

Research Article 研究报告

粘虫颗粒体病毒增效蛋白在苏云金芽胞杆菌中的 表达及增效活性

黄立鑫¹, 孙俊², 刘琴¹, 韩光杰¹, 李传明¹, 夏杨¹, 陆玉荣¹, 徐健^{1*}

1 江苏里下河地区农业科学研究所 国家农业微生物扬州观测实验站, 江苏 扬州 225007
 2 扬州绿源生物化工有限公司, 江苏 扬州 225008

黄立鑫,孙俊,刘琴,韩光杰,李传明,夏杨,陆玉荣,徐健.粘虫颗粒体病毒增效蛋白在苏云金芽胞杆菌中的表达及增效活性[J]. 微生物学报,2023,63(4):1460-1471.

HUANG Lixin, SUN Jun, LIU Qin, HAN Guangjie, LI Chuanming, XIA Yang, LU Yurong, XU Jian. Expression and synergistic activity of enhancin from *Pseudaletia unipuncta* granulovirus-Ps in *Bacillus thuringiensis*[J]. Acta Microbiologica Sinica, 2023, 63(4): 1460-1471.

摘 要:【目的】在苏云金芽胞杆菌(Bacillus thuringiensis, Bt)中表达截短后的转宿主粘虫颗粒体 病毒(Pseudaletia unipuncta granulovirus-Ps, PuGV-Ps)增效蛋白,为构建增效 Bt 工程菌提供理论基 础。【方法】通过对截短后增效蛋白的密码子进行优化,构建增效蛋白及其融合蛋白表达载体, 分析不同启动子指导下增效蛋白表达量的变化,明确增效蛋白对 Bt 的增效活性。【结果】本研究 构建了表达载体 pHTP_{crylAc}CoEn81、pHTRHCoEn81 和 pHTNCCoEn81, SDS-PAGE 结果显示 pHTP_{crylAc}CoEn81 和 pHTNCCoEn81 分别可以产生 81 kDa 和 134 kDa 的重组蛋白。启动子 P_{crylAc} 和 P_{cry8E} 指导下的增效蛋白表达量和重组增效蛋白产量均无显著性差异。生物测定结果表明,重 组增效蛋白可以显著增加 Bt 对小菜蛾的杀虫活性。【结论】研究结果表明,密码子优化的 PuGV-Ps 增效蛋白可以在 Bt 中表达并具有显著增效活性,为高效苏云金芽胞杆菌工程菌的构建及应用提供 理论指导。

关键词:粘虫颗粒体病毒;苏云金芽胞杆菌;增效蛋白;增效活性

资助项目: 江苏省农业科技自主创新资金[CX(21)3087, CX(22)1009]; 江苏省国际合作项目(BZ2020039); 扬州市科技 项目(现代农业)(YZ2021049)

This work was supported by the Jiangsu Provincial Independent Innovation of Agricultural Science (CX(21)3087, CX(22)1009), the International Cooperation Project of Jiangsu Province (BZ2020039), and the Yangzhou Science and Technology Project (Modern Agriculture) (YZ2021049).

^{*}Corresponding author. Tel/Fax: +86-514-87637599, E-mail: bio-xj@163.com

Received: 2022-08-08; Accepted: 2022-10-12; Published online: 2022-10-18

Expression and synergistic activity of enhancin from *Pseudaletia unipuncta* granulovirus-Ps in *Bacillus thuringiensis*

HUANG Lixin¹, SUN Jun², LIU Qin¹, HAN Guangjie¹, LI Chuanming¹, XIA Yang¹, LU Yurong¹, XU Jian^{1*}

1 National Experimental Station of Agricultural Microbiology in Yangzhou, Lixiahe Institute of Agricultural Sciences, Yangzhou 225007, Jiangsu, China

2 Yangzhou Luyuan Bio-Chemical Company Limited, Yangzhou 225008, Jiangsu, China

Abstract: [Objective] To express the truncated fragments of enhancin gene from *Pseudaletia* unipuncta granulovirus-Ps (PuGV-Ps) in *Bacillus thuringiensis* (Bt) and provide a theoretical basis for the construction of Bt engineering bacteria. [Methods] The codon of the truncated fragments of enhancin gene was optimized for the construction of the expression vectors of enhancin and the expression of fusion proteins. Then, the expression levels of enhancin under the guidance of two promoters were analyzed, and the synergistic activity of enhancin on Bt was determined. [Results] The expression vectors pHTP_{cry1Ac}CoEn81, pHTRHCoEn81, and pHTNCCoEn81 were constructed in the study. SDS-PAGE showed that pHTP_{cry1Ac}CoEn81 and pHTNCCoEn81 produced recombinant proteins of 81 kDa and 134 kDa, respectively. There was no significant difference in the expression level of enhancin or the yield of recombinant enhancin significantly increased the insecticidal activity of Bt against *Plutella xylostella*. [Conclusion] The codon-optimized enhancin of PuGV-Ps can be expressed in Bt and has significant synergistic activity, which provides theoretical guidance for the construction and application of Bt engineering bacteria with high efficiency.

