Research Article 研究报告

基因 CfATG6 和 CfATG14 参与调控果生刺盘孢 细胞自噬和致病力

姚权,李河*

中南林业科技大学 南方人工林病虫害防控国家林业和草原局重点实验室 森林有害生物防控湖南省重点 实验室 森林生物资源与有害生物综合管理湖南省普通高等学校重点实验室, 湖南 长沙 410004

姚权, 李河. 基因 *CfATG6* 和 *CfATG14* 参与调控果生刺盘孢细胞自噬和致病力[J]. 微生物学报, 2024, 64(4): 1289-1305. YAO Quan, LI He. *CfATG6* and *CfATG14* regulate the autophagy and pathogenicity of *Colletotrichum fructicola*[J]. Acta Microbiologica Sinica, 2024, 64(4): 1289-1305.

摘 要:【目的】炭疽病是油茶的主要病害,由刺盘孢属的多种真菌引起,其中果生刺盘孢分布 范围最广、分离率最高,是油茶炭疽病的主要致病菌。研究自噬相关蛋白 CfAtg6 和 CfAtg14 的 生物学功能,为进一步揭示果生刺盘孢通过细胞自噬调控致病的分子机制,并为油茶炭疽病的防 治提供理论基础。【方法】根据同源重组原理,通过聚乙二醇(polyethylene glycol, PEG)介导的方 法,在果生刺盘孢中敲除基因 CfATG6 和 CfATG14,并进一步获得回补菌株 ΔCfatg6-C 和 ΔCfatg14-C。【结果】酵母双杂交试验结果显示,果生刺盘孢蛋白 CfAtg6 和 CfAtg14 可能存在互 作关系。生物学表型测定结果表明,相较于野生型和回补菌株,突变体 ΔCfatg6 和 ΔCfatg14 均表 现出营养生长速率显著减慢,附着胞形成率分别只有野生型的 5%和 18%; 突变体 ΔCfatg6 和 ΔCfatg14 致病力均极显著减弱,造成的油茶叶片病斑面积少于野生型和回补菌株的 1/3; CfATG6 和 CfATG14 基因缺失突变体均丧失转运和降解 CfAtg8 蛋白的能力,并对细胞壁胁迫更敏感。突 变体 ΔCfatg6 的分生孢子产量显著降低,仅为野生型的 20%左右;氧化胁迫试验结果表明,相较 于野生型和回补菌株,过氧化氢对突变体的生长抑制率升高 10%左右。内质网压力胁迫试验表明, ΔCfatg14 对二硫苏糖醇抑制率升高 5%以上。【结论】自噬相关基因 CfATG6 和 CfATG14 参与调控 了果生刺盘孢生长发育、细胞自噬和致病力。

关键词:果生刺盘孢;细胞自噬;CfATG6;CfATG14;致病力

资助项目: 国家自然科学基金(32071765)

This work was supported by the National Natural Science Foundation of China (32071765). *Corresponding author. E-mail: csuftlihe@163.com

Received: 2023-11-15; Accepted: 2024-01-23

CfATG6 and *CfATG14* regulate the autophagy and pathogenicity of *Colletotrichum fructicola*

YAO Quan, LI He^{*}

Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, Hunan, China

Abstract: [Objective] Anthracnose is a major disease attacking *Camellia oleifera* plants. Colletotrichum fructicola with a wide distribution scope and a high isolation rate is the major pathogen causing anthracnose in C. oleifera. This study explored the roles of autophagy-related proteins CfAtg6 and CfAtg14 and the molecular mechanism for the pathogenicity of C. *fructicola*, aiming to provide a theoretical basis for the prevention and control of anthracnose in C. oleifera. [Methods] The homologous recombination principle and polyethylene glycol (PEG)-mediated transformation method were employed to construct the gene-deleted strains $\Delta CfATG6$ and $\Delta CfATG14$ and the complemented strains $\Delta Cfatg6$ -C and $\Delta Cfatg14$ -C. [Results] The yeast two-hybrid assay results showed that ΔC_{fatg6} and ΔC_{fatg14} might interact with each other. Compared with the wild type and complemented strains, ΔC_{fatg6} and ΔC_{fatg14} demonstrated significantly slow vegetative growth, and their appressorium formation rates were only 5% and 18% that of the wide type. In addition, $\Delta C fatg 6$ and $\Delta C fatg 14$ showed significantly weakened pathogenicity, causing the lesion areas only 1/3 of the wild type and complemented strains on C. oleifera leaves. In addition, $\Delta C fatg 6$ and $\Delta C fatg 14$ lost the ability of transporting and degrading CfAtg8 protein and became more sensitive to the cell wall stress. The conidium production of $\Delta C fatg 6$ decreased significantly, being only 20% that of wild type. The inhibition rate of hydrogen peroxide on the growth of the deleted strains was 10% higher than those on the wild type and complemented strains. $\Delta C fatg 14$ showed increased sensitivity to dithiothreitol stress. [Conclusion] The autophagy-related genes CfATG6 and CfATG14 are involved in the regulation of the growth, autophagy, and pathogenicity of C. fructicola. Keywords: Colletotrichum fructicola; autophagy; CfATG6; CfATG14; pathogenicity

