

Research Article 研究报告

西沙海藻共附生放线菌的分离鉴定及其抗菌活性 评价

于伟伟^{1,3}, 唐贤明², 熊子君³, 张世清³, 王蓉², 曾晓起^{1*}, 郭志凯^{3*}

1 中国海洋大学三亚海洋研究院,海南 三亚 572024

- 2 海南省海洋与渔业科学院 海南省热带海水养殖技术重点实验室, 海南 海口 571126
- 3 中国热带农业科学院热带生物技术研究所海南省热带微生物资源重点实验室/海南热带农业资源研究院海南省热带农业生物资源保护与利用重点实验室,海南海口 571101

于伟伟, 唐贤明, 熊子君, 张世清, 王蓉, 曾晓起, 郭志凯. 西沙海藻共附生放线菌的分离鉴定及其抗菌活性评价[J]. 微 生物学报, 2023, 63(4): 1472-1489.

YU Weiwei, TANG Xianming, XIONG Zijun, ZHANG Shiqing, WANG Rong, ZENG Xiaoqi, GUO Zhikai. Isolation and antimicrobial bioactivity of algae-associated actinomycetes from Xisha Islands[J]. Acta Microbiologica Sinica, 2023, 63(4): 1472-1489.

摘 要:【目的】为了探究南海海藻共附生放线菌资源的多样性及潜在的应用价值,对中国西沙 群岛来源的海藻进行共附生放线菌的分离鉴定与抗菌活性筛选。【方法】利用稀释涂布平板法, 采用 2 种不同分离培养基对不同采样位点的 6 种海藻进行放线菌分离; 通过 16S rRNA 基因序列 分析、构建系统发育树对分离的放线菌进行鉴定;用打孔法对无乳链球菌(Streptococcus agalactiae) 等 10 种敏感细菌进行抗菌活性筛选; 对筛选得到的目标活性菌株 HZ014 进行全基因组测序,通 过 AntiSMASH 在线工具分析其次级代谢产物生物合成基因簇,预测其产生新型活性物质的潜力。 【结果】从 6 种海藻中分离得到 36 株共附生放线菌,基于 16S rRNA 基因序列比对和系统发育分 析,鉴定结果为链霉菌属(Streptomyces) 2 株、红球菌属(Rhodococcus) 2 株、诺卡氏菌属(Nocardia) 3 株、小单孢菌属(Micromonospora) 5 株和盐孢菌属(Salinispora) 24 株; 抗菌活性筛选结果表明, 36 株共附生放线菌发酵粗提物对至少 1 种敏感细菌表现出一定的抑制作用,不同菌株发酵粗提物 的抗菌活性存在明显差异,盐孢菌发酵粗提物抑菌谱较另外 4 个属更广; AntiSMASH 分析结果显 示,菌株 HZ014 基因组中超过 22.28%的基因序列与次级代谢产物合成相关,表明盐孢菌属存在

资助项目:中央级公益性科研院所基本科研业务费专项(1630052022016,1630052022028,1630052019011);南峰专项 (NFZX2021);海南省热带海水养殖技术重点实验室开放课题基金(TMTOF202203)

This work was supported by the Central Public-Interest Scientific Institution Basal Research Fund (1630052022016, 1630052022028, 1630052019011), the Financial Fund of the Ministry of Agriculture and Rural Affairs, China (NFZX2021), and the Fund of Hainan Provincial Key Laboratory of Tropical Maricultural Technologies (TMTOF202203).

^{*}Corresponding authors. E-mail: ZENG Xiaoqi, zengxq@ouc.edu.cn; GUO Zhikai, guozhikai@itbb.org.cn Received: 2022-08-13; Accepted: 2022-10-20; Published online: 2022-11-01

巨大的生物合成潜能,值得深入发掘。【结论】西沙海藻中蕴藏着丰富的可培养稀有放线菌资源, 首次从西沙海藻共附生环境中分离得到专性海洋稀有放线菌盐孢菌属,且分离得到的 36 株海藻 共附生放线菌发酵粗提物对部分敏感细菌具有较好的抗菌活性,在渔业病害防治中具有潜在的开 发应用价值,有望为海洋药物或生物菌剂的研发提供新资源。

关键词:海藻;共附生放线菌;盐孢菌属;抗菌活性

Isolation and antimicrobial bioactivity of algae-associated actinomycetes from Xisha Islands

YU Weiwei^{1,3}, TANG Xianming², XIONG Zijun³, ZHANG Shiqing³, WANG Rong², ZENG Xiaoqi^{1*}, GUO Zhikai^{3*}

1 Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, Hainan, China

2 Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, Hainan, China

3 Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China

Abstract: [Objective] To investigate the diversity and potential value of the algae-associated symbiotic or epiphytic actinomycete resources from South China Sea, we isolated and identified actinomycetes from different algae samples collected from Xisha Islands and evaluated their antibacterial activities. [Methods] We used two types of media for the isolation and purification of actinomycetes and the isolates were identified according to their 16S rRNA gene sequences and the phylogenetic tree. The activities of their fermentation products against 10 pathogenic bacterial strains including Streptococcus agalactiae were tested with the punching method. The whole genome of the target active strain was sequenced and the biosynthetic gene clusters of secondary metabolites were predicted and analyzed by AntiSMASH. [Results] A total of 36 strains of actinomycetes were isolated from six kinds of algae. Based on 16S rRNA gene sequence and phylogeny analysis, they belonged to Streptomyces (2 strains), Rhodococcus (2 strains), Nocardia (3 strains), Micromonospora (5 strains), and Salinispora (24 strains), respectively. The antibacterial tests showed that the fermentation products of the 36 strains displayed inhibitory effect against at least one of ten sensitive bacteria. The antibacterial activities of Salinispora spp. were stronger than those of other actinomycetes. AntiSMASH analysis showed that more than 22.28% of the gene sequences in HZ014 genome were related to the biosynthesis of secondary metabolites, indicating their great potential in natural product biosynthesis. [Conclusion] The algae of Xisha Islands are home to abundant rare culturable actinomycetes. In this study, marine obligate rare actinomycetes associated with marine algae, Salinispora spp., were reported for the first time. The fermentation products of 36 strains of actinomycetes displayed antibacterial activity, indicating the potential value in the prevention

of fish diseases. These rare actinomycetes are potential resources for the development of marine drugs or biocontrol agents.

Keywords: algae; symbiotic or epiphytic actinomycetes; Salinispora; antibacterial activity

放线菌次级代谢产物是抗生素的重要来源[1], 在已发现的抗生素中,约70%来源于放线菌^[2], 因而放线菌成为了寻找新型抗生素的研究热 点。由于在陆生环境发现的新生物活性物质逐 年减少^[3],日益加剧的病原微生物耐药性及传 统土壤来源中已知放线菌和抗生素的大量重复 分离,极大阻碍了人们寻求新型有效生物活性 物质的进程。加上海洋放线菌在特殊海洋生存 环境(高盐、高压、低温、低光照等)的选择压力 下,可调整自身次级代谢途径并积累一些结构 和活性都明显不同于陆生放线菌的新颖代谢产 物,因此研究人员便将目光转向海洋稀有的、 独特的、新放线菌资源^[4],其中专性海洋稀有 放线菌是海洋放线菌中产生活性物质的明星类 群^[5-6]。研究发现,海洋放线菌的次级代谢产物 不仅有抗菌、抗病毒、抗肿瘤等生物活性,还 具有重要的生态功能,如化学通讯、免疫防疫、 水产病害的防治等^[7-9]。例如 Babu 等^[10]在虾养 殖区域的淤泥中分离到多株对白斑综合征病毒 (white spot syndrome virus, WSSV)具有抑制活 性的放线菌,并且发现这些放线菌在虾养殖系 统中具有潜在的生物修复作用。