Keywords: Pseudaletia unipuncta granulovirus-Ps; Bacillus thuringiensis; enhancin; synergistic activity

苏云金芽胞杆菌(Bacillus thuringiensis, Bt) 是重要的生物防治因子,在形成芽胞的同时能 够合成具有特异杀虫活性的杀虫晶体蛋白 (insecticidal crystal proteins, ICPs),在农业、林业 及卫生害虫的防治中得到了广泛的应用^[1]。但是 传统的 Bt 菌株存在杀虫谱窄、毒力低等缺点,通 过生物技术手段构建高效广谱的 Bt 工程菌成为国 内外微生物农药发展的重要方向^[2-3]。Hu 等^[4]通 过将几丁质酶和 Cry2Aa 共表达,可以增强 Bt 对棉铃虫(Helicoverpa armigera)的杀虫活性。 Chen 等^[5]的研究发现,将蜘蛛毒素和 Cry1Ac 融合表达可以增强 Bt 对多种鳞翅目害虫、螨虫和 线虫的杀虫活性。因此,在 Bt 中表达外源蛋白以 提高其杀虫活性、拓宽其杀虫谱具有可行性。

研究表明,转宿主粘虫颗粒体病毒 (*Pseudaletia unipuncta* granulovirus-Ps, PuGV-PS) 可以增强 Bt 的杀虫活性^[6-7],Xu 等^[8]进一步证 明了增效蛋白(enhancin, En)是 PuGV-Ps 起增效 作用的主要成分。增效蛋白是一类由杆状病毒 基因编码的金属蛋白酶,其分子量大小通常为 89-110 kDa,可以降解寄主昆虫肠粘蛋白(insect intestinal mucin, IIM),进而增加中肠围食膜 (peritrophic matrix, PM)的通透性,促进病毒粒子的感染^[9-10]。Yin 等^[11]对增效蛋白锌离子结合域的氨基酸残基进行定点突变,可以显著减弱 其增效活性,证明了其金属蛋白酶的特性。此外,在核型多角体病毒(nuclearpolyhedrosisvirus, NPV)和痘病毒(entomopxvirus, EPV)中也鉴定 出增效蛋白及其同源蛋白^[12-13]。增效蛋白不仅 能提高多种 NPV 的侵染能力^[14-15],还可以增强 Bt 的杀虫活性^[6,16-17]。

虽然原核表达的增效蛋白对Bt具有增效活性,但由于其分子量较大,重组表达具有一定 难度,限制了对增效蛋白的深入研究与利用。 Han等^[18]通过对截短后的PuGV-Ps增效蛋白活 性进行分析,发现缺失N端M60-like结构域或 C端糖蛋白结合域的增效蛋白依然具有增效活 性。但是由于原核表达具有较高的生产成本, 而无法大规模应用到生产中,需要探索增效蛋白应用的新途径。因此,本研究通过对 PuGV-Ps 截短后的增效蛋白基因序列进行优化,分析增效蛋白在 Bt 中的表达水平及对 Bt 的增效活性, 探索增效蛋白基因的合理利用途径,为构建高效的 Bt 工程菌提供理论支持。

1 材料与方法

1.1 实验材料

本研究用的菌株和质粒信息见表 1。大肠 杆菌(*Escherichia coli*)菌株 Top10 和 ET 分别用 于进行分子克隆和质粒去甲基化实验,并在 37 ℃条件下培养。Bt 库斯塔克亚种(*B. thuringiensis* subsp. *kurstaki*, Btk)野生株 HD73 和无晶体突变 株 HD73⁻,在 30 ℃条件下培养。小菜蛾(*Plutella xylostella*)幼虫为实验室人工利用小青菜幼苗 饲养,温度 25 ℃,相对湿度 60%-70%,光周 期 14L:10D。

表1 菌株与质料

Table 1 Strains and plasmids

1			
Strains and plasmids	Characterization	Resource	
Escherichia coli strains			
E. coli Top10	Molecular clone	Lab stock	
E. coli ET	Demethylation	Lab stock	
Bacillus thuringiensis strains			
HD73	Wild type containing cry1Ac gene	Lab stock	
HD73 ⁻	Acrystalliferous mutant strain	Lab stock	
HD ⁻ (<i>RHCoEn81</i>)	HD73 ⁻ with recombinant vector pHTRHCoEn81	This study	
HD ⁻ (NCCoEn81)	HD73 ⁻ with recombinant vector pHTNCCoEn81	This study	
$HD^{-}(P_{crylAc}CoEn81)$	HD73 ⁻ with recombinant vector pHTP _{cry1Ac} CoEn81	This study	
$HD^{-}(P_{cry8E}CoEn81)$	HD73 ⁻ with recombinant vector pHTP _{cry8E} CoEn81	This study	
Plasmids			
pHT315	Expression vector, 6.5 kb, A ⁺ , E ⁺	Lab stock	
pHTRHCoEn81	pHT315 containing CoEn81 and cry1Ac	This study	
pHTNCCoEn81	pHT315 containing CoEn81 and part of cry1Ac	This study	
pHTP _{cry1Ac} CoEn81	$pHT315 containing P_{cry1Ac} and CoEn81$		
pHTP _{cry8E} CoEn81	pHT315 containing P _{cry8E} and CoEn81	This study	

1.2 增效蛋白基因优化

根据前期 PuGV-Ps 增效蛋白结构域分析结 果^[18],选取C端糖蛋白结合域缺失的增效蛋白 序列(En81)进行密码子优化。利用在线数据库 Codon Usage Databass (http://www.kazusa.or.jp/ codon/)获取 Btk 的密码子使用频率表,利用在 线软件 DNAWorks (https://hpcwebapps.cit.nih.gov/ dnaworks/)对增效蛋白密码子进行优化。优化后 的增效蛋白基因序列(CoEn81)经通用生物系统 (安徽)有限公司进行人工合成,合成后的序列克 隆至质粒 pUC57 中(pUC57-CoEn81)用于后续表 达载体构建。

1.3 PCR 扩增

选用 TaKaRa 公司的 PrimeStar 酶, 扩增程 序为: 98 ℃ 4 min; 98 ℃ 10 s, 55 ℃ 15 s, 72 ℃ 1 kb/min, 30 个循环; 72 ℃ 10 min。引物由通

表 2 引物序列

T 1 1 A **D**...:

