

Research Article 研究报告

代谢工程强化脱氮副球菌 DYTN-1 去除氮素污染物

牛晓倩^{1,2}, 陶楠^{1,2}, 舒泉先³, 杨小雁³, 从瑞涛³, 周胜虎^{1,2,4*}, 邓禹^{1,2*}

1 江南大学粮食发酵与食品生物制造国家工程研究中心, 江苏 无锡 214122

2 江南大学江苏省生物活性制品加工工程技术研究中心, 江苏 无锡 214122

3 山东渤海油脂工业有限公司,山东 滨州 256599

4 帝斯曼江山制药(江苏)有限公司, 江苏 靖江 214500

牛晓倩, 陶楠, 周胜虎, 邓禹. 代谢工程强化脱氮副球菌 DYTN-1 去除氮素污染物. 微生物学报, 2022, 62(10): 3932–3946. Niu Xiaoqian, Tao Nan, Zhou Shenghu, Deng Yu. Metabolic engineering enhances the nitrogen removal by *Paracoccus denitrificans* DYTN-1. *Acta Microbiologica Sinica*, 2022, 62(10): 3932–3946.

摘 要:【目的】脱氮副球菌(Paracoccus denitrificans)是一种环境友好的 α-变形菌纲菌株,在有 氧条件下也可进行反硝化过程,具有较好的脱氮能力。本研究以脱氮副球菌 DYTN-1 为底盘细胞, 筛选氮素诱导型启动子用于强化硝化和反硝化途径,进而达到代谢工程强化脱氮副球菌 DYTN-1 去除氮素污染物的目的。【方法】通过接合转移的方法分别将过表达 amoA、amoB、hao 和 nirS 基因的重组质粒导入脱氮副球菌 DYTN-1 细胞中。经过荧光定量检测和氮素定量检测对脱氮副球 菌 DYTN-1 的基因元件和氮去除能力进行表征。【结果】从基因组中挖掘了 6 个受 NO₂⁻、NO₃⁻ 和 NH₄⁺诱导的启动子,诱导差异为 2-26 倍;且过表达 nirS 的菌株用 2 g/L KNO₃处理 24 h 后培 养基中 NO₃⁻的残余量为野生型菌株的 67%。同时过表达 hao 和 nirS 基因的菌株在用 1 g/L NH₄Cl 和 2 g/L KNO₃处理 12 h 后,其 NO₃⁻的剩余量仅为野生型菌株的 50%,且最终总氮的降解效率 达 79.5%,剩余总氮仅为野生型菌株的一半。【结论】上述研究表明,利用筛选获得的启动子 工具在 P. denitrificans DYTN-1 中进行代谢工程改造强化氮素污染物的去除具有可行性。

关键词:诱导型启动子;硝化途径;反硝化途径;脱氮副球菌 DYTN-1

基金项目:国家重点研发计划(2019YFA0905502);中央高校基本科研业务费专项资金(JUSRP12056,JUSRP51705A); 中国博士后科学基金(2021M690533)

Supported by the National Key Research and Development Program of China (2019YFA0905502), by the Fundamental Research Funds for the Central Universities (JUSRP12056, JUSRP51705A) and by the China Postdoctoral Science Foundation (2021M690533)

^{*}Corresponding authors. ZHOU Shenghu, Tel: +86-510-85329031, E-mail: zhoush@jiangnan.edu.cn; DENG Yu, Tel: +86-510-85329031, Fax: +86-510-85918312, E-mail: dengyu@jiangnan.edu.cn

Received: 22 February 2022; Revised: 18 April 2022; Published online: 9 June 2022

Metabolic engineering enhances the nitrogen removal by *Paracoccus denitrificans* DYTN-1

NIU Xiaoqian^{1,2}, TAO Nan^{1,2}, SHU Quanxian³, YANG Xiaoyan³, CONG Ruitao³, ZHOU Shenghu^{1,2,4*}, DENG Yu^{1,2*}

1 National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, Jiangsu, China

2 Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China

3 Shandong Bohi Oils & Fats Industry Co., Ltd., Binzhou 256599, Shandong, China

4 DSM Jiangshan Pharmaceutical (Jiangsu) Company, Jingjiang 214500, Jiangsu, China

Abstract: [Objective] *Paracoccus denitrificans* is an environment-friendly strain of α -*Proteobacteria*. It can also perform denitrification under aerobic conditions and has good denitrification ability. This study intended to use P. denitrificans DYTN-1 as the chassis cell to screen nitrogen inducible promoters for strengthening the nitrification and denitrification pathways, thus achieving the purpose of enhancing the removal of nitrogen pollutants by metabolic engineering. [Methods] Recombinant plasmids overexpressing amoA, amoB, hao and nirS genes were introduced into P. denitrificans DYTN-1 cells by conjugation. The gene elements and nitrogen removal ability of P. denitrificans DYTN-1 were characterized by fluorescence quantitative detection and nitrogen quantitative detection. **[Results]** Six promoters induced by NO_2^- , NO_3^- and NH_4^+ were obtained at 2 to 26-fold induction. The residual amount of NO_3^- in the medium of the *nirS* overexpressed strain was 67% of that of the wild-type strain after treatment with 2 g/L KNO3 for 24 h. The strains overexpressing both hao and nirS had only 50% of the residual NO_3^- of the wild-type strain after treatment with 1 g/L NH₄Cl and 2 g/L KNO₃ for 12 h. Furthermore, the final degradation efficiency of total nitrogen reached 79.5% and the residual total nitrogen was only half of that of the wild-type strain. [Conclusion] It is feasible to carry out metabolic engineering with the aboved screened promoters to enhance the removal of nitrogen pollutants in P. denitrificans DYTN-1.

