组为开放式基因组,同时也说明嗜热链球菌具有较高的遗传多样性。

利用 COG 数据库对 27 株嗜热链球菌的核心、 附属和特异基因进行功能注释,结果如图 3-B 所 示。代谢相关基因主要在核心基因中富集,所占 比例达到 41%,其中 E 类"氨基酸转运和代谢"的 基因数量最多,占核心基因的 15.22%。M 类"细 胞壁/膜/包膜生物合成"和 O 类"翻译后修饰,蛋白 质折叠,伴侣蛋白"与特定环境中的适应性或相互 作用有关,其在核心基因中的富集表明这些基因

Figure 3. Analysis of genetic diversity of *S. thermophilus*. A: The trend chart of the set of core-pan genes; B: Annotations of core gene, accessory gene and unique gene based on the COG database. COG category: A: RNA processing and modification; J: translation, ribosomal structure and biogenesis; K: transcription; L: replication, recombination and repair; C: energy production and conversion; G: carbohydrate transport and metabolism; E: amino acid transport and metabolism; F: nucleotide transport and metabolism; H: coenzyme transport and metabolism; I: lipid transport and metabolism; P: inorganic ion transport and metabolism; Q: secondary metabolites biosynthesis, transport and catabolism; D: cell cycle control, cell division, chromosome partitioning; M: cell wall/membrane/envelope biogenesis; O: posttranslational modification, protein turnover, chaperones; T: signal transduction mechanisms; U: intracellular trafficking, secretion, and vesicular transport; V: defense mechanisms; R: general function prediction only; S: function unknown; N: cell motility; Z: cytoskeleton.

对于嗜热链球菌适应牛奶丰富的营养环境至关重 要。附属基因中 L 类"复制、重组和修复"所占的 比例最大,为 30.67%; V 类"防御机制"主要在附 属基因和特异基因中富集,说明某些菌株中可能 存在特定的防御机制。

2.4 系统发育分析

为了研究 27 株嗜热链球菌的群体结构,本研 究基于 1192 个核心基因的核酸序列采用邻接法构 建了系统发育树, bootstrap 值为 1000。如图 4 所 示, 27 株嗜热链球菌可划分为 2 个较为清晰的分 支。为进一步了解嗜热链球菌 2 个分支代谢能力 的差异,分别对其核心基因进行 KEGG 注释 (表 2)。通过对 2 个分支 KEGG 注释通路的比较发 现,分支1和分支2共有22个差异代谢通路,分 支1基本涵盖了分支2的所有代谢通路; 22个有 差异的代谢通路中分支1有67个特异性基因,而 分支2仅有6个特异性基因。分支1中的67个特 异性基因与次级代谢产物、抗生素和氨基酸的生 物合成、碳代谢、半胱氨酸和蛋氨酸代谢、组氨 酸代谢以及其他生物合成或代谢途径密切相关, 其中参与组氨酸生物合成的基因多达 41 个。与分 支1相比,组成组氨酸操纵子的11个基因 hisG、 *his*Z、*his*E、*his*I、*his*A、*his*F、hisH、*his*B、*his*C、 hisK和hisD中仅基因hisK是分支2菌株所共有的, 表明分支 2 菌株可能因缺失编码组氨酸途径多种 酶的基因而无法合成组氨酸。因此,选取分支1中 的代表菌株 S. thermophilus ND07 和 MN-BM-A01, 分支2代表菌株 S. thermophilus EPS 验证其在组 氨酸缺乏情况下的生长情况,结果表明上述3株 菌株在含有组氨酸的情况下生长无明显差异 (图 5-A);而在组氨酸缺乏的情况下,S. thermophilus EPS 表现出明显的生长缺陷(图 5-B),该结果与基