用生物(安徽)股份有限公司合成,引物序列见 表 2。

1.4 增效蛋白表达载体构建

增效蛋白表达载体的构建过程如图1所示。

1.4.1 增效蛋白与 Cry1Ac 融合表达

以 HD73 基因组为模板, 1AcPF/1AcR 为引 物, 扩增 Cry1Ac 启动子区域及编码区(无终止密 码子)的片段 3 925 bp (cry)。以质粒 pUC57-CoEn81 为模板,RHF/RHR 为引物,扩增增效蛋白基因 2 103 bp (CoEn81-1)。以扩增产物 cry 和 CoEn81-1 为模板, 1AcPF/RHR 为引物, 进行重叠 PCR, 扩 增 cry 和 CoEn81-1 融合片段 6 028 bp (RHCoEn81)。 质粒 pHT315 经限制性内切酶 Hind III和 EcoR I 酶切后,利用同源重组试剂盒(南京诺唯赞生物 科技股份有限公司)与融合片段RHCoEn81进行 连接,连接产物转化至 Top10 菌株中, 经测序

Primer names	Sequences $(5' \rightarrow 3')$	Restriction sites
1AcPF	GACCATGATTACGCCAAGCTTTTGCAGGTAAATGGTTCTAACATGT	Hind III
1AcPR	CGGAACAATTACCTTATAACTCATAAGTTACCTCCATCTCTTTATTA	
1AcR	GGAACAATTACCTTATAACTCATTTCCTCCATAAGGAGTAATTCCAC	
RHF	GTGGAATTACTCCTTATGGAGGAAATGAGTTATAAGGTAATTGTTCC	
RHR	TTGTAAAACGACGGCCAGTGAATTCTAACTGTAGTTGTCTAGGAAAGC	EcoR I
1Ac5'	CGGAACAATTACCTTATAACTCATAATTGGATATCTTCTACTATCATA	
1Ac3'	GCAGCTTTCCTAGACAACTACAGTGTCATTAAAAATGGTGATTTTAAT	
1AcTF	GCTTTCCTAGACAACTACAGTTAATCTCATGCAAACTCAGGTTTAAAT	
1AcTR	AAATAAAGCACTAATAGGGTGTTTTTGGAATTCACTGGCCGTCGTTTT	EcoR I
PT1	TAATAAAAGAGATGGAGGTAACTTATGAGTTATAAGGTAATTGTTCCG	
PT2	ATTTAAACCTGAGTTTGCATGAGATTAACTGTAGTTGTCTAGGAAAGC	
PT3	ATCTTGTGTATGTATAGGAGGAAAATAGATGGATAACAATCCGAACATCAATG	
8EPF	GACCATGATTACGCCAAGCTTAATGCACCTCCAATTGTTAATTATGT	Hind III
8EPR	CATTGATGTTCGGATTGTTATCCATCTATTTTCCTCCTATACATAC	
gatB F	AGCTGGTCGTGAAGACCTTG	
gatB R	CGGCATAACAGCAGTCATCA	
qcry1Ac F	CGCAGAATCTTTTAGAGAGTGG	
qcry1Ac R	CATGTCATTGAATTGAATACGC	
qCoEn81 F	GCAATCTTCCTAACAAAGCAGCAT	
qCoEn81 R	CGTTGGACTAATTCGCAAATAATC	

图 1 重组质粒 pHTRHCoEn81、pHTNCCoEn81、pHTP_{cry1Ac}CoEn81 和 pHTP_{cry8E}CoEn81 的构建 Figure 1 Construction of recombinant plasmids pHTRHCoEn81, pHTNCCoEn81, pHTP_{cry1Ac}CoEn81, and pHTP_{cry8E}CoEn81.

正确后,提取重组质粒 pHTRHCoEn81。重组质 粒经 ET 菌株去甲基化后,电击转化至 HD73⁻ 菌株中,获得重组菌 HD⁻(RHCoEn81)。

1.4.2 增效蛋白与 Cry1Ac N 端和 C 端融合表达

以 HD73 基因组为模板, 1AcPF/1Ac5'为引 物,扩增 Cry1Ac 启动子区域及 N 端序列 1 186 bp (*cryN*); 1Ac3'/1AcTR 为引物, 扩增 Cry1Ac C 端及终止子序列 934 bp (*cryC*)。以质粒 pUC57CoEn81 为模板,NCF/NCR 为引物,扩增增效 蛋白基因 2 100 bp (CoEn81-2) (无终止密码子)。 分别以扩增产物 cryN、CoEn81-2、cryC 为模板, 1AcPF/1AcTR 为引物,进行重叠 PCR,获得融 合片段 4 172 bp (NCCoEn81)。质粒 pHT315 经 限制性内切酶 Hind III和 EcoR I酶切后,利用同 源重组与融合片段 NCCoEn81 进行连接,连接 产物转化至 Top10 菌株中,经测序正确后,提 取重组质粒 pHTNCCoEn81。重组质粒经 ET 菌株去甲基化后,电击转化至 HD73⁻菌株中,获得重组菌 HD⁻(NCCoEn81)。