Keywords: inducible promoter; nitrification pathway; denitrification pathway; *Paracoccus* denitrificans DYTN-1

随着人类活动的日益频繁,高氮素含量的 污水不断排入河流、湖泊和其他水体中,导致 水质富营养化,不仅使环境生态失衡,而且产 生饮用水安全问题^[1-2]。因此,为了应对这些挑 战,氮素必须在污水系统中被快速脱除^[3]。目 前,生物脱氮是最常用和最有效的处理方法^[4], 而选择具有不同脱氮功能的菌株对复杂的污水 治理很重要。然而,自然界存在的菌株在污水 环境中通常生长速度较慢^[5],不能满足工业脱 氮的一般要求。以环境微生物为底盘细胞,利 用合成生物技术和代谢工程强化脱氮功能,是 突破上述挑战的重要方法。

目前,从活性污泥中分离出的几种环境友 好型细菌,如假单胞菌和芽孢杆菌^[6],已被用 作底盘来降解石油^[7]、农药污染物^[8]和富营养化 污染物^[9-10]。在工程化改造这些微生物的过程 中,标准的遗传操作方法和合成生物学工具, 例如启动子、终止子、质粒和选择标记已得到 广泛开发^[11-13]。使用基于 *sacB* 的基因组修饰系统(包括 pK18mobsacB 和 pBBR1MCS3 质粒), Chen 等成功整合并敲除了从活性污泥中分离出的 *Comamonas testosterone* CNB-1 菌株中的基因, 并鉴定了受 MarR 型调节因子(GenR)调控的苯甲 酰辅酶 A 和 3-羟基苯甲酸诱导型启动子 P_{genA}^[14]。 基于这些基因表达系统,上述环境友好型细菌可 以作为脱氮途径基因表达的理想底盘系统。

与不具有脱氮功能的菌株相比,使用具有 脱氮功能的菌株具有更多的优势。主要是因为 脱氮微生物自身具有丰富的脱氮酶系,具有更 好的脱氮效果。然而,以脱氮微生物为底盘细胞, 通过代谢工程强化脱氮功能的研究却鲜有报道。 从活性污泥中分离的脱氮副球菌(Paracoccus denitrificans)是一种环境友好的 α-变形菌纲 菌株,属于典型的异养硝化好氧反硝化菌株 (heterotrophic nitrifying and aerobic denitrifying bacteria, HN-AD), 其打破了传统反硝化必须 在厌氧条件下进行的界限。在有氧条件下,好 氧反硝化菌可同时利用环境中的 O₂ 和 NO₃ 或 者在进行反硝化过程中产生的中间代谢物(如 NO 和 N₂O)作为反应所需的电子受体,进行反硝 化反应,最终生成气态氮化合物并同时去除污水 中的 COD, 具有较好的脱氮能力, 是代谢工程改 造的理想底盘[15-16]。代谢工程改造首先需要遗传 操作工具,如表达质粒和启动子等。目前关于 P. denitrificans 的遗传操作工具报道较少。2009年, Ind 等发现质粒 pIND4 可在 P. denitrificans 中表 达^[17],其主要包含 pMG170 骨架^[18]、lacIq^[19]和 来自 pJBA24 的 IPTG 诱导型启动子^[20],经异丙 基-β-d-硫代半乳糖苷(isopropyl-β-d-thiogalactoside, IPTG)诱导后,在 pIND4 上过表达的 CheY6 蛋 白表达水平比未诱导菌株高约3倍[17]。然而, 这种较低的倍数并不能满足代谢工程的各种要 求。Kaczmarczyk 等利用组成型合成启动子 cumate 响应性的 CymR 阻遏蛋白和 CymR 操纵位 点,开发了一种 cumate 诱导型基因表达系统, 从而实现了 4 700 倍的诱导变化^[21]。此外,脱 氮副球菌属于 α-变形菌纲, Tett 等在 α-变形菌 纲中建立了具有不同拷贝数的质粒 pLMB51 (低拷贝)和 pLMB509 (高拷贝)及其牛磺酸诱导 表达启动子 P_{tauA},为脱氮副球菌中的基因表达 提供了工具^[22]。尽管在以前的研究中取得了重 大突破,但目前仍然缺乏可在 *P. denitrificans* 中应用的氮素诱导型启动子或组成型启动子, 这限制了代谢工程改造的实施。

本研究室从活性污泥中分离出 1 株脱氮副 球菌 *P. denitrificans* DYTN-1,具有良好的脱氮 效果^[23]。在本研究中,测定了 *P. denitrificans* DYTN-1 的全基因组序列,并挖掘出了 6 个内 源性启动子,可被 NO_2^- 、 NO_3^- 和 NH_4^+ 诱导。 随后,以 *P. denitrificans* DYTN-1 为底盘细胞, 使用代谢工程方法强化了氮素降解功能。

1 材料与方法

1.1 菌株和菌株的培养

大肠杆菌(*E. coli*) JM109、*P. denitrificans* DYTN-1和*E. coli* S17-1λpir 分别作为质粒克隆 宿主、基因表达宿主和接合转移的辅助菌。LB 培养基用于培养大肠杆菌和*P. denitrificans* DYTN-1,模拟污水培养基^[24][10 g/L 甘油、0.5 g/L NaCl、6.78 g/L Na₂HPO₄、3 g/L KH₂PO₄、1 g/L NH₄Cl (或 1 g/L NaNO₂ 或 2 g/L KNO₃)、0.24 g/L MgSO₄ 7H₂O,11.1 mg/L CaCl₂]用于*P. denitrificans* DYTN-1 的氮素降解测定。根据需要向培养基 中加入氨苄青霉素(100 µg/mL)、壮观霉素 (50 µg/mL)、四环素(50 µg/mL)、氯霉素(50 µg/mL) 和卡那霉素(50 µg/mL)。氮素测定时,将 8 mL *P. denitrificans* DYTN-1 培养过夜的种子液加入 含有 200 mL 模拟污水培养基的锥形瓶(500 mL) 中,并在 30°C 和 150 r/min 条件下培养,每隔 12 h 进行取样,检测菌体生长情况以及氮源消 耗情况。其中,以野生菌株作为对照,携带重 组质粒 pKCE-P₁₈₅₁-amoA、pKCE-P₁₈₅₁-amoB 和 pKCE-P₁₈₅₁-hao 的 P. denitrificans DYTN-1 在以 NH₄Cl (1 g/L)为氮源的模拟污水培养基中培养, 携带重组质粒 pKCE-P₁₇₄₆-nirS 的 P. denitrificans DYTN-1 在以 KNO₃ (2 g/L)为氮源的培养基中 生长。携带重组质粒 pKCE-P₁₈₅₁-hao-P₁₇₄₆-nirS 的 P. denitrificans DYTN-1 在以 NH₄Cl (1 g/L)和 KNO₃ (2 g/L)为氮源的模拟污水培养基中培养。