油茶(Camellia oleifera)属于山茶科(Theaceae Mirb)山茶属(Camellia)植物,作为我国南方特有的木本食用油料树种,它不仅可以提供富含不饱和脂肪酸的茶油,还可以保持水土、涵养水源,在我国区域经济发展中具有重要地位^[1]。炭疽病是油茶的主要病害,给林农带来了严重的经济损失。 果生刺盘孢(Colletotrichum fructicola)是油茶炭疽病的主要致病菌,其分生孢子形成附着胞进而产

🖂 actamicro@im.ac.cn, 🕾 010-64807516

生侵入钉侵染寄主引起病害。姚权等^[2]和李河 等^[3-6]前期研究发现, CfHAC1、CfMKK1、CfRAB7 等基因通过调控果生刺盘孢附着胞的形成进而 影响致病力,并发现果生刺盘孢组蛋白乙酰转 移酶 CfGcn5 负调控细胞自噬从而调控附着胞 的膨压进而影响致病力。自噬相关蛋白基因 CfATG6在 CfGCN5 基因缺失突变体中表达水平 显著上调,但其功能尚不清楚^[7]。 细胞自噬是一种亚细胞降解途径,在真核生物中高度保守,它对于维持细胞内生理平衡和帮助细胞抵抗逆境有重要作用^[8-9]。细胞自噬通过自噬小体的形成,将细胞内被破坏的大分子蛋白质以及受损的细胞器包裹,然后与液泡融合,将大分子蛋白质和细胞器降解并循环再利用,以维持细胞正常功能^[10-13]。许多致病力相关的关键生理过程都受到细胞自噬的调控,如 *MoATG1* 基因缺失后,稻瘟病菌细胞自噬过程被阻断进而降低附着胞膨压,使突变体丧失穿透和侵染寄主的能力^[14-15];在果生刺盘孢中自噬相关基因 *CfATG8* 和 *CfATG9* 缺失后,细胞自噬进程同样受到影响,降低了附着胞膨压并影响致病过程^[7]。

磷脂酰肌醇-3-激酶 III 型(phosphatidylinositol 3-kinase catalytic subunit type 3, PI3KC3)复合 物磷酸化磷脂酰肌醇(phosphatidylinositol, PI) 产生自噬体膜主要成分磷脂酰肌-3-磷酸 (phosphatidylinositol-3-phosphate, PI3P)^[16-18] 。 Atg6/Vps30、Atg14、Vps34 和 Vps15 形成的 PI3P 激酶(PI3P kinase, PI3K)复合体是PI3KC3两种复 合物中的一种,主要在自噬过程中发挥功能^[19-20]。 在酿酒酵母(Saccharomyces cerevisiae)中,缺失 自噬相关基因 ATG6 及 ATG14 后,酿酒酵母表 现出自噬缺陷,并在 $\Delta Scatg6$ 中无法测定到蛋白 Atg14^[19]。在禾谷镰刀菌(Fusarium graminearum) 中,自噬相关基因 FgATG6 和 FgATG14 对菌株 的生长发育、无性繁殖及侵染过程极其重要^[21]。 在稻瘟病菌(Magnaporthe oryzae)中,缺失 MoATG6及 MoATG14 后,突变体菌株无法侵染 水稻叶片,且 MoATG14 缺失后,自噬能力也随 之丧失^[22-23]。灰葡萄孢(Botrytis cinerea)自噬相关 基因 BcATG6 缺失后,表现出生长、致病和无性 繁殖能力的降低,其自噬过程也表现出极显著减 弱^[24]。这些研究表明,自噬相关基因的功能在 病原真菌中较为保守且非常重要。自噬相关基因 *CfATG6*及*CfATG14*在油茶炭疽病的优势致病菌 果生刺盘孢中尚无相关研究,它们的生物学功能 也不清楚。本研究以这2个基因为研究对象,阐 明它们在果生刺盘孢中的生物学功能,为油茶炭 疽病的防治提供理论依据。