1.4.3 cry1Ac 启动子指导增效蛋白表达

以 HD73 基因组为模板, 1AcPF/1AcPR 为 引物, 扩增 *cry1Ac* 启动子区域 415 bp (*P_{cry1Ac}*); 以 1AcTF/1AcTR 为引物, 扩增 *cry1Ac* 终止子 区域 328 bp (*T_{cry1Ac}*)。以质粒 pUC57-*CoEn81* 为 模板, PT1/PT2 为引物, 扩增增效蛋白基因 2 103 bp (*CoEn81*-3)。分别以扩增产物 *P_{cry1Ac}*、 *CoEn81*-3、*T_{cry1Ac}*为模板, 1AcPF/1AcTR 为引物, 进行 重叠 PCR, 获得融合片段 2 798 bp (*P_{cry1Ac}CoEn81*)。质粒 pHT315 经限制性内切酶 *Hind* III和 *Eco*R I酶切后,利用同源重组与融合 片段 *P_{cry1Ac}CoEn81* 进行连接,连接产物转化至 Top10 菌株中,经测序正确后,提取重组质粒 pHTP_{cry1Ac}CoEn81。重组质粒经 ET 菌株去甲基 化后,电击转化至 HD73⁻,获得重组菌 HD⁻ (*P_{cry1Ac}CoEn81*)。

1.4.4 cry8E 启动子指导增效蛋白表达

以HD(P_{cry8E}-lacZ)基因组为模板,8EPF/8EPR 为引物,扩增cry8E启动子区域891bp(P_{cry8E})。 以HD(P_{cry1Ac}CoEn81)基因组为模板,PT3/1AcTR 为引物,扩增包含cry1Ac终止子在内的增效蛋 白基因2435bp(CoEn81-4)。以扩增产物P_{cry8E} 和CoEn81-4为模板,8EPF/1AcTR为引物,进行 重叠PCR,获得融合片段3272bp(P_{cry8E}CoEn81)。 质粒pHT315经限制性内切酶Hind III和EcoR I 酶切后,利用同源重组与融合片段P_{cry8E}CoEn81 进行连接,连接产物转化至Top10菌株中,经 测序正确后,提取重组质粒pHTP_{cry8E}CoEn81。 重组质粒经ET菌株去甲基化后,电击转化至 HD73⁻菌株中,获得重组菌HD⁻(P_{cry8E}CoEn81)。

1.5 增效蛋白抗体制备

增效蛋白抗体由南京钟鼎生物技术有限公

司制备。利用前期原核表达得到的重组增效蛋 白^[18],免疫2只新西兰白兔(2.0-2.5 kg),皮下 免疫400 µg/次,2-3 周免疫1次,待抗血清针 对重组增效蛋白的效价大于1:50 000 时进行采 血,制备抗血清。将重组增效蛋白与琼脂糖介 质偶联制备成抗原亲和纯化层析柱,将所得抗 血清与PBS等量混合后缓慢上样,待抗体结合 后用甘氨酸洗脱缓冲液洗脱,即得到所需纯化 抗体,立即在PBS中进行4℃透析过夜,-80℃ 保存备用。

1.6 重组菌的蛋白表达检测

重组菌经 SSM 培养基(8 g/L 营养肉汤, 0.12 g/L MgSO₄, 1 g/L KCl, 0.5 mmol/L NaOH, 25 µg/mL 红霉素)培养 25 h 后(此时芽胞和晶体 已经形成,但是菌体未裂解),取 50 mL 培养液, 10 000 r/min 离心 2 min,弃上清,加入 5 mL 无 菌水重悬菌体。菌悬液采用 BioSafer 超声破碎仪, 强度 10%, 3 s/5 s,运行 5 min 经超声破碎后, 取 100 µL 破碎液 10 000 r/min 离心 5 min,保留 上清液备用,沉淀加入 100 µL 无菌水重悬备用。 分别取破碎液、上清液、重悬液各 100 µL,加入 25 µL 0.5 mmol/L 的 NaOH 溶液,室温放置 5 min 后,加入 75 µL 3×上样缓冲液。100 °C煮沸 10 min, 10 000 r/min 离心 5 min 后,取上清液 10 µL 分别 进行 Western blotting 和 SDS-PAGE 检测。

1.7 实时荧光定量 PCR

重组菌在 SSM 培养基中培养至 T₀和 T₈时, 采用 TRIzol (Invitrogen)法提取总 RNA。使用 gDNA Eraser (Perfect Real Time) (TaKaRa)将纯 化的 RNA 逆转录为 cDNA。选择 gatB 作为内 参基因^[19],采用的特异引物见表 2。采用 TaKaRa 公司的定量试剂盒 TB Green Fast qPCR Mix 和 ABI 公司的 StepOnePlus 实时 PCR 系统进行实 时定量 PCR (real-time quantitative PCR, qPCR)。 实验设置 3 个技术重复和 3 个生物学重复, 验 证引物的特异性和扩增效率,并采用 2^{-ΔΔC_T} 法计算增效蛋白基因的相对表达量。

1.8 重组增效蛋白的纯化

挑取单菌落于 5 mL SSM 培养基中,220 r/min、 30 ℃过夜培养,将母液按 1:100 的比例加入到 50 mL 新鲜的 SSM 培养基中,220 r/min、30 ℃ 培养至母细胞完全裂解。取培养液 10 000 r/min 离心 10 min,弃上清,分别用 2 mol/L 和 3 mol/L 的尿素充分洗涤沉淀,最后用 8 mol/L 的尿素溶 解沉淀。将含有重组蛋白的尿素溶液,加入到 半透膜中,依次放入到 6、4、2、1、0.5、0 mol/L 的尿素溶液中,分别在 4 ℃中孵育 12 h 进行复 性,复性后的重组增效蛋白置于-80 ℃保存。