1.2 接合试验

表达重组质粒的 E. coli S17-1λpir 作为供体 菌株, P. denitrificans DYTN-1 作为受体菌株。 将 E. coli S17-1λpir 和 P. denitrificans DYTN-1 分别接种到含有 5 mL LB 培养基的试管中,并 在 37 °C 和 30 °C 下培养过夜。第 2 天,分别 5 000 r/min 离心 2 min 收集 10⁸ CFU/mL 细胞, 并用 LB 培养清洗 2 次,再使用 3:10 的比例 (E. coli S17-1λpir: P. denitrificans DYTN-1)将细 胞转移到同一管中混合,37 °C 下培养 30 min。 随后,剧烈摇晃试管以破坏供体菌和受体菌之 间的性菌毛连接,从而停止基因转移。最后, 将 0.1 mL 的接合菌液涂布在壮观霉素和卡那霉 素的双抗琼脂平板上筛选阳性克隆。

1.3 基因组测序、组装与注释

P. denitrificans DYTN-1 基因组测序由苏州 金唯智生物科技有限公司完成。采用全基因组 扩增策略构建不同插入片段的文库,使用 Qubit 3.0 和 Agilent 2100 对文库质量进行检测。检测 合格后基于 PacBio 测序平台对这些文库进行测 序,采用 HGAP 软件和 Falcon 软件对纯三代数 据进行组装。采用 Prodigal 软件对细菌基因组 进行基因预测。编码蛋白质的基因通过与 NR (Non-redundant)数据库、KEGG (Kyoto Encyclopedia of Genes and Genomes)、COG (Cluster of Orthologous Groups of Proteins)数据库和 GO (Gene Ontology) 数据库进行 BLAST 比对,筛选条件为 e-value≤ 1e⁻⁵,获取比对得分最高的结果,完成蛋白序列 功能注释。

1.4 质粒构建

DNA 聚合酶和限制酶购自 TaKaRa。使用 质粒 pJKR-H-cdaR 作为模板^[25],使用引物对 sfgfp-F/sfgfp-R 对绿色荧光蛋白(sfGFP)基因碱 基序列进行 PCR 扩增,并克隆到 pIND4 的 *Nco* I/*Hind* III位点,生成 pIND4-sfgfp 质粒。然后, 使用 *P. denitrificans* DYTN-1 基因组 DNA 作为模 板,内源启动子 P_{rpsU} 、 P_{0893} 、 P_{1746} 、 P_{1845} 、 P_{1851} 和 P_{4130} 通过引物对 rpsu-F/rpsu-R、0893-F/0893-R、 1746-F/1746-R、1845-F/1845-R、1851-F/1851-R 和 4130-F/4130-R 扩增获得,这些诱导型启动子 被克隆到 pIND4-sfgfp 中 sfgfp 的上游以替换 $P_{A1/04/03}$,产生以下质粒:pKCE-P_{rpsU}-sfgfp、pKCE- P_{0893} -sfgfp、pKCE-P₁₇₄₆-sfgfp 和 pKCE-P₁₈₄₅-sfgfp。

使用引物对 nirS-F/nirS-R从 P. denitrificans DYTN-1 基因组 DNA 中扩增 nirS 基因。分别合 成来自 Nitrosomonas europaea、Nitrosomonas europaea 和 Nitrosomonas sp. ENI-11 的 amoA、 amoB 和 hao 基因。将 amoA、amoB、hao 和 nirS 的 CDS 序列插入 pKCE-P₁₈₅₁-sfgfp、pKCE-P₁₈₅₁sfgfp、pKCE-P₁₈₅₁-sfgfp 和 pKCE-P₁₇₄₆-sfgfp 的 Nco I/Hind Ш位点,分别生成 pKCE-P₁₈₅₁amoA、pKCE-P₁₈₅₁-amoB、pKCE-P₁₈₅₁-hao 和 pKCE-P₁₇₄₆-nirS 质粒。使用引物对 1746nirS-F/ 1746nirS-R 从 pKCE-P₁₇₄₆-nirS 扩增包含 nirS 基 因和调控其表达的启动子 P₁₇₄₆,再以 pKCE-P₁₈₅₁-hao 为质粒载体通过同源重组方式得到质 粒 pKCE-P₁₈₅₁- hao-P₁₇₄₆-nirS。所有菌株、质粒 和引物序列见表 1 和表 2。

1	5	
Name	Properties	Sources
Strains		
P. denitrificans DYTN-1	Wild type, for gene expression	Lab preserved
E. coli JM109	Wild type, for plasmid construction	Lab preserved
E. coli S17-1λpir	Wild type, plasmid transfer helper strain	Lab preserved
Plasmids		
pIND ₄	ColE1 ori, oriT, repA, Kan ^R	Lab preserved
pIND ₄₋ sf <i>gfp</i>	pIND ₄ carrying the gene sf <i>gfp</i> , Kan^{R}	This study
pKCE-P _{rpsU} -sfgfp	pIND ₄ backbone, P_{rpsU} controlling the expression of sfgfp, Kan ^R	This study
pKCE-P ₀₈₉₃ -sfgfp	pIND ₄ backbone, P_{0893} controlling the expression of sfgfp, Kan ^R	This study
pKCE-P ₁₇₄₆ -sfgfp	pIND ₄ backbone, P_{1746} controlling the expression of sfgfp, Kan ^R	This study
pKCE-P ₁₈₄₅ -sfgfp	pIND ₄ backbone, P_{1845} controlling the expression of sfgfp, Kan ^R	This study
pKCE-P ₁₈₅₁ -sfgfp	pIND ₄ backbone, P_{1851} controlling the expression of sfgfp, Kan ^R	This study
pKCE-P ₄₁₃₀ -sfgfp	pIND ₄ backbone, P_{4130} controlling the expression of sfgfp, Kan ^R	This study
pKCE-P ₁₈₅₁ -amoA	pIND ₄ backbone, P ₁₈₅₁ controlling the expression of <i>amoA</i> , Kan ^R	This study
pKCE-P ₁₈₅₁ -amoB	pIND ₄ backbone, P_{1851} controlling the expression of <i>amoB</i> , Kan ^R	This study
pKCE-P ₁₈₅₁ -hao	pIND ₄ backbone, P_{1851} controlling the expression of <i>hao</i> , Kan ^R	This study
pKCE-P1746-nirS	pIND ₄ backbone, P_{1746} controlling the expression of <i>nirS</i> , Kan ^R	This study
pKCE-P ₁₈₅₁ -hao-P ₁₇₄₆ -nirS	pIND ₄ backbone, P_{1851} controlling the expression of <i>hao</i> , P_{1746} controlling the expression of <i>nirS</i> , Kan ^R	This study