因组分析结果一致。此外,在14株嗜热链球菌菌 株中检测到胞外蛋白酶 prtS 基因,并且这14株菌 均属于分支1。

2.5 CRISPR-Cas 系统分析

通过 CRISPR Finder 对 27 株嗜热链球菌的 CRISPR-Cas 系统进行分析(图 6-A),发现嗜热链 球菌菌株含有四种不同的 CRISPR-Cas 系统 (CRISPR1、CRISPR2、CRISPR3 和 CRISPR4), 其中 CRISPR1-Cas 和 CRISPR3-Cas 系统均为 II-A 型, CRISPR2-Cas 系统为 III-A 型, CRISPR4-Cas 系统为 I-E 型。除 *S. thermophilus* ACA-DC-2 仅含 有一个 III-A 型 CRISPR-Cas 系统外,其余嗜热链 球菌基因组均含有至少一个 II-A 型 CRISPR-Cas 系统。

有趣的是,在含有较少 CRISPR-Cas 系统的菌 株 中检测到退化的 CRISPR 重复序列, S. thermophilus JIM8232 中发现退化的 CRISPR3 重 复序列, S. thermophilus B59671 中发现退化的

图 4. 27 株嗜热链球菌的系统发育关系

Figure 4. Phylogenetic tree constructed based on core genome of 27 *S. thermophilus* strains.

Pathway number	Pathway annotation	No. of unique enzyme in Clade 1	No. of unique enzyme in Clade 2			
ko01100	Metabolic pathways	14	1			
ko01110	Biosynthesis of secondary metabolites	12	0			
ko01130	Biosynthesis of antibiotics	2	0			
ko01230	Biosynthesis of amino acids	13	0			
ko01120	Microbial metabolism in diverse environments	1	0			
ko02010	ABC transporters	2	2			
ko01200	Carbon metabolism	1	0			
ko00270	Cysteine and methionine metabolism	2	0			
ko02020	Two-component system	1	1			
ko00400	Phenylalanine, tyrosine and tryptophan biosynthesis	1	0			
ko00260	Glycine, serine and threonine metabolism	1	0			
ko00300	Lysine biosynthesis	1	0			
ko00030	Pentose phosphate pathway	1	0			
ko03060	Protein export	1	0			
ko03070	Bacterial secretion system	1	0			
ko00450	Selenocompound metabolism	1	0			
ko00350	Tyrosine metabolism	1	0			
ko00401	Novobiocin biosynthesis	1	0			
ko00960	Tropane, piperidine and pyridine alkaloid biosynthesis	1	0			
ko00340	Histidine metabolism	9	0			
ko00730	Thiamine metabolism	0	1			
ko04122	Sulfur relay system	0	1			

表 2. 不同分支的嗜热链球菌菌株特异性基因分布

Table 2. Pathway annotation of genes specific to S. thermophilus strains from two clades

图 5. 嗜热链球菌在不同 CDM (添加/不添加组氨酸)的生长曲线

Figure 5. Growth curve of *S. thermophilus* in different CDM (with/without addition of histidine). A: Strains cultured in complete CDM medium; B: Strains cultured in the CDM medium lacking histidine.

http://journals.im.ac.cn/actamicrocn

图 6. 嗜热链球菌的 CRISPR-Cas 系统

Figure 6. CRISPR-Cas system of *S. thermophilus*. A: Structural diagram of CRISPR-Cas system of *S. thermophilus*; B: Number of *S. thermophilus* CRISPR spacers; C: Correlation analysis of two clades of CRISPR-Cas System. ****: *P*<0.001.