盐孢菌属(Salinispora)属于细菌域 (Bacteria)、放线菌门(Actinomycetota)、放线菌纲 (Actinobacteria)、小单孢菌目(Micromonosporales)、 小单孢菌科(Micromonosporaceae)。1991年首次 从拉丁美洲巴哈马群岛海岸附近的热带近海沉 积物中分离得到,之后又从大西洋、红海、科 特斯海等全球范围内的热带和亚热带近海沉积 物中发现,其中沙栖盐孢菌(S. arenicola)和热带 海洋盐孢菌(S. tropica)于 2005 年被正式确立^[11], 于 2013 年被正式确立[13]。盐孢菌属放线菌为好 氧、革兰氏阳性、非耐酸细菌,生长较缓慢, 在 28 ℃培养 3-6 周才能形成菌落[14]。作为首个 被报道的专性海洋放线菌,主要分布于热带和 亚热带海洋沉积环境中,在海绵、海鞘、珊瑚 中也有发现。盐孢菌属能够产生新颖的次级代 谢产物,例如高效抗肿瘤化合物盐孢菌素 A 于 2003年被报道^[15],特异性地存在于热带海洋盐 孢菌中, 2015 年被美国食品药品监督管理局 (Food and Drug Administration, FDA)批准为孤儿 药,名称为 Marizomib,为治愈部分恶性肿瘤疾 病提供可能:从盐孢菌属分离得到的化合物利福 霉素具有抗病毒、抗肿瘤、抗菌感染等活性, 广泛应用于结核病的治疗,对各种革兰氏阳性 球菌、革兰氏阴性杆菌也有一定的抑菌活性[16]。 因此筛选出具有抗菌活性的专性海洋放线菌, 在抗菌药物、生物菌剂研发中具有重要的意义。

太平洋盐孢菌(S. pacifica)在 2006 年被提出^[12],

海藻(algae)是一类种类极其丰富的海洋植物,全球共有3万多种,是海洋放线菌的良好宿主,与海洋放线菌形成了附生、共生或者内生的相互关系^[17]。近年来,随着海洋动植物共附生放线菌的研究逐渐增多,在海洋植物海草和绿藻中也发现了共附生放线菌,包括小单胞菌属(*Micromonospora*)、假诺卡氏菌属(*Pseudonocardia*)、产丝菌属(*Myceligenerans*)、放线链孢菌属(*Actinomycetospora*)、赖氏菌属(*Leifsonia*)、拟诺卡氏菌属(*Nocardiopsis*)、原小单孢菌属(*Promicromonospora*)、红球菌属(*Rhodococcus*)、皮生球菌属(*Dermacoccus*)以及链霉菌属(*Streptomyces*)等^[2]。有研究表明,海藻共附生

放线菌不仅种类丰富多样,而且能够产生结构 新颖的次级代谢产物^[18]。这些次级代谢产物在 海藻的化学防御中起着重要的作用,同时还具 有抗菌、抗肿瘤和治疗心血管疾病等生物活性, 如石莼来源放线菌产生的具有抗耐甲氧西林金 黄色葡萄球菌(methicillin resistant Staphylococcus aureus, MRSA)活性的苯丙霉素类化合物^[19]。南 海海藻种类繁多,可为研究海藻共附生放线菌 提供丰富的材料。但由于目前对海洋放线菌的 采集和培养仍存在很多技术上的困难,加之海 藻共附生放线菌的研究者尚少,因此仍然有大 量的海藻共附生放线菌未能被培养利用。基于 此,我们从中国西沙群岛海域不同位点采集多 种海藻,对其进行共附生放线菌分离,并分析分 离菌株多样性和发酵粗提物的抗菌活性,旨在为 研究热带海洋动植物共附生微生物提供基础,为 海洋药物或微生物菌剂的研发提供新资源。

1 材料与方法

1.1 材料

1.1.1 样品

仙掌藻(Halimeda sp.) (永乐环礁-玉琢礁: 东经 112°01′06″,北纬 16°35′93″)、布多藻 (Boodlea composite) (永乐环礁-尾峙仔岛:东经 111°52′49″,北纬 16°46′14″)、喇叭藻(Turbinaria ornate) (北礁:东经 111°44′82″,北纬 17°07′61″)、 齿形蕨藻 (Caulerpa serrulate) (七连屿: 112°28′02″,北纬 16°98′73″)、鱼栖苔(Acanthophora sp.) (七连屿:东经 112°28′02″,北纬 16°98′73″)、 伴绵藻(Ceratodictyon spongiosum) (永乐环礁-蓝 洞:东经 111°76′81″,北纬 16°52′48″),均采集 自中国西沙群岛附近海域。

1.1.2 菌株培养条件

(1) 放线菌分离培养基。

高氏一号合成培养基(g/L): 可溶性淀粉

20.0、氯化钠 0.5、硫酸亚铁 0.01、硝酸钾 1.0、 磷酸氢二钾 0.5、硫酸镁 0.5、琼脂 15.0、海盐 17.5,最终 pH (7.3±0.2)。

ATCC 培养基 172 (g/L): 葡萄糖 10.0、可 溶性淀粉 20.0、酵母提取物 5.0、N-Z AmineType A 5.0、碳酸钙 1.0、琼脂 15.0、海盐 17.5。

(2) 放线菌纯化培养基。

ISP 2 培养基(g/L):麦芽提取物 10.0、酵母 提取物 4.0、葡萄糖 4.0、琼脂 20.0、海盐 17.5, 最终 pH (7.3±0.2)。

(3) 抗菌活性筛选培养基

LB液体培养基(g/L):胰蛋白胨 10.0、酵母粉 5.0、氯化钠 5.0、琼脂 20.0,最终 pH (7.0±0.2)。

胰酪大豆胨液体培养基(trypticase soy broth, TSB) (g/L):胰酪胨 17.0、大豆木瓜蛋白 酶水解物 3.0、氯化钠 5.0、磷酸氢二钾 2.5、葡 萄糖 2.5、海盐 17.5,最终 pH (7.3±0.2)。

1.1.3 供试敏感细菌

金黄色葡萄球菌(Staphylococcus aureus)、 大肠杆菌(Escherichia coli)、芒果细菌性角斑病 菌(Xanthomonas campestris pv. mangiferaeindicae)、 藤黄微球菌(Micrococcus luteus)、哈维氏弧菌 (Vibrio harveyi)、溶藻弧菌(Vibrio anguillarum)、 欧文斯氏弧菌(Vibrio owensii)、无乳链球菌 (Streptococcus agalactiae)、美人鱼发光杆菌 (Photobacterium damselae)、海豚链球菌 (Streptococcus iniae)(保存于中国热带农业科学 院热带生物技术研究所)。

敏感细菌菌液准备:将 20 mL LB 液体培养 基加入 50 mL 锥形瓶中, 121 ℃高压灭菌 20 min,待冷却后接入 20 µL 病原细菌菌液, 28 ℃、160 r/min 振荡培养 24-48 h,吸取 100 µL 敏感细菌菌液加入 900 µL 无菌水稀释为 10⁻¹梯 度,以此类推稀释为 10⁻²梯度,置于 4 ℃冰箱 中保存备用。

1.2 海藻样品处理及共附生放线菌的分离 纯化

海藻样品消毒:用无菌半海水(海盐浓度 1.75%)清洗 3-5次,75%酒精浸泡 30 s 后,用 无菌半海水冲洗表面 3 遍。无菌镊子和剪刀将 样品剪成约 2 mm×2 mm 的小块,于无菌研钵中 加入 5-10 mL 无菌半海水研磨成匀浆,梯度稀 释,用涂布法将原液和稀释度为 10⁻¹、10⁻² 的稀 释液分别涂布于高氏一号、ATCC 固体培养基平 板(均含 50 µg/mL 重铬酸钾)上,重复 3 个平板, 置于 28 ℃培养箱恒温培养 5 d 后开始观察。

用牙签挑取分离板上长出的单菌落,接种 至 ISP2 固体平板培养基(半海水)进行二次分 离、纯化培养,对菌株进行统计、编号,纯化后 的菌株保存于无菌甘油(20%),置于4℃保存。