表 1 研究使用的菌株和质粒

Table 1 Strains and plasmids used in this study

表 2 研究使用的引物

Primers	Sequences $(5' \rightarrow 3')$	Restriction sites
sfgfp-F	CCATGGTGCGTATAGGTGAAGAACTG	Nco I
sfgfp-R	AAGCTTAGAACTGGCATGCATC	Hind III
rpsu-F	GAGCTTCATTTCACGGAACACCCC	
rpsu-R	GGCACTCTCCTCATTCTTCATGCC	
0893-F	GATTTCCTCGGCCGCAGGC	
0893-R	GACCGGCAGAGCGGACAG	
1746-F	GTCCAGCGACAGCTCGCC	
1746-R	GTCGGTCGTCCTTTTCCTTGTTCC	
1851-F	CATCCTCGAGCTGCTGGG	
1851-R	ACTGCTATCCTGCCGCGG	
4130-F	TGGCGCAGATCGCGCATG	
4130-R	GAAGGCACCTCGGTCGCC	
nirS-F	ATGAGACAAAGGACCCCATTCG	
nirS-R	TCAATAGGTGTCGGTCATAGTGTTG	
1746nirS-F	GTCCAGCGACAGCTCGCC	
1746nirS-R	TCAATAGGTGTCGGTCATAGTGTTG	

Table 2Primers used in this study

1.5 氮素的定量检测

硝酸盐采用百里酚分光光度法(GB/T5750.5—2006),氨氮采用纳氏试剂分光光度法(HJ 535—2009),总氮采用碱性过硫酸钾消解紫外 分光光度法(HJ 636—2012)。其中,为保证数据 的准确性,菌液需经 5 000 r/min 离心 6 min 后 取上清液进行硝酸盐和氨氮的测定。总氮测定 时则不需离心处理,直接对含有菌体和培养基 的样品进行测定,以同时测定被菌体同化吸收 的氮素和培养基中残余氮素。同时,氮素的测 定均采用标准品进行标准曲线的绘制,再根据 标准曲线计算样品氮素的含量。测量时使用试 剂盒进行硝酸盐(连华 LH-NO₃)、氨氮(连华 LH-NH₄)和总氮(连华 LH-NT)检测。所有测试均 严格按照制造商的说明进行。

1.6 诱导型启动子的筛选和表征

将含有需要表征启动子的菌株 P. denitrificans DYTN-1 过夜活化后,以 2%的接种量接种至含 2 mL 模拟污水培养基(4 g/L 的甘油作为碳源) 的 48 孔板中培养。在接种的同时分别添加不同 浓度的氮源(蛋白胨、铵盐、亚硝酸盐和硝酸盐) 进行菌株培养并诱导启动子表达,诱导培养 48 h 后取出菌液并用 10 mmol/L 磷酸盐缓冲液 (pH 7.0)稀释,以确保 OD₆₀₀ 在 0.2–0.8 范围内。 在室温下使用 BioTek HT 酶标仪(Winooski)在 (485±20) nm 激发波长和(528±20) nm 发射波长 下测定荧光强度。以荧光强度和 OD₆₀₀ 的比值 表征启动子强度。

2 结果与分析

2.1 *P. denitrificans* DYTN-1 来源的氮素 诱导型内源启动子筛选

作为代谢工程的重要元件,启动子具有调 节基因表达的关键作用^[26]。通常,化合物分解 代谢途径的基因表达受到分解代谢底物或中间 产物诱导^[27-28]。为了了解氮素降解相关代谢途 径和功能,挖掘受氮素诱导的启动子用于后续 代谢工程调控,我们对 *P. denitrificans* DYTN-1 进行了全基因组测序。分析发现,共有 3 765 个 基因被分配到 6 个主要的 KEGG 途径和 40 个 子途径中(图 1)。代谢是 6 种主要 KEGG 途径中 最大的一类。在所有子途径中,碳水化合物代 谢(489 条基因,占比 12.99%)是最大的类别, 其次是氨基酸代谢(471 条基因,占比 12.51%)、 全局和概览图(407 条基因,占比 10.81%)、膜转 运(349 条基因,占比 9.27%)、能量代谢(270 条基 因,占比 8.50%)和细胞群落—原核生物(189 条基 因,占比 5.02%)。*P. denitrificans* DYTN-1 的基因 功能注释为探索基因组研究中基因产物的特定 生物过程、功能、亚细胞定位和途径提供了基础。

根据 Giannopoulos 等^[29]的报道,泛醌生物 合成蛋白 COQ9、粪卟啉原Ⅲ氧化酶、细胞色素 c 过氧化物酶、核苷二磷酸激酶、细胞色素 c 氧 化酶 cbb3 型亚基III和信号转导组氨酸激酶与氮 素降解代谢密切相关。通过氨基酸比对发现, P. denitrificans DYTN-1 基因组中基因 rpsU、 1851、0893、1746、1845 和 4130 与泛醌生物 合成蛋白 COQ9、粪卟啉原Ⅲ氧化酶、细胞色 素 c 过氧化物酶、核苷二磷酸激酶、细胞色素 c 氧化酶cbb3型亚基III和信号转导组氨酸激酶同 源性高达100%。因此,这6个基因上游启动子 可能是受氮素诱导的启动子。选取基因 CDS 上 游 400 bp 序列作为候选启动子^[29],选定的启动 子序列包括核心启动子区域(-10区和-35区)、 5'-非翻译区(5' untranslated region, 5'-UTRs)和核 糖体结合位点(ribosome bind site, RBS)区域,可 直接克隆到靶基因 CDS 区域进行表达。

在 *P. denitrificans* DYTN-1 中,利用 NH_4^+ 、 NO_2^- 和 NO_3^- 作为诱导剂诱导 6 种启动子启动 sfGFP 蛋白的表达,蛋白胨作为阴性对照,研

图 1 脱氮副球菌 DYTN-1 基因的 KEGG 通路富集分析

Figure 1 KEGG pathway enrichment analysis for the *Paracoccus denitrificans* DYTN-1 genes. A total of 3 765 genes were assigned to 6 major KEGG pathways and 40 sub-pathways.