CRISPR1 重复序列,以及 S. thermophilus GABA 和 ST3 中发现退化的 CRISPR2 重复序列。退化的 CRISPR3 重复序列位于基因组序列的上游,而重 复序列位于基因组的下游,这可能是由于末端重 复序列和退化的 CRISPR3 重复序列之间发生了重 组事件,进而造成 CRISPR3 相关 cas 基因片段的 缺失或插入。相反,退化的 CRISPR1 和 CRISPR2 重复序列都位于基因组序列的下游,表明这 2 个 CRISPR 系统退化的主要原因可能就是相关 cas 基 因的丢失。

通过比较发现,4个 CRISPR 基因座在基因组

中的位置相对固定。通常,CRISPR1上游的编码 基因是假定蛋白,下游是磷酸丝氨酸磷酸酶的编 码基因 SerB;CRISPR2上游的编码基因是二氢乳 清酸脱氢酶 B 催化亚基,下游的编码基因是乳清 酸核苷 5'-磷酸脱羧酶;而CRISPR3 和 CRISPR4 上下游的编码基因均为假定蛋白。

S. thermophilus ND07、DGCC-7710、KLDS-SM、 MN-BM-A02 和 ASCC-1275 包含全部四种 CRISPR-Cas 系统,表明它们具有更好的适应性免 疫力,在乳品发酵中可以更好的抵御噬菌体侵染。 每个 CRISPR-Cas 系统在不同菌株中都拥有相同 的重复序列和 cas 基因,这表明其抵抗噬菌体的 防御机制在同一物种中可能是相似的。然而, CRISPR-Cas 系统中的间隔序列具有多态性,间隔 序列的数目可以在一定程度上反映该 CRISPR 基 因座的活跃程度。如图 6-B 所示, CRISPR1 中间 隔序列数目的最大值和平均值均为最高,说明嗜 热链球菌中 CRISPR1 最为活跃, CRISPR3 次之, CRISPR2 的平均值最低,说明嗜热链球菌中 CRISPR2 活性最低。

此外,在27株嗜热链球菌菌株中注释到大量编码转座酶的基因,这些基因的数量与菌株中 CRISPR-Cas 系统的数量显著正相关(P<0.05, r=0.43)。通过对不同分支菌株中所含的CRISPR-Cas 系统数量进行比较(图 6-C),发现分支1中菌株的 CRISPR-Cas系统数量极显著高于分支2,推测分支 1菌株可能具有较强的抵抗噬菌体污染的能力。

2.6 限制修饰系统分析

将 27 株嗜热链球菌的基因组序列与 REBASE 数据库进行比较,嗜热链球菌基因组与 R-M 系统 相关的基因数量如表 3 所示。S. thermophilus ACA-DC-2、CNRZ1066、JIM8232 和 LMG 18311 包含全部 4 种 R-M 系统,却仅包含 1-2 种 CRISPR-Cas 系统,由此说明菌株中 CRISPR-cas 系 统的低活性可以通过 R-M 系统来弥补^[27],但是 CRISPR-cas 系统和 R-M 系统并没有明显的相关性。

嗜热链球菌基因组共包含 4 种 R-M 系统,除 I 型 R-M 系统外,其余 3 种 R-M 系统在基因组中的 位置相对固定。I 型 R-M 系统是目前已知的最复杂 的一种类型,由 DNA 甲基转移酶(HsdM)、限制性 内切酶(HsdR)和特异性序列绑定识别亚基(HsdS) 作为一个蛋白复合体行使限制-修饰功能^[28]。本研 究除 S. thermophilus B59671 没有该系统外,其余菌 株都包含 1-3 个完整的 I 型 R-M 系统,部分嗜热 链球菌中有 1 个 R-M 系统因其中 1 个或 2 个基因 发生移码突变而失去功能活性。II 型 R-M 系统在 细菌中最为普遍,本研究有 19 株菌包含编码 II 型 R-M 系统的基因, *S. thermophilus* JIM8232、KLDS 3.1003 和 NCTC12958 仅存在 DNA 甲基转移酶, 不构成完整的 II 型 R-M 系统,其余菌株都包含 1-3 个完整的 II 型 R-M 系统。II 型 R-M 系统的编 码基因主要位于假定蛋白、赖氨酸连接酶、UDP-N-乙酰葡糖胺 2-差向异构酶、果糖-1,6-二磷酸醛缩酶 和核酸切割酶附近。本研究中共有 17 株菌有编码