1.3 菌株鉴定及系统发育树构建

将分离得到的 36 株菌株进行 16S rRNA 基 因测序,根据测序结果,登录 NCBI (https://www. ncbi.nlm.nih.gov)数据库中将获得的序列进行同 源序列比对搜索,以确定菌株的种属。选择相 似度大于 98%的菌株的 16S rRNA 基因序列作为 参比对象,使用 MEGA 11^[20]软件进行多序列对 比,采用邻接法(neighbor-joining method)进行系 统发育树的构建,获得的 16S rRNA 基因序列上 传 GenBank (https://www.ncbi.nlm.nih.gov/genbank/) 数据库。

1.4 抗菌活性检测方法

提取物准备:将纯化好的待测放线菌用接种 环接种于 TSB 液体培养基中,在 28 ℃、160 r/min 的摇床条件下振荡培养 7-10 d。发酵结束后, 在发酵液中加入等量的乙酸乙酯萃取 3 次。将 有机相合并后,在旋转蒸发仪浓缩得到粗提物, 粗提物用二甲基亚砜(dimethyl sulfoxide, DMSO) 配制成 10 mg/mL 的溶液,置于 4 ℃保存,用于 抗菌活性检测。

采用平板打孔法^[21],测量放线菌的发酵粗

提物对 10 种供试敏感细菌抑菌直径大小。吸取 10⁻²梯度敏感细菌菌液 200 μL 放置于空培养皿 中,倒入 15 mL 未凝固的 LB 培养基,菌液与 培养基充分混合,待平板内培养基完全凝固后, 用 100 μL 的灭菌枪头(直径为 5 mm)打孔,以 DMSO 作为阴性对照,卡那霉素(10 mg/mL)作 为阳性对照,每个孔里加入 20 μL 配置好的菌 株发酵粗提物,每个处理重复 3 次。28 ℃恒温 培养 12-24 h 后,采用十字交叉法测定抑菌圈 直径,重复 3 次,记录数据。

1.5 菌株的耐盐度实验

在菌株生长良好的 ISP2 培养基中分别添加 0%、2%、3%、5%、7.5%、10%、12%的 NaCl, 灭菌后倒平板,定量涂布,每组设 3 个重复, 置于 28 ℃培养箱恒温培养 30 d 观察生长情况。

1.6 目标活性菌株全基因组测序、组装和 分析

将菌株单菌落接种至灭菌后的 TSB 液体培 养基,28℃、160 r/min 培养 5–7 d 后,将菌体收 集后送测序公司,基于 Nanopore promethION48 三代技术平台和 illumina Novaseq6000 二代测 序技术平台进行测序,使用 Flye 软件进行组装 得到高质量的组装基因组,通过基因预测、功 能元件分析、基因组功能注释以及专有数据库 注释了解全基因组的信息,通过 AntiSMASH (https://antismash.secondarymetabolites.org)在线 网站对次级代谢基因簇进行分析,基因簇对应 产物可以通过搜索基因或蛋白同源序列进行预 测,也可以根据基因簇中生物合成基因的构成 及其编码酶的催化功能进行预测。

2 结果与分析

2.1 海藻共附生放线菌菌种分离鉴定及其 多样性分析

用 2 种分离培养基对采自中国西沙群岛的

海藻共附生放线菌进行分离,共得到 36 株放线 菌,其中高氏 1 号培养基和 ATCC 培养基各分 离得到 18 株菌株。为确定分离菌株的分类地 位,对 36 株放线菌进行 16S rRNA 基因序列鉴 定,通过 NCBI 序列比对、相似性分析,各属 放线菌所占的比例如图 1 所示,其中盐孢菌属 是海洋专属稀有放线菌种类,这是首次报道从 西沙海藻共附生环境中分离获得纯培养物。根 据 16S rRNA 基因序列构建 36 株海藻共附生放 线菌与相近种之间的系统发育树,如图 2 所示。

图 2 海藻共附生放线菌系统发育树

Figure 2 The phylogenetic tree of algae-associated actinomycetes.

2.2 海藻中共附生放线菌的组成与分布

从海藻样品的种类来看,各海藻样品中共 附生放线菌分离结果(图 3)表明,从齿形蕨藻中 分离得到的菌株数量最多,共16株,占分离种 属的 44.44%; 其次为仙掌藻, 共分离得到 7 株 菌;从布多藻中分离得到6株菌;从伴绵藻中 分离得到3株菌;而喇叭藻和鱼栖苔分离得到 的菌株最少, 仅各有2株。各种样品分离得到 的菌株不仅数量上有差别,种类上也存在一定 差异。其中仙掌藻和布多藻多样性最丰富,共 分离得到来自3个不同属的放线菌。虽然从齿 形蕨藻分离到了 16 株菌, 但是其多样性不丰 富, 仅为1个属, 而喇叭藻、鱼栖苔、伴绵藻 不仅得到的菌株数量少,而且种类也不丰富。 另外,图3结果表明,不同海藻样品上放线菌种 类的分布具有较大的差异,其中盐孢菌属 (Salinispora)在4种不同海藻样品上均有分布;

小单孢菌属(Micromonospora)在 3 种不同海藻 样品上均有分布;而链霉菌属(Streptomyces)只 在仙掌藻中分离得到;红球菌属(Rhodococcus)、 诺卡氏菌属(Nocardia)只在布多藻中分离得到。

从采样位点来看,从海南西沙群岛宣德群 岛-七连屿分离获得的菌株最多,共 18 株;其 次是永乐环礁-尾峙仔岛、永乐环礁-玉琢礁,各 分离得到6株;从永乐环礁-蓝洞分离获得4株; 从北礁分离获得的菌株最少,仅为2株。不同 位点上分离得到的菌株不仅数量上有差别,种 类上也存在一定差异。其中永乐环礁-尾峙仔 岛、永乐环礁-玉琢礁的多样性最为丰富,共分 离得到来自3个不同属的放线菌。宣德群岛-七 连屿虽然分离到了16株菌,但是其多样性不丰 富,仅为1个属,永乐环礁-北礁不仅仅得到的 菌株数量少,而且种类也不丰富,仅分离得到 一个属的2株菌。

图 3 六种海藻样品上的共附生放线菌分布

Figure 3 Distribution of actinomycetes from six algae samples. A1: *Halimeda* sp.; A2: *Boodlea composita*; A3: *Turbinaria ornate*; A4: *Caulerpa serrulate*; A5: *Acanthophora* sp.; A6: *Ceratodictyon spongiosum*.

2.3 海藻共附生放线菌抗菌活性分析

以无乳链球菌等 10 种病原细菌为指示菌, 对 36 株海藻共附生放线菌的发酵粗提物进行 抗菌活性筛选。由图 4 可见,海藻共附生放线 菌对每种指示菌有抑制作用的菌株数。抗菌实 验结果如表 1 和图 4 所示, 36 株共附生放线菌 均至少对 1 种指示菌表现出一定的抑制作用, 其中 6 株放线菌对 8 种及 8 种以上的敏感细菌 表现出一定的抑制作用,占待测菌株的 16.21%; 10 株放线菌对 7 种及 7 种以上的病原菌表现出 一定的抑制作用,占待测菌株的 27.03%;有 17 株放线菌对 5 种及 5 种以上的敏感细菌有抑 制作用,占待测菌株的 49.95%。结果表明,海 藻共附生放线菌具有丰富的抗菌生物活性。

由表 1 可以看出,各放线菌种属之间抗菌 活性呈现明显差异,如小单孢菌属主要是对大 肠杆菌具有较好的抑制作用,对其他敏感细菌 无抑制作用;盐孢菌属对多种敏感细菌都有抑 制作用。总体来说,在具有抑菌活性的放线菌 菌株中,抑菌范围最广的为盐孢菌属,其次为 链霉菌属,小单孢菌属、诺卡氏菌属和红球菌 属抑菌范围比较单一。