1.9 生物测定

菌株 HD73 在发酵培养基(2%淀粉, 4.5% 豆饼粉, 2.0% 玉米浆, 0.1% MgSO₄, 0.1% CaCO₄, 0.1% KH₂PO₄)中, 220 r/min、30 °C培 养至晶体蛋白完全释放。发酵液经梯度稀释至 4、2、1、0.5、0.25 mL/L 后, 取 4 cm×4 cm 大 小的青菜叶片,完全浸渍于稀释液中5min。同 时,另取一组发酵稀释液,每个浓度梯度加入 终浓度为 500 μg/L 的重组增效蛋白,以相同的 方法处理青菜叶片。取出叶片置于操作台上, 晾至无水渍后,将叶片放于直径为90mm培养 皿,每皿接入 20 头 3 龄小菜蛾幼虫,放置于 25 ℃恒温培养箱中,48h后检查试虫死亡情况。 LC50 值和 95%置信区间(confidence intervals, CIs)的分析采用 PoloPlus 软件^[20]。致死中浓度 比值(LC_{50} ratio, LCR)的置信区间不包含1时, 表明 LC50 值是具有显著性差异的(P<0.05)。

2 结果与分析

2.1 PuGV-Ps 增效蛋白密码子优化

截短后增效蛋白基因序列长度为2100bp,

编码 700 个氨基酸,利用在线工具 Compute pI/Mw 估算其蛋白大小为 81 kDa。密码子未优 化增效蛋白基因(*En81*)的 GC 含量为 47%,密 码子优化后增效蛋白基因(*CoEn81*)的 GC 含量 为 38% (图 2)。

2.2 重组 PuGV-Ps 增效蛋白质粒构建

经 PCR 检测,目的条带大小正确,表明增 效蛋白与 Cry1Ac 融合表达载体 pHT*RHCoEn81*、 增效蛋白与 Cry1Ac N 端和 C 端融合表达载体 pHT*NCCoEn81、cry1Ac* 启动子指导增效蛋白表 达载体 pHT*P_{cry1Ac}CoEn81* 和 *cry8E* 启动子指导 增效蛋白表达载体 pHT*P_{cry8E}CoEn81* 均构建成 功(图 3)。

2.3 重组 PuGV-Ps 增效蛋白表达检测

重组质粒 pHTRHCoEn81、pHTNCCoEn81、 pHTP_{cry1Ac}CoEn81 分别转入 HD73⁻中获得重组 菌 HD⁻(RHCoEn81)、HD⁻(NCCoEn81)和 HD⁻ (P_{cry1Ac}CoEn81)。重组增效蛋白 RHCoEn81、 NCCoEn81 和 CoEn81 (P_{cry1Ac})分子量大小分别 约为 214、134、81 kDa, 经 Western blotting 检 测后,均表达成功(图 4A),但是 SDS-PAGE 检 测不到重组增效蛋白 RHCoEn81 的表达(图 4B)。 2.4 PuGV-Ps 增效蛋白在 Bt 中的表达水 平分析

实时定量 PCR 结果显示,在 T_0 和 T_8 时, cry1Ac 的表达量分别是启动子 P_{cry1Ac} 指导下 CoEn81表达量的 3.6 倍和 2.6 倍,是启动子 P_{cry8E} 指导下 CoEn81 表达量的 2.9 倍和 2.3 倍;启动 子 P_{cry1Ac} 和 P_{cry8E} 指导下 CoEn81 的表达量无显 著性差异(图 5A)。通过对 HD⁻ (P_{cry1Ac} CoEn81) 和 HD⁻ (P_{cry8E} CoEn81)中增效蛋白的产量分析 可知,增效蛋白在 Bt 中以包涵体的形式存在, 2 种启动子指导下的增效蛋白产量无差异,但 产量均低于 Cry1Ac (图 5B)。

图 2 截短后的 PuGV-Ps 增效蛋白密码子优化

Figure 2 Codon optimization of short-enhancin. A: En81. B: CoEn81.

图 3 PCR 检测重组 PuGV-Ps 增效蛋白质粒

Figure 3 The recombinant plasmids were detected by PCR. M: Marker; Lane 1: pHT*RHCoEn81*; Lane 2: pHT*NCCoEn81*; Lane 3: pHT*P*_{cry1Ac}CoEn81; Lane 4: pHT*P*_{cry8E}CoEn81.

2.5 PuGV-Ps 增效蛋白对 Bt 的增效活性 分析

对小菜蛾的生物测定结果表明,HD73 的 LC₅₀值为 1.004 μL/L,而添加终浓度为 500 μg/L 的重组增效蛋白后,其LC₅₀值降低为 0.269 μL/L (表 3)。平等性假设(hypothesis of equality)通过 (P<0.05),而平行性假设(hypothesis of parallelism) 未通过(P>0.05),表明 2 条毒力回归曲线平行不 相等(图 6,表 3)。致死终浓度比值(LCR)为 0.268, 95%置信区间为 0.210-0.341,不包含 1,表明 2 个 LC₅₀值具有显著性差异。因此,重组增效 蛋白可以增强 Bt 对小菜蛾的杀虫活性。

图 4 重组 PuGV-Ps 增效蛋白表达检测

Figure 4 Expression detection of recombinant proteins by western blotting (A) and SDS-PAGE (B). M: Marker; Lane 1 and 4: RHCoEn; Lane 2 and 5: NCCoEn81; Lane 3 and 6: P_{crylAc} CoEn81; Lane 7: Cry1Ac; Lane 8: En-BL21. The recombinant enhancin in lanes 5 and 6 were marked with blue and red arrows, respectively.

Figure 5 Expression level analysis of enhancin in Bt by qPCR (A) and SDS-PAGE (B). T_0 is the end of the exponential phase and T_n is n hours after the end of the exponential phase. Three technical replicates and three biological replicates were performed. Error bars represent one standard error of the mean, P<0.05. *: Significant difference, P<0.05. ns: No significant difference, P>0.05. M: Marker; Lane 1: En-BL21; Lane 2 and 3: Cry1Ac; Lane 4 and 5: P_{cry1Ac} CoEn81; Lane 6 and 7: P_{cry8E} CoEn81. Lane 2, 4 and 6 are sediment; Lane 3, 5 and 7 are supernatant.