究所选启动子对氮素的诱导性能。发现蛋白胨 诱导后启动子启动的 sfGFP 蛋白表达水平非常 低,而在无机氮存在下 sfGFP 表达水平较高。具 体而言, P_{0893} 对 NO_2^- 、 NO_3^- 和 NH_4^+ 的有效响应 范围分别为 250–2 000 mg/L、750–2 000 mg/L 和 500-750 mg/L (图 2A)。NO₂⁻诱导产生 15 倍的 表达差异,并且在 NO₂⁻浓度和诱导强度之间表 现出线性关系,然而对 NO₃⁻和 NH₄⁺的反应相对 较低。P₁₈₅₁ 对 NO₃⁻和 NH₄⁺的有效响应范围为 250-2 000 mg/L 和 500-2 000 mg/L,分别产生 9 倍和 13 倍的诱导变化(图 2B)。P₁₇₄₆ 对 NO₃⁻ 和 NH₄⁺的有效响应范围分别为 250-2 000 mg/L 和 100-2 000 mg/L, NO₂⁻只产生很低水平的表达差异。NO₃⁻和 NH₄⁺的诱导分别产生了 19 倍和 16 倍的表达差异, NO₃⁻浓度和诱导强度之间

存在线性关系(图 2C)。P₄₁₃₀ 对 NO₂⁻、NO₃⁻和 NH₄⁺的有效响应范围分别为 50-2 000 mg/L、 50-2 000 mg/L 和 75-2 000 mg/L。其中, NH₄⁺ 浓度在 750-2 000 mg/L 之间的表达差异明显提高,最终达到最高表达差异 11 倍(图 2D)。P₁₈₄₅

Figure 2 Induction dose curves of different promoters induced by NO_2^- , NO_3^- and NH_4^+ . A-F: induction dose curves for P_{0893} (A), P_{1851} (B), P_{1746} (C), P_{4130} (D), P_{1845} (E), and P_{rpsU} (F) using different nitrogen induction sources. Peptone did not induce promoter expression and was used as a control. The inducer concentration range that could generate 1.5-fold to highest of induction fold change was defined as the effective response range. Data represents the mean and standard deviation for three replicates.

对 NO₂⁻、NO₃⁻和 NH₄⁺的有效响应范围分别为 50-2000 mg/L、50-1000 mg/L和75-1000 mg/L。 NO₂⁻和 NO₃⁻的诱导分别产生11和15倍的诱导 变化(图 2E)。P_{rpsU}对 NO₂⁻、NO₃⁻和 NH₄⁺的有效 响应范围分别为50-2000 mg/L、50-1000 mg/L 和 50-2000 mg/L。其中,低浓度的 NH₄⁺ (50-2000 mg/L)明显提高了诱导强度,表现出 NH₄⁺浓度与表达差异的线性关系,最终在 2000 mg/L 时达到最高的表达差异,为26倍 (图 2F)。P_{rpsU}的有效响应下限为50 mg/L,远低 于 P₁₈₅₁、P₀₈₉₃、P₁₇₄₆、P₁₈₄₅和 P₄₁₃₀。因此, P_{rpsU} 启动子具有通过监测氦氮浓度变化来动态调节 脱氮基因表达的潜力。

2.2 以 *P. denitrificans* DYTN-1 为底盘的 代谢工程改造可行性研究

P. denitrificans DYTN-1 是从活性污泥中分 离出来的天然菌株^[23],其基因操作特性依然未 知。为探究 P. denitrificans DYTN-1 作为底盘细 胞的可行性,首先研究了它的抗生素耐受性, 以确认接合过程的阳性克隆筛选标记。结果发 现, P. denitrificans DYTN-1 对壮观霉素耐受, 但对氨苄青霉素、卡那霉素、氯霉素和四环素不 耐受。相比之下, E. coli S17-1λpir 对所有测试 的抗生素都敏感(图 3A)。同时, P. denitrificans DYTN-1 的生长几乎不受壮观霉素浓度的影 响, 而 E. coli S17-1λpir 的生长受壮观霉素影响 较大,在壮观霉素为 30 µg/mL 时可完全抑制 E. coli S17-1λpir 的生长(图 3B-C)。因此, 使用 壮观霉素搭配氯霉素、卡那霉素、四环素或氨 苄霉素,制备双抗生素琼脂平板,用于在接合 后筛选阳性 P. denitrificans DYTN-1 克隆。接合 研究表明, pIND4^[17]成功转移到 P. denitrificans DYTN-1 中并产生了较高的接合效率(图 3D)和 70%的阳性率(图 3E)。

异源质粒的遗传稳定性是另一个评估遗传

可操作性的关键指标。利用 *P. denitrificans* DYTN-1的内源启动子 P_{rpsU} 控制 pIND₄ 质粒中 sfGFP 蛋白的表达,并构建了 pKCE- P_{rpsU} -sfgfp 质粒。结果发现,pKCE- P_{rpsU} -sfgfp 质粒在 10 轮 传代培养中保持高水平的稳定性(图 4)。根据荧光 分析,pKCE- P_{rpsU} -sfgfp 在 *P. denitrificans* DYTN-1 中的荧光值离散系数稳定在 0.12±0.02。脱氮副 球菌 DYTN-1 中稳定的 sfGFP 表达表明该质粒 系统可在菌株中稳定复制和遗传表达,从而表 现出良好的遗传稳定性。总体而言,上述研究 表明 *P. denitrificans* DYTN-1 具有作为代谢工 程底盘细胞强化氮素降解的潜力。