36株菌的发酵粗提物中,对藤黄微球菌有

1479

抑制作用的放线菌有 28 株,占放线菌总数的 78.38%, 其中盐孢菌 HZ012 的抑制作用最强, 抑菌圈直径 31 mm,阳性对照卡那霉素的抑菌 直径为14 mm;对无乳链球菌有抑制作用的放 线菌有 12 株、占放线菌总数的 32.43%,其中 盐孢菌属 HZ014 的抑制作用最强,抑菌圈直径 27 mm,阳性对照卡那霉素的抑菌直径为 17 mm; 对哈维氏弧菌有抑制作用的放线菌有 20 株,占 放线菌总数的 54.05%, 其中盐孢菌属 HZ014 的抑制作用最强,抑菌圈直径 21 mm,阳性对 照卡那霉素的抑菌直径为18 mm; 对海豚链球 菌有抑制作用的放线菌有 18 株,占放线菌总数 的48.65%,其中盐孢菌属HZ014株菌的抑制作 用最强,抑菌圈直径 26 mm,阳性对照卡那霉 素的抑菌直径为16 mm。综上所述,盐孢菌株 发酵粗提物对渔业病原菌具有较好的抑制作 用,特别是盐孢菌株 HZ014 对病原菌的抑菌直 径大于阳性对照卡那霉素,在渔业病害防治中 具有较好的应用潜力,其活性次级代谢产物亦 值得深入挖掘。

2.4 菌株的耐盐性

将 36 株海藻共附生放线菌定量涂布,培养 30 d 后观察,结果(表 2)显示,最高耐盐度在 10%

Figure 4 The distribution of algae-associated actinomycetes with antibacterial activity. C1: *S. aureus*; C2: *M. luteus*; C3: *E. coli*; C4: *X. campestris* pv. *mangiferaeindicae*; C5: *S. agalactiae*; C6: *S. iniae*; C7: *V. anguillarum*; C8: *V. owensii*; C9: *P. damselae*; C10: *V. harveyi*.

表1 海藻共附生放线菌的抗菌活性

Table 1 Antimicrobial activity of algae-associated actinomycetes

	3 0									
Strains	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10
Micromonospora sp. HZ001	-	-	22	-	-	-	_	-	-	-
Micromonospora sp. HZ002	_	_	21	-	_	_	_	_	_	3
Micromonospora sp. HZ004	_	_	17	-	_	_	_	_	_	-
Micromonospora sp. HZ005	_	_	12	_	_	_	_	-	-	-
Micromonospora sp. HZ006	_	_	20	_	_	_	_	-	-	-
Nocardia sp. HZ003	_	6	4	-	_	_	_	_	_	-
Nocardia sp. HZ008	-	4	18	-	-	-	_	_	-	-
Nocardia sp. HZ009	_	5	10	_	_	_	_	-	-	-
Salinispora sp. HZ010	2	22	7	4	_	_	_		-	6
Salinispora sp. HZ011	8	30	7	11	24	21	_	8	-	11
Salinispora sp. HZ012	8	31	4	6	_	7	_	6	-	11
Salinispora sp. HZ013	8	28	11	9	8	6	_	7	-	10
Salinispora sp. HZ014	6	27	_	19	27	26	_	8	7	21
Salinispora sp. HZ015	_	9	_	2	_	_	_	-	-	5
Salinispora sp. HZ016	_	15	_	3	_	_	_	_	_	-
Salinispora sp. HZ017	8	30	_	12	23	13	_	6	-	10
Salinispora sp. HZ018	5	26	_	5	_	4	_	-	-	7
Salinispora sp. HZ019	8	30	6	7	6	7	-	5	—	8
Salinispora sp. HZ020	4	25	_	4	4	_	_	-	-	7
Salinispora sp. HZ023	_	5	_	-	_	_	_	_	_	-
Salinispora sp. HZ024	2	21	—	4	—	3	_	_	_	5
Salinispora sp. HZ025	5	-	_	5	3	4	-	-	—	5
Salinispora sp. HZ026	6	20	-	6	5	5	12	_	—	7
Salinispora sp. HZ027	5	17	_	5	-	4	-	-	—	-
Salinispora sp. HZ028	_	7	-	-	—	-	_	_	—	-
Salinispora sp. HZ029	6	20	—	6	—	6	_	_	_	_
Salinispora sp. HZ030	5	25	20	7	—	5	_	_	_	9
Salinispora sp. HZ032	-	9	22	-	-	—	-	-	—	-
Salinispora sp. HZ033	_	20	—	_	—	—	_	_	_	_
Salinispora sp. HZ034	8	30	21	7	5	6	_	5	_	8
Salinispora sp. HZ035	2	20	_	5	-	2	-	-	—	-
Salinisporasp. HZ036	8	30	8	8	5	6	_	7	10	9
Streptomyces sp. HZ021	6	5	—	5	7	8	_	8	_	12
Streptomyces sp. HZ022	4	5	-	4	4	5	-	-	—	8
Rhodococcus sp.HZ007	_	-	20	-	-	-	-	-	—	_
Rhodococcus sp. HZ031	-	-	25	-	-	-	-	-	—	7
Kanamycin	25	14	17	24	17	16	20	16	15	18

C1: S. aureus; C2: M. luteus; C3: E. coli; C4: X. campestris pv. mangiferaeindicae; C5: S. agalactiae; C6: S. iniae; C7: V. anguillarum; C8: V. owensii; C9: P. damselae; C10: V. harveyi. "–" indicated no resistance; the above dates are the size (mm) of bacteriostatic circle.

表 2 菌株耐盐度测试结果

Table 2Test on salinity endurance for isolates

Strains	NaCl (%)							
	0	2	3	5	7.5	10	12	
Micromonospora sp. HZ001	+++	+++	+++	++	-	-	-	
Micromonospora sp. HZ002	+++	+++	+++	++	+	+	-	
Micromonospora sp. HZ004	+++	+++	+++	+	-	-	-	
Micromonospora sp. HZ005	+++	+++	++	++	+	+	-	
Micromonospora sp. HZ006	+++	+++	+++	++	+	-	-	
Nocardia sp. HZ003	+++	+++	+++	+	+	+	-	
Nocardia sp. HZ008	+++	+++	+++	++	++	+	-	
Nocardia sp. HZ009	+++	+++	+++	++	+	+	-	
Salinispora sp. HZ010	-	+++	++	+	-	-	-	
Salinispora sp. HZ011	_	+++	+++	++	_	_	-	
Salinispora sp. HZ012	-	+++	+++	++	-	-	-	
Salinispora sp. HZ013	_	+++	++	++	_	_	-	
Salinispora sp. HZ014	_	++	++	+	_	_	-	
Salinispora sp. HZ015	_	++	+++	+	_	_	-	
Salinispora sp. HZ016	-	++	++	+	-	-	-	
Salinispora sp. HZ017	_	++	++	+	_	_	-	
Salinispora sp. HZ018	-	+++	+++	++	-	-	-	
Salinispora sp. HZ019	_	++	++	+	_	_	-	
Salinispora sp. HZ020	-	+++	+++	+	-	-	-	
Salinispora sp. HZ023	-	+	++	+	-	-	-	
Salinispora sp. HZ024	_	+	++	+	_	_	-	
Salinispora sp. HZ025	-	++	+++	++	-	-	-	
Salinispora sp. HZ026	-		+++	+	-	-	-	
Salinispora sp. HZ027	-	+++	+++	++	-	-	-	
Salinispora sp. HZ028	-	+	++	+	-	-	-	
Salinispora sp. HZ029	-	+++	++	+++	-	-	-	
Salinispora sp. HZ030	-	+++	+++	++	-	-	-	
Salinispora sp. HZ032	-	++	+++	+	-	-	-	
Salinispora sp. HZ033	_	++	++	+	_	_	-	
Salinispora sp. HZ034	-	++	++	+	-	-	-	
Salinispora sp. HZ035	_	++	++	_	_	_	-	
Salinispora sp. HZ036	_	++	++	+	_	_	-	
Streptomyces sp. HZ021	+++	+++	+++	+++	+++	++	_	
Streptomyces sp. HZ022	+	++	++	++	+	_	_	
Rhodococcus sp.HZ007	+	+++	+++	+++	+	_	-	
Rhodococcus sp.HZ031	-	+++	+++	+++	++	+	—	

+++: Greatly; ++: Good growth; +: Weak growth; -: No growth.