表 3. 嗜热链球菌各个 R-M 系统的基因数

Table 3.Number of genes in R-M systems found inthe S. thermophilus strains

Strains	Type I	Type II	Type III	Type IV
APC151	3	6	0	0
ASCC1275	8	0	1	1
DGCC7710	9	0	0	1
GABA	6	5	2	0
IDCC2201	3	0	4	1
JIM8232	9	2	2	1
KLDS SM	7	0	1	1
LMD-9	5	6	0	0
MN-BM-A01	6	6	0	0
MN-BM-A02	9	0	1	1
MN-ZLW-002	5	4	1	0
N4L	7	4	2	0
ND03	6	6	0	0
ND07	8	0	1	1
SMQ-301	4	4	0	0
ST109	6	0	0	1
ST3	3	2	0	1
ST106	6	0	0	0
ACA-DC-2	3	2	2	1
EPS	6	2	2	0
KLDS 3.1003	6	1	0	1
LMG 18311	8	4	2	1
S9	3	2	2	0
B59671	0	3	1	0
CNRZ1066	8	5	2	2
CS8	7	4	2	0
NCTC12958	6	2	2	0

III型 R-M系统的基因,其由 mod 基因编码的 DNA 甲基转移酶和由 res 基因编码的限制性内切酶构 成,前者存在于所有菌株中,而后者在6株菌中是 缺失的,即这6株菌仅包含一个孤儿甲基转移酶, 并没有完整的 III 型 R-M 系统。此外, S. thermophilus EPS、S9、KLDS SM 和 ASCC 1275 中的 DNA 甲 基转移酶突变为假基因,无实际功能活性。III 型 R-M系统的编码基因通常出现在假定蛋白、谷氨酰 胺水解酶和乙醇脱氢酶附近。共有 13 株菌有 IV 型 R-M 系统,其编码基因的上游通常是 DNA 错配修 复蛋白或者 DNA 错配修复蛋白的水解产物核苷三 磷酸,下游通常是转座酶或者假定蛋白,只有 S. thermophilus ST3、ST109 和 IDCC2201 这 3 株菌 的下游是赖氨酸连接酶。S. thermophilus ND07 发 生倒位,其编码基因的上游是转座酶,下游是 DNA 错配修复蛋白。

此外,与 CRISPR-Cas 系统不同,菌株中 R-M 系统的数量与编码转座酶基因的数量极显著负相 关(P<0.01, r=-0.59)。通过对不同分支菌株中所含 的 R-M 系统数量进行比较(图 6-C),发现两个分支 的 R-M 系统数量无显著性差异,说明不同分支嗜 热链球菌菌株的先天防御能力大致相同。

3 讨论

全基因组测序有助于基因组组装成完整的基 因组序列,从而获得更加准确和深入的基因组注 释信息。嗜热链球菌作为自然发酵乳中的关键菌 株,其丰富的基因组信息对食品工业中选择合适 的嗜热链球菌发酵剂至关重要。