表 3	Bt菌株	HD73 对-	小菜蛾的杀	虫活性
-----	------	---------	-------	-----

Table 3	Insecticidal	activities	of Bacillus	thuringiensis	strain HD73	against	Plutella x	vlostella
_								

			0	e		
Strain	<i>LC</i> ₅₀ (95% CI)	Slope±SE	χ^2 (df)	LCR50 (95% CI)	Hypothesis of	Hypothesis of
	(µL/L)				equality (χ^2, P)	parallelism (χ^2 , P)
HD73	1.004 (0.852-1.186)	$2.382{\pm}0.234$	2.037 (3)	_	_	-
HD73+CoEn81	0.269 (0.227-0.323)	2.245 ± 0.228	2.030 (3)	0.268 (0.210-0.341)	78.43, 0.001	0.17, 0.676
-: No data.						

3 讨论与结论

Bt 是应用最为广泛的杀虫细菌,构建转增效 蛋白工程菌可以有效提高 Bt 的杀虫活性。不同 颗粒体病毒的增效蛋白 N 端同源性大于 C 端^[21], 其 N 端含有锌离子结合域(HEXXH),具有金属 蛋白酶活性,去除 C 端糖蛋白结合域的增效蛋 白依然具有增效活性,同时,截短后的增效蛋 白具有较高的表达量^[18]。多种颗粒体病毒的增 效蛋白均可以通过大肠杆菌表达系统成功表 达,且对 Bt 具有增效活性^[8,22],但尚未有在 Bt 中成功表达增效蛋白的报道。本研究构建了增

图 6 Bt 对小菜蛾的毒力回归曲线

Figure 6 Toxicity regression curve of Bt to *Plutella xylostella*.

效蛋白及其融合蛋白的表达载体,并成功地在 Bt 中表达了分子量分别为 81、134、214 kDa 的重组蛋白,其中与 Cry1Ac 共表达的分子量为 214 kD 的融合蛋白,由于融合蛋白过大,导致表 达量太低,利用 SDS-PAGE 无法检测到其表达。

重组蛋白分子量大小会影响外源基因在 Bt 中表达,而密码子偏爱性、mRNA 稳定性、启 动子活性等同样也是影响外源蛋白表达量变化 的主要因素^[23-25]。密码子优化策略是解决密码 子偏好性最常用的方法,主要是将目的基因密 码子与宿主基因组中具有最高频率的同义密码 子进行替换^[26-27]。前期研究发现,未优化的增 效蛋白基因无法在 Bt 中表达(数据未显示),因 此本研究通过获取 Bt 密码子使用频率表, 对截 短后的 PuGV-Ps 增效蛋白密码子进行优化, 消 除了密码子偏爱性对增效蛋白表达量的影响。 此外,本研究还引入了杀虫基因 cry1Ac 的终止 子序列,用于增强增效蛋白 mRNA 稳定性。终 止子含有富含 GC 的反向重复序列,能够形成 稳定的茎环结构,通过阻止核酸外切酶对 mRNA 的降解, 增加 mRNA 的稳定性, 促进目

标基因的表达^[23,25]。

Bt 中不同启动子指导的 *cry* 基因的表达量 是不同的。Bt 中强启动子 *P*_{crylAc} 为重叠的双启 动子 Bt I和 Bt II, 二者分别由 σ^E和 σ^K 调控, 是 芽胞依赖型启动子,可以指导多种 Cry 蛋白的异 源表达^[23,28]。启动子 *P*_{cry8E}受 σ^H调控, 是一个营 养期表达的弱启动子,但是其指导下的 Cry1Ac 的表达量要高于 *P*_{crylAc} 指导下 Cry1Ac 的表达 量^[29-30]。本研究分别利用启动子 *P*_{crylAc} 和 *P*_{cry8E} 指导增效蛋白表达,结果表明,在 2 种启动子 的指导下,增效蛋白虽然可以成功表达,但是 其表达量显著低于 Cry1Ac 的表达量。因此,我 们推测,增效蛋白为非 Bt 源蛋白,不同于 Cry 蛋白,能够指导 Cry 蛋白高表达的启动子并不 一定可以指导非 Bt 源蛋白的高表达。

枯草芽孢杆菌(*B. subtilis*, Bs)具有非致病 性、分泌蛋白能力强等特性,是异源表达的理想 宿主,同时关于其启动子的研究也较为深入^[31]。 Bs 含有的主要转录因子有 Spo0A、 σ^{H} 、 σ^{F} 、 σ^{E} 、 σ^{G} 和 σ^{K} 等,这些转录因子间存在级联调节机 制,Bt 中也存在类似的机制^[32]。因此,根据 Bs 和 Bt 转录调控存在一定相似性,利用 Bs 中的 高效启动子,在 Bt 中表达外源蛋白具有一定可 行性。接下来我们会筛选 Bs 中的强启动子,在 Bt 中验证其对增效蛋白的表达水平,进一步构 建高效表达增效蛋白的 Bt 工程菌。

致谢

感谢中国农科院植物保护研究所提供的菌 株和质粒。

参考文献

[1] SCHNEPF E, CRICKMORE N, van RIE J, LERECLUS D, BAUM J, FEITELSON J, ZEIGLER DR, DEAN DH. *Bacillus thuringiensis* and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews: MMBR, 1998, 62(3): 775-806.