的有7株,分别为小单胞菌属2株、诺卡氏菌属3株、红球菌属1株、链霉菌属1株,它们均能 在无盐条件下生长;最高耐盐度在7.5%的有3株, 分别为小单胞菌属1株、红球菌属1株、链霉菌 属1株,它们均能在无盐条件下生长;最高耐盐 度在 5%的有 25 株,其中 23 株不能在无盐条件 下生长,均为盐孢菌属放线菌;大部分菌株在 3% 时生长最好,表现了对海洋环境的适应性。

2.5 目标活性菌株 *Salinispora* sp. HZ014 的全基因组测序与初步分析

菌株 HZ014 已完成全基因组测序并获得无 缝隙基因组数据。图 5 展示了其核基因圈图, 由外到内依次为:第一圈,基因组序列信息; 第二圈,GC 含量曲线;第三圈,基因组序列的 GC skew 曲线;第四圈,二代测序深度及覆盖 度信息;第五圈,三代测序深度及覆盖度信息; 第六圈,基因编码区(coding sequence, CDS)以及 非编码 RNA 区(rRNA、tRNA)。菌株 HZ014 基 因组大小约 5.68 Mb,G+C 含量为 69.55%。对 基因组进行结构注释,获得 4 974 个完整的编码 区,大小约为 4.96 Mb,占基因组 87.30%。

在 KEGG 数据库中对这些 CDS 进行功能注释,如图 6 所示,与代谢相关的 CDS 有 1 809 个,包括与萜类和聚酮类化合物相关 CDS 有 177 个;与其他抗生素等次级代谢相关 CDS 有 106 个;与其他氨基酸的代谢相关 CDS 有 70 个。

通 过 AntiSMASH (https://antismash. secondarymetabolites.org)在线网站对 *Salinispora* sp. HZ014 基因组的次级代谢产物生物合成基因簇类型分析,结果如表 3 所示。

图 5 盐孢菌 *Salinispora* sp. HZ014 的基因组圈图 Figure 5 Nuclear genome of *Salinispora* sp. HZ014.

图 6 盐孢菌 HZ014 KEGG pathway 结果分类图

Figure 6 KEGG pathway results classification map of Salinispora sp. HZ014.

菌株 HZ014 基因组中存在 25 个潜在的次 级代谢产物合成基因簇,负责合成的次级代谢 产物主要类型有非核糖体多肽(nonribosomal peptides, NRPS)、聚酮类(polyketides, PKS)、萜 类(terpene)和 PKS-NRPS 杂合型。例如基因簇 12 预测属于 PKS-NRPS 类型,位于基因组的 4 052 768-4 101 666 nt,与淋巴斯汀(lymphostin)/新淋巴斯汀醇(lymphostinol)/新淋巴斯汀醇 B (neolymphostinol B)/新淋巴斯汀 b (neolymphostin b) 生物合成基因簇相似性达到 100%。淋巴斯汀是 吡咯喹啉生物碱家族的天然产物,具有免疫抑制

剂的作用, Miyanaga 等^[30]对其进行了相关研究报 道。位于基因组 699 255-791 909 nt 的基因簇 3, 亦属于 PKS-NRPS 类型,与利福霉素(rifamycin) 生物合成基因簇相似性为 71%。利福霉素属于 安莎霉素类抗生素,能特异性抑制细菌 RNA 聚合酶,具有抗病毒、抗肿瘤、抗菌感染等活 性,广泛应用于结核病的治疗,对各种革兰氏 阳性球菌、革兰氏阴性杆菌也有一定抗菌作用。 Yang 等^[16]曾从盐孢菌属菌株 NHF45 中分离获 得利福霉素 B。基因簇 6 预测为I型聚酮合成酶 (T1PKS),位于基因组的 1 503 604-1 548 880 nt,

Gene	Туре	Most similar known cluster	Similarity	Activity	Reported	References	
cluster				(%)			
1	NRPS-like	Stenothricin	31	Enzyme inhibitor	2014	[22]	
2	Terpene	Rifamycin	20	Antibacterial	2006	[23]	
3	T1PKS, NRPS-like	Rifamycin	71	Antibacterial	2006	[23]	
4	Ladderane	Triacsins	65	_	2019	[24]	
5	NAGGN	_	-	_	_	_	
6	T1PKS	Sporolide A/Sporolide B	27	Anticancer	2005	[25]	
7	NRPS, lanthipeptide-class-i, lanthipeptide-class-ii	Tallysomycin A	5	Antitumour	2007	[26]	
8	Terpene, NRPS	Thiocoraline	7	Antitumour	2006	[27]	
9	T3PKS	Alkyl-O-dihydrogeranyl- methoxyhydroquinones	71	-	2011	[28]	
10	Lanthipeptide-class-i	_	-	-	_	_	
11	NRPS, T1PKS	Collismycin	7	Antibacterial, antiinflammatory	2012	[29]	
12	RiPP-like, T1PKS, NRPS-like	Lymphostin/Neolymphostinol B/ Lymphostinol/Neolymphostin b	100	Immunodepressant	2011	[30]	
13	NRPS, T1PKS, NRPS-like	Salinichelins	76	_	2018	[31]	
14	T1PKS, other	Amycomicin	25	Antibacterial	_	-	
15	Butyrolactone	Salinipostin G	66	Antibacterial	2017	[32]	
16	Guanidinotides	Ketomemicin B3/Ketomemicin B4	83	-	2017	[33]	
17	T2PKS	Paramagnetoquinone 1/ Paramagnetoquinone 2	25	Antibacterial	2017	[34]	
18	Siderophore, thiopeptide, LAP	-	_	_	_	-	
19	Terpene	_	-	-	_	_	
20	Amglyccycl	_	-	-	-	_	
21	Lanthipeptide-class-ii	Azalomycin	8	Antibacterial	2017	[35]	
22	Indole	Staurosporine	76	Anticancer, Antitumour	2011	[36]	
23	T1PKS, PKS-like	Calicheamicin	40	Antitumour	2002	[37]	
24	NRPS, T1PKS, arylpolyene, ladderane	Kedarcidin	24	Antitumour	2013	[38]	
25	T1PKS, NRPS-like, PKS-like, oligosaccharide	Calicheamicin	41	Antitumour	2002	[37]	

表 3 盐孢菌 HZ014 基因组中次级代谢产物生物合成基因簇类型

Table 3 Biosynthetic gene clusters of Salinispora sp. HZ014

-: Not reported.

与 sporolide A/sporolide B 生物合成基因簇相似 性为 27%。Sporolides 类化合物最初从巴哈马群 岛红树林环境中发现的菌株热带海洋盐孢菌 CNB-392^[25]中分离获得,它们具有抗癌活性,

Dineshkumar 等^[39]基于配体的药效团映射方法, 利用已知的抑制剂和药物对 sporolides 的可能作 用靶点进行预测,进一步验证了 sporolides 的生 物学活性;基因簇 23 亦预测为I型聚酮合成酶 (T1PKS),位于基因组的 5 282 562-5 354 572 nt, 与卡里奇霉素(calicheamicin)生物合成基因簇 相似性为 40%。卡里奇霉素属于烯二炔类抗肿 瘤抗生素,对肿瘤细胞有强烈的杀伤作用。 Scripps海洋研究所生物技术与生物医药研究中 心于 2006 年从 *Salinispora pacifica* 发酵产物中 分离了烯二炔类化合物 cyanosporasides A-B。 2013 年又从中分离获得了 cyanosporasides C-F, 并对产生该类化合物的基因簇进行了比较和结 构分析^[40]。