系统发育分析结果将 27 株嗜热链球菌划分为 2 个分支,通过对两个分支代谢能力差异的比较发 现,分支 1 和分支 2 菌株在多数的氨基酸合成方

面能力大致相同,但是在组氨酸合成途径以及与 组氨酸生物合成相关的基因方面存在较大差异, 分支 2 菌株因缺失编码组氨酸途径多种酶的基因 而无法合成组氨酸,该结果与李柏良等^[29]分析的结 果类似。Fontaine 等^[30]通过对 S. thermophilus LMD-9和LMG18311插入或缺失组氨酸生物合成 位点的研究表明,在组氨酸存在时二者的生长情 况相似, 而在组氨酸不存在时 S. thermophilus LMG18311 生长明显缓慢。Pastink 等^[31]对 S. thermophilus LMG18311 的多种氨基酸缺陷型 试验表明,该菌株仅在缺乏组氨酸时不生长,并 且基因预测结果表示 S. thermophilus LMG18311 包含了除组氨酸外所有氨基酸生物合成所需酶的 编码基因。本研究在添加或不添加组氨酸的情况 下对分支 1 菌株 S. thermophilus ND07、 MN-BM-A01 和分支2 菌株 S. thermophilus EPS 的 生长情况进行测定,发现 S. thermophilus EPS 在缺 乏组氨酸的情况下表现出明显的生长缺陷。 S. thermophilus EPS和LMG18311的组氨酸缺陷试 验结果都与基因组预测结果一致,由此表明分支 2 菌株在组氨酸代谢能力方面具有一定的缺陷性。 胞外蛋白酶 PrtS 可以分解乳蛋白产生肽类和氨基 酸,使嗜热链球菌能够快速生长^[32],但只存在于 少数菌株中。本研究 27 株嗜热链球菌中有 14 株 菌株检测到胞外蛋白酶 PrtS 的编码基因,而这 14 株菌均属于分支 1, 由此可推测分支 1 菌株在 生长性能方面可能更具有优势。

27 株嗜热链球菌的泛基因集包含 4139 个基因,具体包括 1192 个核心基因、1734 个附属基因和 1213 个特有基因。随着基因组数量的增加,嗜热链球菌的泛基因集呈现上升的趋势,说明嗜热链球菌的遗传物质具有开放性,同时也说明嗜热

链球菌具有较高的遗传多样性。此外,嗜热链球菌的开放性基因组可能是由于进化过程中基因的插入或缺失导致的^[33]。对核心、附属和特异基因进行 COG 功能注释,发现 L 类"复制,重组和修复"主要在附属基因中富集,这可能是由转座酶等移动遗传元件引起的^[34]。在 27 株嗜热链球菌菌株中注释到大量编码转座酶的基因,这些基因的数量与菌株中 CRISPR-Cas 系统的数量显著正相关(*P*<0.05, *r*=0.43),说明嗜热链球菌进化出多种防御系统是为了在各种移动遗传元件的增殖中存活并维持其遗传完整性^[35]。

嗜热链球菌在工业生产中应用时需要面对噬 菌体、低酸、高温等各种环境胁迫,其中噬菌体污 染是工业发酵中最常见的难题之一。在本研究中, CRISPR1-Cas 系统在嗜热链球菌基因组中普遍存 在, 推测 CRISPR1-Cas 系统可能在嗜热链球菌中 形成一种主要且有效的噬菌体防御机制。此外, CRISPR1-Cas 系统中间隔序列数目的最大值和平 均值均为最高,其次是 CRISPR3-Cas,由此表明新 型间隔序列可能在这2个CRISPR-Cas系统中更加 频繁地插入,而且当CRISPR1-Cas和CRISPR3-Cas 的2个系统共存于同一基因组中时,增强了嗜热链 球菌对噬菌体感染的抗性^[36]。Hidalgo-Cantabrana 等^[9]对 66 株长双歧杆菌的 CRISPR-Cas 多样性进行 分析,发现存在于长双歧杆菌中的 CRISPR-Cas 系 统可作为基因分型的遗传工具,具有 CRISPR-Cas 系统的菌株是合适的益生菌候选物,这些菌株不仅 能增强它们在人体肠道中的存活能力,还能增强对 人体肠道有害菌的抗性[37]。

R-M 系统存在于超过 90%的细菌和古细菌 中,是研究最充分的噬菌体防御机制^[38],但是嗜 热链球菌中 R-M 系统的研究有限。本研究中最为 复杂的 I 型 R-M 系统在嗜热链球菌中普遍存在, 其可能是嗜热链球菌中拮抗噬菌体侵染的重要系 统。R-M 系统作为一种经典的防御机制,不仅能 防止内源 DNA 降解,还能防止外源 DNA 如转座 子、插入序列、噬菌体和质粒等可移动遗传元件 的入侵^[39]。与 CRISPR-Cas 系统不同,菌株中 R-M 系统的数量与编码转座酶基因的数量极显著负相 关(*P*<0.01, *r*=-0.59),说明 R-M 系统可能通过阻 止外源 DNA 的入侵,而起到保护嗜热链球菌自身 遗传物质稳定的作用。