2.3 代谢工程强化 P. denitrificans DYTN-1 脱氮

氨单加氧酶(AMO)、羟胺氧化酶酶(HAO)、 硝酸盐还原酶(NAR)、亚硝酸盐还原酶(NIRS)、 NO 还原酶和 N₂O 还原酶是氨氮经硝化和反硝 化作用转化为氮气的催化酶(图 5A)^[30]。其中, AMO 和 HAO 分别在催化 NH4⁺转化为 NH₂OH 和 NH₂OH 转化为 NO₂⁻的硝化作用中起着不可 或缺的作用。此外,NirS 负责将 NO₂⁻还原为 NO。 由于 NAR 的电子亲和力高于 NirS,在反硝化过 程中电子优先传递给 NAR 从而还原 NO₃⁻,NO₂⁻ 还原受到 NirS 活性的限制。因此,NirS 是反硝 化过程的限速步骤^[31]。为了强化 *P. denitrificans* DYTN-1 的脱氮功能,以 pKCE-P₁₈₅₁-sfgfp 为载 体过表达 amoA、amoB 和 hao,以 pKCE-P₁₇₄₆sfgfp 为载体表达 nirS。

为了构建高效脱氮菌株并加速脱氮过程, 分别选择受 NH4⁺和 NO3⁻诱导型中等强度启动 子 P₁₈₅₁和 P₁₇₄₆来控制 *amoA*、*amoB*、*hao*和 *nirS* 的表达。从而当环境中 NH4⁺浓度过高时诱导启 动硝化途径的基因表达,在 NO3⁻积累过高时诱 导启动反硝化途径基因表达,即可避免在没有 NH4⁺或 NO3⁻污染时的基因过量表达给细胞造 (A)

(B)

 OD_{600}

4

3

2

1

0

48 h

0 h

图 3 验证 P. denitrificans DYTN-1 接合的可行性

Figure 3 Testing *P. denitrificans* DYTN-1 conjugation feasibility. A: *P. denitrificans* DYTN-1 growth on different antibiotic plates. B: growth of *E. coli* S17-1 λ pir in media containing different concentrations of spectinomycin. Data represents the mean and standard deviation for three replicates. C: growth of *P. denitrificans* DYTN-1 in media containing different concentrations of spectinomycin. Data represents the mean and standard deviation for three replicates. C: growth of *P. denitrificans* DYTN-1. In media containing different concentrations of spectinomycin. Data represents the mean and standard deviation for three replicates. D: the conjugative transformation efficiency of *P. denitrificans* DYTN-1. Empty and pIND₄ containing *E. coli* S17-1 λ pir cells were used for conjugative transformation. The dense colonies on the agar plate (right) show a high conjugation efficiency. a: *P. denitrificans* DYTN-1 growth on double antibiotic antibacterial plates (spectinomycin 30 µg/mL and kanamycin 50 µg/mL), b: *P. denitrificans*-pIND₄ growth on double antibiotic antibacterial plates. *P. denitrificans*-pIND₄: *P. denitrificans* DYTN-1 strain carrying plasmid pIND₄. E: assessment the positive rate of conjugation transformation by colony PCR. M: marker. C1: negative control. C2: positive control. Target band is 2 485 bp. After colony PCR, we found 7 positive colonies in 10 candidates, thus indicating the positive rate is 70% (7/10).

10

图 4 外源质粒的稳定性分析

Figure 4 Stability analysis of heterogeneous plasmids. The coefficient of dispersion (c) was the ratio of the standard deviation (σ) of a set of data to its corresponding mean (μ). This is a relative indicator for measuring the degree of data dispersion. It is mainly used to compare the degree of dispersion of different groups of data. $c=\sigma/\mu$. Each violin plot contains 10 parallel data.

成的代谢负担,也可实现脱氮副球菌对氮素污染的实时监控和强化降解。实验数据表明,在处理的前 20 h,工程菌株的氨氮去除率高于野 生型(图 5B)。处理 20 h后,残留氨氮水平约为 250 mg/L,低于启动子对 NH4⁺的有效响应下限,对启动子 P₁₈₅₁诱导作用减弱,将会导致 amoA、amoB 和 hao 表达水平降低。因此,20 h后 amoA、amoB 和 hao 过表达与野生型菌株的脱氮率相似。最终,用过表达 hao 的工程菌处理后,培养基中 NH4⁺残留了 2.4 mg/L,是野生型菌株的 35%。

我们还利用 NO₃-诱导型启动子 P₁₇₄₆ 过表 达 nirS 来增强反硝化作用。处理 24 h 后, nirS 过表达菌株中培养基中 NO₃-的残余量为野生型 菌株的 67% (图 5C)。处理 36 h 后, NO₃-残留

Figure 5 Metabolic engineering enhances nitrification and denitrification pathway gene expression in *P. denitrificans* DYTN-1. A: metabolic engineering enhances the nitrogen metabolism pathway. NOR: nitric oxide reductase; NOS: nitrous oxide reductase; Cyt bc1: cytochrome bc1. Red arrows represent overexpressed genes. B: changes in NH_4^+ during treatment. Data represents the mean and standard deviation for three replicates. C: NO_3^- changes during treatment. Data represents the mean and standard deviation for three replicates.