3 讨论与结论

海藻是海洋环境中一种极为重要的生物资 源,作为初级生产者在海洋生态系统中扮演着 重要的角色,并且含有丰富活性物质[41]。近年 来随着海洋动植物共附生放线菌研究的逐渐增 多,在海藻中也发现了共附生放线菌。例如 Romanenko 等^[42]从日本海滨红藻样品中分离得 到5株革兰氏阴性需氧嗜盐菌,根据16SrRNA 基因序列分析,5 株分离株隶属于放线菌门拉 布伦茨氏菌(Labrenzia)属。孙晓梦^[41]利用稀释 平板法自北极新奥尔松地区的海洋红藻多管藻 样品中分离纯化得到 60 株可培养的藻类附生 细菌,其中10株隶属于放线菌门的盐地杆菌属 (Salinibacterium)。陈雷等^[43]通过纯培养的方法, 使用 2216E 等 7 种培养基,从山东省威海市荣 成天鹅湖采集的大叶藻样品中分离出 62 株内生 放线菌,并对其进行抗菌活性检测。本研究从 海南西沙群岛海域采集的6种海藻(仙掌藻、布 多藻、喇叭藻、齿形蕨藻、鱼栖苔、伴绵藻)中 分离得到36株海洋放线菌,分别属于盐孢菌、 链霉菌、小单孢菌、红球菌和诺卡氏菌,其中 盐孢菌属为首次从西沙海藻共附生环境中分离 得到纯培养物,并且是本次菌株分离的优势种。 在菌株耐盐性测试中,结果发现多数菌株具有

较强的耐盐性甚至嗜盐性,盐孢菌株在无盐的 条件下不能生长,这表明实验中所分离得到的 菌株特性与其所处的海洋环境相关,表现出对 海洋环境的适应性。盐孢菌属在 2005 年被正式 报道,作为放线菌目第一个被报道的专性海洋 微生物属,其可以产生丰富的活性次级代谢产 物。近年来我国研究者也开始进行了盐孢菌属 海洋放线菌的研究。如 Sun 等^[44]、马亮等^[45]分 别从中国南海海绵、软珊瑚中分离获得了沙栖 盐孢菌;马艳玲等^[46]构建了沙栖盐孢菌的大片段 DNA 基因组文库;Xia 等^[47]对沙栖盐孢菌 CNS205 Sare0718 基因进行了功能鉴定。

为适应复杂的海洋环境,海藻共附生微生 物可产生独特的次级代谢产物参与宿主的防御 体系,帮助宿主抵抗外界致病菌和病毒的侵害。 这些独特的次级代谢产物往往骨架新颖、活性 显著,为药物研发提供了理想的模板分子。例 如 Song 等^[48]从海洋褐藻(Sargassum sp.)共附生 真菌 Trichoderma asperellum 发酵物中分离出一 系列骨架新颖的化合物,其中包括结构高度转 化的麦角固醇衍生物 tricholumin A, 活性研究 结果表明化合物 tricholumin A 具有抗哈维氏弧 菌和假单胞菌的生物活性; Choi 等^[49]从越南岘 港山茶半岛的一种扇藻中分离出曲霉属真菌 Aspergillus flocculosus,并从其代谢产物中分离 得到 5 个新的 ophiobolins 类二倍半萜,这些化 合物对 6 种肿瘤细胞株 HCT-15、NUGC-3、 NCI-H23、ACHN、PC-3、MDA-MB-231 均表 现出显著的细胞毒性;Li 等^[50]使用 PDB 培养基 对马尾藻共附生真菌 Aspergillus wentii EN-48 进行培养,从其代谢产物中分离得到1个新的 蒽醌衍生物,在抗氧化活性研究中表现出显著 的 DPPH 自由基清除能力。

本研究在抗菌活性评价中发现西沙海藻中分离获得的放线菌都对至少1种供试敏感细菌

表现出一定的抑制作用,其中盐孢菌属的抑菌 谱最广,特别是对无乳链球菌(S. agalactiae)、 哈维氏弧菌(V. harveyi)等海洋病原菌具有较好的 抑制作用, 部分菌株的抑菌直径大于阳性对照卡 那霉素。弧菌(Vibrio spp.)和链球菌(Streptococcus spp.)病害是水产养殖业中影响严重的细菌型病 害, 它们可以感染多种水产养殖动物, 例如罗 非鱼链球菌病的2种主要致病菌是海豚链球菌和 无乳链球菌^[51]。无乳链球菌是一种人、畜、鱼共 患的致病菌,可引起新生儿患脑膜炎、败血症 等[52]。海豚链球菌至少能够感染 27 种海洋和淡 水鱼类, 死亡率高达 30%-50%, 而且能通过病 鱼感染人类,属机会性人畜共患病原菌^[53]。随 着我国水产养殖业规模的扩大、弧菌和链球菌 引起的病害对水产养殖动物的影响日益严重, 而治疗这些病原菌导致的疾病主要依赖于多种 药物的混合使用,但随着病原菌耐药性增强、 药残、食品安全及环境污染等问题日益突出, 能选用的病害防治药剂越来越少,亟需寻找新 型抗生素替代物和微生物菌剂来解决水产养殖 业绿色健康发展面临的问题。因此,挖掘海藻 来源的活性共生放线菌资源对于研发适用于我 国海水养殖业中弧菌病害的绿色防治菌剂具有 重要的意义。

以具有抗菌活性的盐孢菌菌株 HZ014 作为 目标菌株,进行了全基因组测序和次级代谢产 物生物合成基因簇分析,发现该菌具有丰富的 次级代谢产物生物合成基因簇,许多基因簇与 盐孢菌属中已报道的利福霉素、sporolide A、 cyanosporaside、amycomicin、星型孢菌素 (staurosporine)等抗菌、抗肿瘤、抗癌、免疫抑 制活性分子的生物合成基因簇类似。例如利福 霉素属于安莎霉素类抗生素,能特异性抑制细 菌 RNA 聚合酶,具有抗病毒、抗肿瘤、抗菌感 染等活性,菌株 HZ014 中基因簇 3 与利福霉素 生物合成基因簇相似性为 71%; sporolides 类化 合物最初从巴哈马群岛红树林环境中发现的菌 株热带海洋盐孢菌 CNB-392^[22]中分离获得,它 们具有抗癌活性,菌株 HZ014 中基因簇 6 与 sporolide A/sporolide B 生物合成基因簇相似性 为 27%。卡里奇霉素属于烯二炔类抗肿瘤抗生 素,该类化合物对肿瘤细胞具有强烈的杀伤作 用,已成为抗体偶联抗肿瘤药物和天然产物研 究的重要对象,菌株 HZ014 中基因簇 23 与卡 里奇霉素生物合成基因簇相似性为 40%。上述 结果说明,菌株 HZ014 可能具有产生类似结构 的新型活性物质的潜力。因此,进一步深入研 究该类菌株的次级代谢产物,有望发现具有重 要生物活性的新型次级代谢产物,为海洋药物 或生物防治剂的研发提供新资源。

参考文献

- [1] GUO ZK, MA SY, KHAN S, ZHU HJ, ZHANG B, ZHANG SQ, JIAO RH. Zhaoshumycins A and B, two unprecedented antimycin-type depsipeptides produced by the marine-derived *Streptomyces* sp. ITBB-ZKa6[J]. Marine Drugs, 2021, 19(11): 624.
- [2] 吕佩帅,张丽红,徐福洲,马港庆.海洋放线菌资源、研究方法与生物活性研究进展[J]. 生物资源, 2021, 43(3): 232-245.
 LÜ PS, ZHANG LH, XU FZ, MA GQ. Advances in the resources, research methods and biological activities of marine actinomycetes[J]. Biotic Resources, 2021, 43(3): 232-245 (in Chinese).
- [3] EOM SH, KIM YM, KIM SK. Marine bacteria: potential sources for compounds to overcome antibiotic resistance[J]. Applied Microbiology and Biotechnology, 2013, 97(11): 4763-4773.
- [4] GUO ZK, WANG R, CHEN FX, LIU TM, YANG MQ. Bioactive aromatic metabolites from the sea urchin-derived actinomycete *Streptomyces spectabilis* strain HDa1[J]. Phytochemistry Letters, 2018, 25: 132-135.
- [5] LANE AL, MOORE BS. A sea of biosynthesis: marine natural products meet the molecular age[J]. Natural Product Reports, 2011, 28(2): 411-428.