4 结论

本研究从全基因组水平对嗜热链球菌的遗传 多样性进行研究,结果显示随着基因组数量的增 加, 嗜热链球菌的泛基因集仍呈现增加的趋势, 说明该物种群体内具有较高的遗传多样性。基于 核心基因组序列构建的系统发育树共分为两个分 支,不同分支嗜热链球菌菌株的氨基酸合成能力 基本相同, 仅分支 2 菌株缺乏多种编码组氨酸生 物合成酶的基因,由此表明分支2菌株在组氨酸 代谢能力方面具有一定的缺陷性。通过对嗜热链 球菌基因组中与环境防御相关的 CRISPR-Cas 系 统和 R-M 系统进行分析,发现同类型的 CRISPR 位点和 R-M 系统在基因组中出现的位置相对固 定。此外,分支1菌株的 CRISPR-Cas 系统数量极 显著高于分支2 (P<0.001), 推测分支1 菌株可能 具有较强的抵抗噬菌体污染的能力; 而 R-M 系统 无显著差异,说明不同分支嗜热链球菌菌株的先 天防御能力大致相同。

参 考 文 献

- Goh YJ, Goin C, O'Flaherty S, Altermann E, Hutkins R. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of *Streptococcus thermophilus* LMD-9. *Microbial Cell Factories*, 2011, 10(1): S22.
- [2] Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, Monnet V, Renault P, Kleerebezem M. New insights in the molecular biology and physiology of *Streptococcus thermophilus* revealed by comparative genomics. *FEMS Microbiology Reviews*, 2005, 29(3): 435–463.
- [3] Zhong Z, Sun TS, Chen YF. Genomic insights into the high exopolysaccharides-producing bacterium *Streptococcus thermophilus* ND-07. *China Dairy Industry*, 2018, 46(4): 9–11, 21. (in Chinese)

钟智,孙天松,陈永福. 基因组分析揭示 Streptococcus thermophilus ND-07 富产胞外多糖分子机制.中国乳品工业, 2018, 46(4): 9–11, 21.

[4] Li W, Wang NN, Zhang DQ, Huo GC. CRISPR detection and protospacer prediction in *Streptococcus thermophilus*. *Modern Food Science and Technology*, 2016, 32(10): 252–258. (in Chinese)

李婉, 王娜娜, 张丹青, 霍贵成. 嗜热链球菌 CRISPR 序列的 检测及原间隔序列预测. 现代食品科技, 2016, 32(10): 252-258.

- [5] Binetti AG, Suárez VB, Tailliez P, Reinheimer JA. Characterization of spontaneous phage-resistant variants of *Streptococcus thermophilus* by randomly amplified polymorphic DNA analysis and identification of phage-resistance mechanisms. *International Dairy Journal*, 2007, 17(9): 1115–1122.
- [6] Dupuis MÈ, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. *Nature Communications*, 2013, 4: 2087.
- [7] 赵洁. 自然发酵乳中嗜热链球菌群体遗传学和功能基因组学研究. 内蒙古农业大学博士学位论文, 2018.
- [8] Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in *Streptococcus thermophilus. Proceedings of the Royal Society B: Biological Sciences*, 2015, 282(1812): 20151270.
- [9] Hidalgo-Cantabrana C, Crawley AB, Sanchez B, Barrangou R. Characterization and exploitation of CRISPR loci in

Bifidobacterium longum. Frontiers in Microbiology, 2017, 26(8): 1851.