- [2] 刘萍,夏立秋,胡胜标,严礼,丁学知,张友明,喻子牛.外源基因在苏云金杆菌染色体上的定点整合及表达[J]. 微生物学报,2008,48(5):661-666.
 LIU P, XIA LQ, HU SB, YAN L, DING XZ, ZHANG YM, YU ZN. Site-specific integration of heterologous gene into *Bacillus thuringiensis* chromosome and its expression[J]. Acta Microbiologica Sinica, 2008, 48(5):661-666 (in Chinese).
- [3] LUCENA WA, PELEGRINI PB, MARTINS-de-SA D, FONSECA FCA, GOMES JE Jr, de MACEDO LLP, da SILVA MCM, OLIVEIRA RS, GROSSI-de-SA MF. Molecular approaches to improve the insecticidal activity of *Bacillus thuringiensis* Cry toxins[J]. Toxins, 2014, 6(8): 2393-2423.
- [4] HU SB, ZHANG X, LI YS, DING XZ, HU XF, YANG Q, XIA LQ. Constructing *Bacillus thuringiensis* strain that co-expresses Cry2Aa and chitinase[J]. Biotechnology Letters, 2013, 35(7): 1045-1051.
- [5] 陈珺君,刘芳,廖先清,张志刚,闵勇,饶犇,杨自 文,周荣华,刘晓艳.两种蜘蛛毒素肽与苏云金芽胞 杆菌 Cry1Ac 蛋白的融合表达及杀虫活性[J].中国生 物防治学报,2018,34(6):838-847. CHEN JJ, LIU F, LIAO XQ, ZHANG ZG, MIN Y, RAO B, YANG ZW, ZHOU RH, LIU XY. Fusion expression and insecticidal activity of two spider toxin

peptides with Cry1Ac protein from *Bacillus thuringiensis*[J]. Chinese Journal of Biological Control, 2018, 34(6): 838-847 (in Chinese).

- [6] 徐健, 刘琴, 谭永安, 祝树德. 粘虫颗粒体病毒对苏云 金杆菌的增效特性及对 Bt 毒蛋白的降解活化作用[J]. 昆虫学报, 2008, 51(1): 26-32.
 XU J, LIU Q, TAN YA, ZHU SD. Synergistic effects of *Pseudaletia unipuncta* granulosis virus (PuGV-Ps) on *Bacillus thuringiensis* (Bt) and the involved degradation of Bt toxins[J]. Acta Entomologica Sinica, 2008, 51(1): 26-32 (in Chinese).
- [7] 刘琴,马谈斌,祁建杭,施建德,李传明,徐健.苏 云金芽胞杆菌毒素蛋白和粘虫颗粒体病毒对甜菜夜 蛾中肠围食膜的破坏作用[J].中国生物防治学报, 2011,27(2):182-187.
 - LIU Q, MA TB, QI JH, SHI JD, LI CM, XU J. Damaging effects of PuGV-ps and *Bacillus thuringiensis* on peritrophic membrane of *Spodoptera exigua*[J]. Chinese Journal of Biological Control, 2011, 27(2): 182-187 (in Chinese).

- [8] 徐健, 赵松, 刘琴, 杨青, 李传明. 转宿主粘虫颗粒体 病毒(PuGV-Ps)增效蛋白基因的克隆表达及活性[J]. 中国生物防治学报, 2013, 29(3): 389-394.
 XU J, ZHAO S, LIU Q, YANG Q, LI CM. Expression of enhancin gene from *Pseudaletia unipuncta* granulovirus-ps in *Escherichia coli* and bioassay of its activity[J]. Chinese Journal of Biological Control, 2013, 29(3): 389-394 (in Chinese).
- [9] WANG ML, WANG J, YIN FF, TAN Y, DENG F, CHEN XW, JEHLE JA, VLAK JM, HU ZH, WANG HL. Unraveling the entry mechanism of baculoviruses and its evolutionary implications[J]. Journal of Virology, 2014, 88(4): 2301-2311.
- [10] ERLANDSON MA, TOPRAK U, HEGEDUS DD. Role of the peritrophic matrix in insect-pathogen interactions[J]. Journal of Insect Physiology, 2019, 117: 103894.
- [11] 尹隽, 单梁, 宋大新, 钟江. 粉纹夜蛾颗粒体病毒增强蛋白锌离子结合域定点突变[J]. 昆虫学报, 2007, 50(11): 1111-1115.
 YIN J, SHAN L, SONG DX, ZHONG J. Site-directed mutagenesis of the zinc-binding domain of *Trichoplusia ni* granulovirus enhancin[J]. Acta Entomologica Sinica, 2007, 50(11): 1111-1115 (in Chinese).
- [12] LI LL, DONLY C, LI QJ, WILLIS LG, KEDDIE BA, ERLANDSON MA, THEILMANN DA. Identification and genomic analysis of a second species of nucleopolyhedrovirus isolated from *Mamestra configurata*[J]. Virology, 2002, 297(2): 226-244.
- [13] XU JH, HUKUHARA T. Biochemical properties of an enhancing factor of an entomopoxvirus[J]. Journal of Invertebrate Pathology, 1994, 63(1): 14-18.
- [14] HOOVER K, HUMPHRIES MA, GENDRON AR, SLAVICEK JM. Impact of viral enhancin genes on potency of *Lymantria dispar* multiple nucleopolyhedrovirus in *L. dispar* following disruption of the peritrophic matrix[J]. Journal of Invertebrate Pathology, 2010, 104(2): 150-152.
- [15] RICARTE-BERMEJO A, SIMÓN O, FERNÁNDEZ AB, WILLIAMS T, CABALLERO P. Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection[J]. Viruses, 2021, 13(7): 1233.
- [16] GUO W, KAIN W, WANG P. Effects of disruption of the peritrophic membrane on larval susceptibility to Bt toxin Cry1Ac in cabbage loopers[J]. Journal of Insect Physiology, 2019, 117: 103897.