- [6] 王可欣,陈柔雯,田新朋. 专性海洋放线菌盐孢菌的研究进展[J]. 生物资源, 2018, 40(5): 430-442.
 WANG KX, CHEN RW, TIAN XP. Advances in the marine obligate actinomycete genus *Salinispora*[J]. Biotic Resources, 2018, 40(5): 430-442 (in Chinese).
- [7] BAUERMEISTER A, PEREIRA F, GRILO IR, GODINHO CC, PAULINO M, ALMEIDA V, GOBBO-NETO L, PRIETO-DAVÓ A, SOBRAL RG, LOPES NP, GAUDÊNCIO SP. Intra-clade metabolomic profiling of MAR4 Streptomyces from the Macaronesia Atlantic region reveals a source of anti-biofilm metabolites[J]. Environmental Microbiology, 2019, 21(3): 1099-1112.
- [8] PIMENTEL-ELARDO SM, KOZYTSKA S, BUGNI TS, IRELAND CM, MOLL H, HENTSCHEL U. Anti-parasitic compounds from *Streptomyces* sp. strains isolated from Mediterranean sponges[J]. Marine Drugs, 2010, 8(2): 373-380.
- [9] SUNISH KS, BIJI M, ROSAMMA P, SUDHEER NS, SREEDHARAN K, MOHANDAS A, SINGH ISB. Marine actinomycetes *Nocardiopsis alba* MCCB 110 has immunomodulatory property in the tiger shrimp *Penaeus monodon*[J]. Fish & Shellfish Immunology, 2020, 102: 125-132.
- [10] BABU DT, ARCHANA K, KACHIPRATH B, SOLOMON S, JAYANATH G, SINGH ISB, PHILIP R. Marine actinomycetes as bioremediators in *Penaeus* monodon rearing system[J]. Fish & Shellfish Immunology, 2018, 75: 231-242.
- [11] MALDONADO LA, FENICAL W, JENSEN PR, KAUFFMAN CA, MINCER TJ, WARD AC, BULL AT, GOODFELLOW M. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 5): 1759-1766.
- JENSEN PR, MAFNAS C. Biogeography of the marine actinomycete Salinispora[J]. Environmental Microbiology, 2006, 8(11): 1881-1888.
- [13] AHMED L, JENSEN PR, FREEL KC, BROWN R, JONES AL, KIM BY, GOODFELLOW M. Salinispora pacifica sp. nov., an actinomycete from marine sediments[J]. Antonie Van Leeuwenhoek, 2013, 103(5): 1069-1078.
- [14] 房耀维,王淑军,刘姝,吕明生,焦豫良,陈国强, 潘建梅.一株海洋专性放线菌的分类鉴定及其抑菌 活性[J]. 农药, 2014, 53(2): 136-139, 152.

FANG YW, WANG SJ, LIU S, LYU MS, JIAO YL, CHEN GQ, PAN JM. Identification of an obligate marine actinomycete strain and its antimicrobial characteristics[J]. Agrochemicals, 2014, 53(2): 136-139, 152 (in Chinese).

- [15] FELING RH, BUCHANAN GO, MINCER TJ, KAUFFMAN CA, JENSEN PR, FENICAL W. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora[J]. Angewandte Chemie International Edition, 2003, 42(3): 355-357.
- [16] YANG N, SONG FH. Bioprospecting of novel and bioactive compounds from marine actinomycetes isolated from South China Sea sediments[J]. Current Microbiology, 2018, 75(2): 142-149.
- [17] SELVIN J, NINAWE AS, SEGHAL KIRAN G, LIPTON AP. Sponge-microbial interactions: ecological implications and bioprospecting avenues[J]. Critical Reviews in Microbiology, 2010, 36(1): 82-90.
- [18] YANG CF, QIAN R, XU Y, YI JX, GU YW, LIU XY, YU HB, JIAO BH, LU XL, ZHANG W. Marine actinomycetes-derived natural products[J]. Current Topics in Medicinal Chemistry, 2019, 19(31): 2868-2918.
- [19] DJINNI I, DEFANT A, KECHA M, MANCINI I. Metabolite profile of marine-derived endophytic *Streptomyces sundarbansensis* WR1L1S8 by liquid chromatography-mass spectrometry and evaluation of culture conditions on antibacterial activity and mycelial growth[J]. Journal of Applied Microbiology, 2014, 116(1): 39-50.
- [20] TAMURA K, STECHER G, PETERSOND, FILIPSKIA, KUMAR S. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
- [21] 谭才邓,朱美娟,杜淑霞,姚勇芳. 抑菌试验中抑菌 圈 法 的 比 较 研 究 [J]. 食 品 工 业, 2016, 37(11): 122-125.
 TAN CD, ZHU MJ, DU SX, YAO YF. Study on the inhibition zone method in antimicrobial test[J]. The Food Industry, 2016, 37(11): 122-125 (in Chinese).
- [22] LIU WT, LAMSA A, WONG WR, BOUDREAU PD, KERSTEN R, PENG Y, MOREE WJ, DUGGAN BM, MOORE BS, GERWICK WH, LININGTON RG, POGLIANO K, DORRESTEIN PC. MS/MS-based networking and peptidogenomics guided genome mining revealed the stenothricin gene cluster in

Streptomyces roseosporus[J]. The Journal of Antibiotics, 2014, 67(1): 99-104.

- [23] KIM TK, HEWAVITHARANA AK, SHAW PN, FUERST JA. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction[J]. Applied and Environmental Microbiology, 2006, 72(3): 2118-2125.
- [24] TWIGG FF, CAI WL, HUANG W, LIU J, SATO M, PEREZ TJ, GENG JX, DROR MJ, MONTANEZ I, TONG TL, LEE H, ZHANG WJ. Identifying the biosynthetic gene cluster for triacsins with an N-hydroxytriazene moiety[J]. ChemBioChem, 2019, 20(9): 1145-1149.
- [25] BUCHANAN GO, WILLIAMS PG, FELING RH, KAUFFMAN CA, JENSEN PR, FENICAL W. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete *Salinispora tropica*[J]. Organic Letters, 2005, 7(13): 2731-2734.
- [26] TAO MF, WANG LY, WENDT-PIENKOWSKI E, GEORGE NP, GALM U, ZHANG GD, COUGHLIN JM, SHEN B. The tallysomycin biosynthetic gene cluster from *Streptoalloteichus hindustanus* E465-94 ATCC 31158 unveiling new insights into the biosynthesis of the bleomycin family of antitumor antibiotics[J]. Molecular BioSystems, 2007, 3(1): 60-74.
- [27] LOMBÓ F, VELASCO A, CASTRO A, de la CALLE F, BRAÑA AF, SÁNCHEZ-PUELLES JM, MÉNDEZ C, SALAS JA. Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two *Streptomyces* species[J]. ChemBioChem, 2006, 7(2): 366-376.
- [28] AWAKAWA T, FUJITA N, HAYAKAWA M, OHNISHI Y, HORINOUCHI S. Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranylmethoxyhydroquinones in *Actinoplanes missouriensis*[J]. ChemBioChem, 2011, 12(3): 439-448.
- [29] GARCIA I, VIOR NM, BRAÑA AF, GONZÁLEZ-SABIN J, ROHR J, MORIS F, MÉNDEZ C, SALAS JA. Elucidating the biosynthetic pathway for the polyketide-nonribosomal peptide collismycin A: mechanism for formation of the 2,2'-bipyridyl ring[J]. Chemistry & Biology, 2012, 19(3): 399-413.
- [30] MIYANAGA A, JANSO JE, MCDONALD L, HE M, LIU HB, BARBIERI L, EUSTÁQUIO AS, FIELDING EN, CARTER GT, JENSEN PR, FENG XD, LEIGHTON M, KOEHN FE, MOORE BS. Discovery and assembly-line biosynthesis of the lymphostin

pyrroloquinoline alkaloid family of mTOR inhibitors in *Salinispora* bacteria[J]. Journal of the American Chemical Society, 2011, 133(34): 13311-13313.