- [10] Briner AE, Barrangou R. Deciphering and shaping bacterial diversity through CRISPR. *Current Opinion in Microbiology*, 2016, 31: 101–108.
- [11] Hidalgo-Cantabrana C, O'Flaherty S, Barrangou R. CRISPR-based engineering of next-generation lactic acid bacteria. *Current Opinion in Microbiology*, 2017, 37: 79–87.
- [12] Humbert O, Dorer MS, Salama NR. Characterization of *Helicobacter pylori* factors that control transformation frequency and integration length during inter-strain DNA recombination. *Molecular Microbiology*, 2011, 79(2): 387–401.
- [13] 宋宇琴.德氏乳杆菌保加利亚亚种的群体遗传学和功能基因 组学研究.内蒙古农业大学博士学位论文,2018.
- [14] Letort C, Juillard V. Development of a minimal chemically-defined medium for the exponential growth of *Streptococcus thermophilus. Journal of Applied Microbiology*, 2001, 91(6): 1023–1029.
- [15] Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*, 2014, 30(14): 2068–2069.
- [16] Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Research*, 2000, 28(1): 33–36.
- [17] Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. *Nucleic Acids Research*, 2007, 35(S2): W182–W185.
- [18] Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. *International Journal of Systematic and Evolutionary Microbiology*, 2007, 57(1): 81-91.
- [19] Chen JP, Yang XW, Chen JW, Cen Z, Guo CY, Jin T, Cui YJ. SISP: a fast species identification system for prokaryotes based on total nucleotide identity of whole genome sequences. *Infectious Diseases and Translational Medicine*, 2015, 1(1): 30–55.
- [20] Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. *Genome Research*, 2004, 14(7): 1394–1403.
- [21] Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics*, 2015, 31(22): 3691–3693.
- [22] Kumar S, Stecher G, Tamura K. MEGA7: Molecular

evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 2016, 33(7): 1870–1874.

- [23] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. *BMC Bioinformatics*, 2007, 8: 172.
- [24] Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. *Nucleic Acids Research*, 2015, 43(D1): D298–D299.
- [25] Nishio Y, Nakamura Y, Usuda Y, Sugimoto S, Matsui K, Kawarabayasi Y, Kikuchi H, Gojobori T, Ikeo K. Evolutionary process of amino acid biosynthesis in *Corynebacterium* at the whole genome level. *Molecular Biology and Evolution*, 2004, 21(9): 1683–1691.
- [26] Desiere F, Lucchini S, Brüssow H. Evolution of *Streptococcus thermophilus* bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. *Virology*, 1998, 241(2): 345–356.
- [27] Alexandraki V, Kazou M, Blom J, Pot B, Tsakalidou E, Papadimitriou K. The complete genome sequence of the yogurt isolate *Streptococcus thermophilus* ACA-DC 2. *Standards in Genomic Sciences*, 2017, 12: 18.
- [28] 薛花. 两个新型结核杆菌 DNA 甲基化酶的鉴定和性质初步 分析. 中国科学院北京基因组研究所硕士学位论文, 2015.
- [29] Li BL, Ding XY, Jin D, Liu F, Meng YY, Li N, Zhao L, Huo GC. Genomic studies of proteolysis system and amino acid biosynthesis pathway in *Streptococcus thermophilus* KLDS SM. *Food Science*, 2018, 39(18): 120–126. (in Chinese) 李柏良, 丁秀云, 靳妲, 刘飞, 蒙月月, 李娜, 赵莉, 霍贵成. 基于基因组学分析嗜热链球菌 KLDS SM 的蛋白质水解系统 和氨基酸合成途径. 食品科学, 2018, 39(18): 120–126.
- [30] Fontaine L, Dandoy D, Boutry C, Delplace B, De Frahan MH, Fremaux C, Horvath P, Boyaval P, Hols P. Development of a versatile procedure based on natural transformation for marker-free targeted genetic modification in *Streptococcus thermophilus*. *Applied and Environmental Microbiology*, 2010, 76(23): 7870–7877.
- [31] Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. Genome-scale model of Streptococcus

thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. *Applied and Environmental Microbiology*, 2009, 75(11): 3627–3633.