量约为 25 mg/L,低于 P₁₇₄₆ 启动子对 NO₃⁻的有效响应下限,从而导致质粒上的 nirS 基因表达关闭,仅有基因组的原生 nirS 基因表达,工程菌株的反硝化速率降低到与野生菌相似。最终,在处理 60 h 后, nirS 过表达的工程菌株培养基中的 NO₃⁻残余量为 1.9 mg/L。

在硝化反应进程中过表达 hao 的工程菌促 进 NH₄⁺降解效果较好。因此,为了进一步加强 氮素降解,构建了质粒 pKCE-P₁₈₅₁-hao-P₁₇₄₆nirS,在 P. denitrificans DYTN-1 中同时过表达 hao 和 nirS 基因,以达到同时促进硝化和反硝 化反应的目的。处理 12 h 后,培养基中 NH₄⁺ 和 NO₃⁻的残余率分别为 41.2%和 11.5%,其中 NO₃⁻残留量为 229.74 mg/L,是野生菌株的一半,且远小于仅单过表达 nirS 的工程菌处理 12 h 后 NO₃⁻的剩余量(图 6A–B)。最终,同时过表达 hao 和 nirS 基因的重组菌株处理 60 h 后总氮(包 含被细胞同化的氮素)残留了 113.9 mg/L,是野生 菌株的 51%,处理前后的总氮减少了 437.9 mg/L,降解效率达 79.5% (图 6C)。培养基中 NH₄⁺和 NO₃⁻分别残余 83.8 mg/L 和 8.4 mg/L。

通过上述强化硝化和反硝化途径发现NO₃一比NH₄⁺更容易降解,这可能与 *amoA*、*amoB*和 *hao*均来自自养硝化菌有关。由于 *P. denitrifican*

Figure 6 Simultaneous overexpression of *hao* and *nirS* genes enhanced the nitrogen removal ability of *P*. *denitrificans* DYTN-1. A: changes in NH_4^+ during treatment. B: NO_3^- changes during treatment. C: residual total nitrogen levels at 60 h of treatment in the *hao* and *nirS* overexpressed strain. Data represents the mean and standard deviation for three replicates. pKCE-P₁₈₅₁-hao-P₁₇₄₆-nirS: *P. denitrificans* DYTN-1 carrying plasmid pKCE-P₁₈₅₁-hao-P₁₇₄₆-nirS.

是一类经典的异养硝化好氧反硝化菌,在基因 组中尚未发现与自养硝化菌的 amoA、amoB 和 hao 同源的基因,而 amoA 需要 amoB 等基因的 协同以及电子传递链的配合才能行使氨氧化功 能。因此单独过表达 amoA 或 amoB 对 NH4⁺的 降解强化效果有限。

3 讨论与结论

P. denitrificans 是研究好氧反硝化的模型 菌株,其优越的脱氮性能备受研究者们关注。 然而,由于遗传操作困难和缺乏遗传操作工具, 导致以 P. denitrificans 为底盘进行代谢工程改 造的报道较少。本研究应用 P. denitrificans DYTN-1 作为底盘细胞,挖掘出 6 个不同氮 素诱导的内源性启动子,并验证了遗传操作 的可行性。最后。成功地强化了 P. denitrificans DYTN-1 的硝化和反硝化过程,脱氮能力显著 增强。

目前,很少有研究构建脱氮副球菌的表达 系统。基于 pIND4 和 P_{Qs}^[21]质粒的 IPTG 和 cumate 诱导系统是目前 2 种可用的表达系统。 pIND4 质粒来源于 *Rhodobacter blasticus* 内源质 粒 pMG160,主要包括 *mobS、mobL* 和 *repA*, *mobS* 和 *mobL* 与接合质粒的细胞间穿梭有关, *repA* 与质粒复制密切相关。pIND4 的 IPTG 诱导 仅产生 3 倍的诱导变化,不利于基因高强度表 达。基于 P_{Q5} 的质粒具有显著的高诱导变化, 但外源添加诱导剂无疑会增加环境的负担。本 研究发现,pIND4 具有较高的稳定性,然而这 些质粒较大(7 500–10 900 bp),限制了多个基因 在同一质粒上的表达。因此,进一步进行质粒 结构简化将有助于未来的应用。

NH4⁺、NO2⁻和 NO3⁻是水体中的主要氮污染物^[32]。因此,筛选响应这些无机盐的启动子对 于优化脱氮相关基因的表达至关重要,可以用 于设计和构建复杂的动态脱氮途径^[33]。具体来 说,当氮污染物在环境中积累过多时,NH4⁺、 NO2⁻和 NO3⁻诱导型启动子开始表达,从而启动 硝化或反硝化途径基因表达,强化氮素降解功 能。当没有氮污染物积累时,可以降低表达水 平以节省细胞的物质和能量。

目前, P. denitrificans 的研究主要集中在生 理、生化和功能研究上。使用以 P. denitrificans 为底盘的代谢工程改造研究鲜有报道。本研究 利用内源性启动子在氮素诱导条件下促进了硝 化和反硝化过程,为进一步挖掘基因调控工具 和强化氮素降解提供了方法和思路,也为环境 废水中的基因工程菌株应用提供了参考。

参考文献

- Eneji AE. Review of current status and research approaches to nitrogen pollution in farmlands. *Agricultural Sciences in China*, 2009, 8(7): 843–849.
- [2] Schullehner J, Hansen B, Thygesen M, Pedersen CB, Sigsgaard T. Nitrate in drinking water and colorectal cancer risk: a nationwide population-based cohort study. *International Journal of Cancer*, 2018, 143(1): 73–79.
- [3] Zuo R, Chen XJ, Li XB, Shan D, Yang J, Wang JS, Teng YG. Distribution, genesis, and pollution risk of ammonium nitrogen in groundwater in an arid loess plain, northwestern China. *Environmental Earth Sciences*, 2017, 76(17): 1–16.
- [4] Ghafari S, Hasan M, Aroua MK. Bio-electrochemical removal of nitrate from water and wastewater—a review. *Bioresource Technology*, 2008, 99(10): 3965–3974.
- [5] Wang SJ, Loh KC. New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. *Water Research*, 2000, 34(15): 3786–3794.
- [6] Sun XW, Chen L, Liu C, Xu Y, Ma W, Ni H. Biodegradation of CP/TCP by a constructed microbial consortium after comparative bacterial community analysis of long-term CP domesticated activated sludge. *Journal of Environmental Science and Health, Part B*, 2020, 55(10): 898–908.