- [17] GRANADOS RR, FU Y, CORSARO B, HUGHES PR. Enhancement of *Bacillus thuringiensis* toxicity to lepidopterous species with the enhancin from *Trichoplusia ni* granulovirus[J]. Biological Control, 2001, 20(2): 153-159.
- [18] 韩光杰,刘琴,徐贝贝,王建军,祁建杭,李传明,徐健. 粘虫颗粒体病毒增效蛋白基因片段优化及功能[J]. 微生物学报,2016,56(9):1459-1467.
 HAN GJ, LIU Q, XU BB, WANG JJ, QI JH, LI CM, XU J. Optimized expression and functional analysis of enhancin gene from *Pseudaletia unipuncta* granulovirus (PuGV-Ps)[J]. Acta Microbiologica Sinica, 2016, 56(9): 1459-1467 (in Chinese).
- [19] REITER L, KOLSTØ AB, PIEHLER AP. Reference genes for quantitative, reverse-transcription PCR in *Bacillus cereus* group strains throughout the bacterial life cycle[J]. Journal of Microbiological Methods, 2011, 86(2): 210-217.
- [20] STRAUS DL. Copper sulfate toxicity to channel catfish fry: Yolk sac versus swim-up fry[J]. North American Journal of Aquaculture, 2008, 70(3): 323-327.
- [21] ROELVINK PW, CORSARO BG, GRANADOS RR. Characterization of the *Helicoverpa armigera* and *Pseudaletia unipuncta* granulovirus enhancin genes[J]. The Journal of General Virology, 1995, 76(Pt 11): 2693-2705.
- [22] 袁哲明,陈浩涛,梁晨彩. 重组增效蛋白对 Bt 和氯 氰菊酯防治棉铃虫的增效作用[J]. 中国生物防治, 2006, 22(3): 194-197.
 YUAN ZM, CHEN HT, LIANG CC. Synergism of recombinant enhancin to *Bacillus thuringiensis* and cypermethrin against the larvae of *Helicoverpa armigera*[J]. Chinese Journal of Biological Control, 2006, 22(3): 194-197 (in Chinese).
- [23] 郑文,叶伟星,彭东海,孙明. 基于 cry1Ac 表达调控 元件的苏云金芽孢杆菌表达载体构建[J]. 湖北农业 科学, 2012, 51(2): 400-405.
 ZHENG W, YE WX, PENG DH, SUN M. Construction of Bacillus thuringiensis expression vector by using regulatory elements from cry1Ac gene[J]. Hubei Agricultural Sciences, 2012, 51(2): 400-405 (in Chinese).
- [24] 周臣飞,彭东海,邱德文,周康,阮丽芳,陈守文, 喻子牛,孙明. 植物激活蛋白 Ap36 在苏云金芽胞杆 菌的表达及抗病作用[J]. 农业生物技术学报, 2008, 16(1): 142-147.
 ZHOU CF, PENG DH, QIU DW, ZHOU K, RUAN LF, CHEN SW, YU ZN, SUN M. Expressing activator

protein Ap36 in *Bacillus thuringiensis* and the function of recombined strain on disease resistance[J]. Journal of Agricultural Biotechnology, 2008, 16(1): 142-147 (in Chinese).

- [25] WONG HC, CHANG S. Identification of a positive retroregulator that stabilizes mRNAs in bacteria[J]. International Journal of Computational Biology and Drug Design, 1986, 83(10): 3233-3237.
- [26] 杨云彭,马晓焉,霍毅欣.密码子优化策略在异源蛋 白表达中的应用[J]. 生物工程学报, 2019, 35(12): 2227-2237.
 YANG YP, MA XY, HUO YX. Application of codon optimization strategy in heterologous protein expression[J]. Chinese Journal of Biotechnology, 2019, 35(12): 2227-2237 (in Chinese).
- [27] QUAX TEF, CLAASSENS NJ, SÖLL D, van der OOST J. Codon bias as a means to fine-tune gene expression[J]. Molecular Cell, 2015, 59(2): 149-161.
- [28] SEDLAK M, WALTER T, ARONSON A. Regulation by overlapping promoters of the rate of synthesis and deposition into crystalline inclusions of *Bacillus thuringiensis* delta-endotoxins[J]. Journal of Bacteriology, 2000, 182(3): 734-741.
- [29] DU LX, QIU LL, PENG Q, LERECLUS D, ZHANG J, SONG FP, HUANG DF. Identification of the promoter in the intergenic region between orf1 and cry8Ea1 controlled by sigma H factor[J]. Applied and Environmental Microbiology, 2012, 78(12): 4164-4168.
- [30] 李朝睿, 杜立新, 彭琦, 梁影屏, 高继国, 张杰, 宋 福平. 苏云金芽胞杆菌高效表达载体的构建[J]. 微 生物学通报, 2013, 40(2): 350-361.
 LI CR, DU LX, PENG Q, LIANG Y, GAO JG, ZHANG J, SONG FP. Construction of high-level expression vector for *Bacillus thuringiensis*[J]. Microbiology China, 2013, 40(2): 350-361 (in Chinese).
- [31] 余小霞,田健,刘晓青,伍宁丰.枯草芽孢杆菌表达系统及其启动子研究进展[J]. 生物技术通报, 2015, 31(2): 35-44.
 YU XX, TIAN J, LIU XQ, WU NF. Research progress of *Bacillus subtilis* expression system and its promoter regulatory elements[J]. Biotechnology Bulletin, 2015, 31(2): 35-44 (in Chinese).
- [32] LERECLUS D, AGAISSE H, GRANDVALET C, SALAMITOU S, GOMINET M. Regulation of toxin and virulence gene transcription in *Bacillus thuringiensis*[J]. International Journal of Medical Microbiology, 2000, 290(4/5): 295-299.