- [32] Tian H, Liang HZ, Huo GC, Etareri ES. Research progress on the property and application of *Streptococcus thermophilus. Biotechnology Bulletin*, 2015, 31(9): 38–48.
 (in Chinese)
 田辉,梁宏彰,霍贵成, Etareri ES. 嗜热链球菌的特性与 应用研究进展. 生物技术通报, 2015, 31(9): 38–48.
- [33] Sun ZH, Harris HMB, McCann A, Guo CY, Argimón S, Zhang WY, Yang XW, Jeffery IB, Cooney JC, Kagawa TF, Liu WJ, Song YQ, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Ross RP, Yang RF, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui YJ, Zhang HP, O'Toole PW. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. *Nature Communications*, 2015, 6: 8322.
- [34] Schmid M, Muri J, Melidis D, Varadarajan AR, Somerville V, Wicki A, Moser A, Bourqui M, Wenzel C, Eugster-Meier E, Frey JE, Irmler S, Ahrens CH. Comparative genomics of completely sequenced *Lactobacillus helveticus* genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level. *Frontiers in Microbiology*, 2018, 9: 63.
- [35] Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. *Nucleic Acids Research*, 2013, 41(8): 4360–4377.
- [36] Magadán AH, Dupuis M-È, Villion M, Moineau S. Cleavage of phage DNA by the *Streptococcus thermophilus* CRISPR3-Cas system. *PLoS One*, 2012, 7(7): e40913.
- [37] Gogleva AA, Gelfand MS, Artamonova II. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. *BMC Genomics*, 2014, 15: 202.
- [38] Stern A, Sorek R. The phage-host arms race: shaping the evolution of microbes. *Bioessays*, 2011, 33(1): 43–51.
- [39] Gorrell R, Kwok T. The *Helicobacter pylori* methylome: roles in gene regulation and virulence. *Current Topics in Microbiology and Immunology*, 2017, 400: 105–127.

Comparative genomics of genetic diversity and defense system in *Streptococcus thermophilus*

Yu Wang, Jie Zhao, Zhihong Sun, Tiansong Sun, Heping Zhang*

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia Autonomous Region, China

Abstract: [Objective] Streptococcus thermophilus is one of the most commonly used strains in fermented dairy industry. Therefore, it is important to screen S. thermophilus with good fermentation properties. [Methods] The genetic diversity and defense systems of 27 S. thermophilus genomes were analyzed using comparative genomics. [Results] The genetic diversity of S. thermophilus was high based on whole genome analysis. The phylogenetic tree built based on the core genes was divided into two clades, and the strains in Clade 2 were lack of the complete histidine synthesis pathway, thus could not grow normally in the medium lacking histidine. The analysis of defense systems of S. thermophilus reveals the same type of CRISPR locus and restriction modification system was fixed in the genome relatively. The numbers of CRISPR-Cas (P < 0.05, r = 0.43) and restriction modification systems (P < 0.01, r = -0.59) correlated significantly with the number of genes encoding transposases, indicating S. thermophilus has evolved multiple defense systems to protect its genetic integrity by preventing the invasion of exogenous DNA. In addition, the number of CRISPR-Cas system of the Clade 1 strains was significantly (P < 0.001) higher than the Clade 2 strains, whereas there was no significant difference in restriction modification systems. These results suggest that the Clade 1 strains had stronger capacity in resistance to phages. [Conclusion] The phylogenetic analysis based on the core genes was divided into two clades. There were some differences in histidine metabolism and defense system between the different clades, providing a new method for the rapid screening of S. thermophilus starters with excellent fermentation characteristics.

Keywords: *Streptococcus thermophilus*, comparative genomics, genetic diversity, CRISPR-Cas system, restriction modification system

(本文责编:张晓丽)

Supported by the National Natural Science Foundation of China (31430066, 31771954) *Corresponding author. Tel: +86-471-4300593; E-mail: hepingdd@vip.sina.com

Received: 11 August 2019; Revised: 13 November 2019; Published online: 20 November 2019