- [7] Fulekar MH. Microbial degradation of petrochemical waste-polycyclic aromatic hydrocarbons. *Bioresources* and *Bioprocessing*, 2017, 4(1): 28.
- [8] Samanta S, Bhushan B, Jain R. Efficiency of naphthalene and salicylate degradation by a recombinant *Pseudomonas putida* mutant strain defective in glucose metabolism. *Applied Microbiology* and Biotechnology, 2001, 55(5): 627–631.
- [9] Atkinson BW, Mudaly DD, Bux F. Contribution of *Pseudomonas* spp. to phosphorus uptake in the anoxic zone of an anaerobic-anoxic-aerobic continuous activated sludge system. *Water Science and Technology*, 2001, 43(1): 139–146.
- [10] Gabriel AG, Maurilio LF, Jesús Genaro SM, Angel Isidro CC, Antonio LG. The use of probiotics in aquatic organisms: a review. *African Journal of Microbiology Research*, 2012, 6(23): 4845–4857.
- [11] Guan CR, Cui WJ, Cheng JT, Zhou L, Liu ZM, Zhou ZM. Development of an efficient autoinducible expression system by promoter engineering in *Bacillus* subtilis. Microbial Cell Factories, 2016, 15: 66.
- [12] Weir SC, Lee H, Trevors JT. Effect of selected disinfectants on the persistence and movement of a genetically engineered *Pseudomonas* sp. in soil. *Systematic and Applied Microbiology*, 1996, 19(3): 421–427.
- [13] Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S. Complexation of uranium by cells and S-layer sheets of *Bacillus sphaericus* JG-A12. *Applied and Environmental Microbiology*, 2005, 71(9): 5532–5543.
- [14] Chen DW, Zhang Y, Jiang CY, Liu SJ. Benzoate metabolism intermediate benzoyl coenzyme A affects gentisate pathway regulation in *Comamonas testosteroni*. *Applied and Environmental Microbiology*, 2014, 80(13): 4051–4062.
- [15] Trögl J, Boušková A, Mrákota J, Pilařová V, Krudencová J, Měchurová J, Kříženecká S, Stloukal R. Removal of nitrates from simulated ion-exchange brines with *Paracoccus denitrificans* encapsulated in Lentikats biocatalyst. *Desalination*, 2011, 275(1/3): 82–86.
- [16] Zhang H, Li S, Ma B, Huang T, Qiu H, Zhao Z, Huang X, Liu K. Nitrate removal characteristics and ¹³C metabolic pathways of aerobic denitrifying bacterium *Paracoccus denitrificans* Z195. *Bioresource Technology*, 2020, 307: 123230.
- [17] Ind AC, Porter SL, Brown MT, Byles ED, De Beyer JA,

Godfrey SA, Armitage JP. Inducible-expression plasmid for *Rhodobacter sphaeroides* and *Paracoccus denitrificans*. *Applied and Environmental Microbiology*, 2009, 75(20): 6613–6615.

- [18] Inui M, Nakata K, Roh JH, Vertès AA, Yukawa H. Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from *Rhodobacter blasticus*. *Applied and Environmental Microbiology*, 2003, 69(2): 725–733.
- [19] Graupner S, Wackernagel W. A broad-host-range expression vector series including a Ptac test plasmid and its application in the expression of the *dod* gene of *Serratia marcescens* (coding for ribulose-5-phosphate 3-epimerase) in *Pseudomonas stutzeri*. *Biomolecular Engineering*, 2000, 17(1): 11–16.
- [20] Andersen JB, Sternberg C, Poulsen LK, Bjrn SP, Molin S. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. *Applied and Environmental Microbiology* 1998, 64(6): 2240–2246.
- [21] Kaczmarczyk A, Vorholt JA, Francez-Charlot A. Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Applied and Environmental Microbiology, 2013, 79(21): 6795–6802.
- [22] Tett AJ, Rudder SJ, Bourdès A, Karunakaran R, Poole PS. Regulatable vectors for environmental gene expression in *Alphaproteobacteria*. *Applied and Environmental Microbiology*, 2012, 78(19): 7137–7140.
- [23] Zhao Y, Lu W, Liu Y, Wang J, Zhou S, Mao Y, Li G, Deng Y. Efficient total nitrogen removal from wastewater by *Paracoccus denitrificans* DYTN-1. *Letters in Applied Microbiology*, 2020, 70(4): 263–273.
- [24] Hahnke SM, Moosmann P, Erb TJ, Strous M. An improved medium for the anaerobic growth of *Paracoccus denitrificans* Pd₁₂₂₂. *Frontiers in Microbiology*, 2014, 5: 18.
- [25] Ding NN, Yuan ZQ, Zhang XJ, Chen J, Zhou SH, Deng Y. Programmable cross-ribosome-binding sites to fine-tune the dynamic range of transcription factor-based biosensor. *Nucleic Acids Research*, 2020, 48(18): 10602–10613.
- [26] Ren G, Jin W, Cui K, Rodrigez J, Hu G, Zhang Z, Larson DR, Zhao K. Ctcf-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. *Molecular Cell*, 2017, 67(6): 1049–1058.

- [27] Sun HH, Zhao HM, Ang EL. A new biosensor for stilbenes and a cannabinoid enabled by genome mining of a transcriptional regulator. ACS Synthetic Biology, 2020, 9(4): 698–705.
- [28] Fernandez-López R, Ruiz R, De La Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. *Frontiers in Microbiology*, 2015, 6: 648.
- [29] Giannopoulos G, Sullivan MJ, Hartop KR, Rowley G, Gates AJ, Watmough NJ, Richardson DJ. Tuning the modular *Paracoccus denitrificans* respirome to adapt from aerobic respiration to anaerobic denitrification. *Environmental Microbiology*, 2017, 19(12): 4953–4964.
- [30] Deng M, Zhao X, Senbati Y, Song K, He X. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium *Pseudomonas* sp. DM02:

removal performance, mechanism and immobilized application for real aquaculture wastewater treatment-science direct. *Bioresource Technology*, 2020, 322: 12455.

- [31] Hallin S, Lindgren PE. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. *Applied and Environmental Microbiology* 1999, 65(4): 1652–1652.
- [32] Camargo JA, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. *Environment International*, 2006, 32(6): 831–849.
- [33] Gupta A, Reizman IMB, Reisch CR, Prather KLJ. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. *Nature Biotechnology*, 2017, 35(3): 273–279.