- [31] BRUNS H, CRÜSEMANN M, LETZEL AC, ALANJARY M, MCINERNEY JO, JENSEN PR, SCHULZ S, MOORE BS, ZIEMERT N. Function-related replacement of bacterial siderophore pathways[J]. The ISME Journal, 2018, 12(2): 320-329.
- [32] AMOS GCA, AWAKAWA T, TUTTLE RN, LETZEL AC, KIM MC, KUDO Y, FENICAL W, MOORE B, JENSEN PR. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): E11121-E11130.
- [33] KAWATA J, NAOE T, OGASAWARA Y, DAIRI T. Biosynthesis of the carbonylmethylene structure found in the ketomemicin class of pseudotripeptides[J]. Angewandte Chemie International Edition, 2017, 56(8): 2026-2029.
- [34] IORIO M, CRUZ J, SIMONE M, BERNASCONI A, BRUNATI C, SOSIO M, DONADIO S, MAFFIOLI SI. Antibacterial paramagnetic quinones from *Actinoallomurus*[J]. Journal of Natural Products, 2017, 80(4): 819-827.
- [35] XU W, ZHAI GF, LIU YZ, LI Y, SHI YR, HONG K, HONG H, LEADLAY PF, DENG ZX, SUN YH. An iterative module in the azalomycin F polyketide synthase contains a switchable enoylreductase domain[J]. Angewandte Chemie International Edition, 2017, 56(20): 5503-5506.
- [36] FREEL KC, NAM SJ, FENICAL W, JENSEN PR. Evolution of secondary metabolite genes in three closely related marine actinomycete species[J]. Applied and Environmental Microbiology, 2011, 77(20): 7261-7270.
- [37] AHLERT J, SHEPARD E, LOMOVSKAYA N, ZAZOPOULOS E, STAFFA A, BACHMANN BO, HUANG KX, FONSTEIN L, CZISNY A, WHITWAM RE, FARNET CM, THORSON JS. The calicheamicin gene cluster and its iterative type I enediyne PKS[J]. Science, 2002, 297(5584): 1173-1176.
- [38] LOHMAN JR, HUANG SX, HORSMAN GP, DILFER PE, HUANG TT, CHEN YH, WENDT-PIENKOWSKI E, SHEN B. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from *Streptoalloteichus* sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics[J].

Molecular BioSystems, 2013, 9(3): 478-491.

- [39] DINESHKUMAR K, APARNA V, MADHURI KZ, HOPPER W. Biological activity of sporolides A and B from Salinispora tropica: in silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase[J]. Chemical Biology & Drug Design, 2014, 83(3): 350-361.
- [40] LANE AL, NAM SJ, FUKUDA T, YAMANAKA K, KAUFFMAN CA, JENSEN PR, FENICAL W, MOORE BS. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes[J]. Journal of the American Chemical Society, 2013, 135(11): 4171-4174.
- [41] 孙晓梦. 海藻可培养附生细菌多样性分析及多相分 类学研究[D]. 济南:山东师范大学硕士学位论文, 2021.
 SUN XM. Diversity and polyphasic taxonomy of

epiphytic bacteria isolated from macroalgae[D]. Jinan: Master's Thesis of Shandong Normal University, 2021 (in Chinese).

- [42] ROMANENKO LA, KURILENKO VV, GUZEV KV, SVETASHEV VI. Characterization of Labrenzia polysiphoniae sp. nov. isolated from red alga Polysiphonia sp.[J]. Archives of Microbiology, 2019, 201(5): 705-712.
- [43] 陈雷, 申琳溪, 马翠红, 王光玉. 大叶藻内生放线菌的分离及抗菌活性筛选[J]. 海洋科学进展, 2021, 39(1): 102-109.
 CHEN L, SHEN LX, MA CH, WANG GY. Isolation and antimicrobial activity screening of endophytic

actinomycetes associated with *Zostera marina*[J]. Advances in Marine Science, 2021, 39(1): 102-109 (in Chinese).

- [44] SUN W, DAI SK, JIANG SM, WANG GH, LIU GH, WU HB, LI X. Culture-dependent and culture-independent diversity of actinobacteria associated with the marine sponge *Hymeniacidon perleve* from the South China Sea[J]. Antonie Van Leeuwenhoek, 2010, 98(1): 65-75.
- [45] 马亮,张文军,朱义广,吴正超,Kumar Saurav,黄晖, 张长生.永兴岛白穗软珊瑚共附生放线菌筛选及部 分活性次级代谢产物的鉴定[J]. 微生物学报,2013, 53(10): 1063-1071.
 MA L, ZHANG WJ, ZHU YG, WU ZC, SAURAV K, HUANG H, ZHANG CS. Isolation of actinobacteria

with antibiotic activity associated with soft coral *Nephthea* sp.[J]. Acta Microbiologica Sinica, 2013, 53(10): 1063-1071 (in Chinese).

- [46] 马艳玲,邓海,刘中来,邓灵福,刘艳丽,祁超.稀 有海洋放线菌 Salinispora arenicola 大片段 DNA 基因 组文库的构建[J]. 生物技术, 2010, 20(3): 1-3.
 MA YL, DENG H, LIU ZL, DENG LF, LIU YL, QI C. Construct library with large genomic DNA fragments from rare marine actinomycete Salinispora arenicola[J]. Biotechnology, 2010, 20(3): 1-3 (in Chinese).
- [47] XIA SS, MA YL, ZHANG W, YANG Y, WU SW, ZHU MZ, DENG LF, LI B, LIU ZL, QI C. Identification of Sare0718 as an alanine-activating adenylation domain in marine actinomycete *Salinispora arenicola* CNS-205[J]. PLoS One, 2012, 7(5): e37487.
- [48] SONG YP, SHI ZZ, MIAO FP, FANG ST, YIN XL, JI NY. Tricholumin A, a highly transformed ergosterol derivative from the alga-endophytic fungus *Trichoderma asperellum*[J]. Organic Letters, 2018, 20(19): 6306-6309.
- [49] CHOI BK, TRINH PTH, LEE HS, CHOI BW, KANG JS, NGOC NTD, van TTT, SHIN HJ. New ophiobolin derivatives from the marine fungus *Aspergillus flocculosus* and their cytotoxicities against cancer cells[J]. Marine Drugs, 2019, 17(6): 346.
- [50] LI X, LI XM, XU GM, LI CS, WANG BG. Antioxidant metabolites from marine alga-derived fungus *Aspergillus wentii* EN-48[J]. Phytochemistry Letters, 2014, 7: 120-123.
- [51] 崔森, 吴敏, 刘茹, 黎晶晶, 张辉杰, 许德麟, 张其中. 无乳链球菌和海豚链球菌早期预警分子检测[J]. 水产科学, 2021, 40(4): 589-595.
 CUI M, WU M, LIU R, LI JJ, ZHANG HJ, XU DL, ZHANG QZ. Molecular detection and early warning of *Streptococcus agalactiae* and *S. iniae*[J]. Fisheries Science, 2021, 40(4): 589-595 (in Chinese).
- [52] HAWKINS PA, LAW CS, METCALF BJ, CHOCHUA S, JACKSON DM, WESTBLADE LF, JERRIS R, BEALL BW, MCGEE L. Cross-resistance to lincosamides, streptogramins A and pleuromutilins in *Streptococcus agalactiae* isolates from the USA[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(7): 1886-1892.
- [53] BAIANO JCF, BARNES AC. Towards control of *Streptococcus iniae*[J]. Emerging Infectious Diseases, 2009, 15(12): 1891-1896.