1 材料与方法

1.1 供试菌株

本研究所用果生刺盘孢野生型菌株 CFHL16、酵母菌株 XK125 和酵母双杂交菌株 AH109由实验室保存,大肠杆菌 Trelief 5α 购自 北京擎科生物科技股份有限公司。

1.2 CfAtg6和CfAtg14蛋白系统发育树构建

在果生刺盘孢的全基因组中通过 BLASTp 比对,鉴定到酿酒酵母 Atg6 (NP 015205.1)和 Atg14 (NP 009686.1)同源蛋白氨基酸序列,分别 命 名 为 CfAtg6 (KAE9577198)和 CfAtg14 (KAE9577180),参考姚权等^[2]描述的方法构建邻 接(neighbor-joining, N-J)系统发育树。

1.3 CfAtg6 和 CfAtg14 酵母双杂交试验

以 cDNA 为模板,分别使用 CfAtg6-AD-F/ CfAtg6-AD-R、CfAtg14-BD-F/CfAtg14-BD-R 为引 物扩增 CfATG6 基因和 CfATG14 基因片段,将 CfATG6 基因片段与 pGADT7 (AD)质粒形成载体 1, CfATG14 基因片段与 pGBKT7 (BD)质粒形成 载体 2,共转入酵母菌株 AH109 内,在 SD-Trp-Leu 培养基平板上 30 ℃培养 3-5 d 后,用绒布影印至 SD-Trp-Leu-His 培养基和 SD-Trp-Leu-His-Ade 培 养基上,继续培养观察。阳性对照为 ADRecT 和 BD(+),阴性对照为 ADRecT 和 BD(-)。

1.4 CfATG6 和 CfATG14 基因敲除载体构 建及突变体的筛选

CfATG6、CfATG14 基因载体构建和敲除方 法参考姚权等^[2]描述的方法。本研究涉及的引物 序列详见表 1。

YAO Quan et al. | Acta Microbiologica Sinica, 2024, 64(4)

表1 本研究所用引物

Table 1 Primer used in this study

Primer	Sequence $(5' \rightarrow 3')$	Purpose
CfAtg6-1F	TACTTGATAGACTCGGGCGT	Amplify CfATG6 5'
CfAtg6-2R	TTGACCTCCACTAGCTCCAGCCAAGCCCGTATCGTTGCGCGCATGCT	flank sequence
CfAtg6-3F	CAAAGGAATAGAGTAGATGCCGACCGGTGTGACGCTCACTGCCTTC	Amplify CfATG6 3'
CfAtg6-4R	ACCTCCTCGTAGCTAACCGT	flank sequence
CfAtg6-5F	GACTTGACAGTCGCTGCTCT	Validation of
H855R	GCTGATCTGACCAGTTGC	CfATG6 gene
		deletion
CfAtg6-7F	CAAGGCTGGTTCAAAAGGCCAGGA	Amplify CfATG6
CfAtg6-8R	CATATCGAACGATCTTGGAGGTGC	gene sequence
CfAtg6-9F	ACTCACTATAGGGCGAATTGGGTACTCAAATTGGTTGATCTCCAGTCGATGTTGGT	Amplify
CfAtg6-10R	${\tt CACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACGTTGTTGGCATTTCTTGCTG}$	complemented
		sequence
HYG-F	GGCTTGGCTCCAGCTAGTGGAGGT	Amplify <i>HPH</i>
HYG-R	CTCTATTCCTTTGCCCTCG	sequence
GFPR	GACACGCTGAACTTGTGGCCGTT	Validation of
		complemented
		sequenced
CfAtg14-1F	CTAGATGCATGGTCAGTTGG	Amplify <i>CfATG14</i>
CfAtg14-2R	TTGACCTCCACTAGCTCCAGCCAAGCCCTTGGCGGCATGCGGCGAGT	5' flank sequence
CfAtg14-3F	CAAAGGAATAGAGTAGATGCCGACCGTCTAACAAAGAAATGAAACA	Amplify CfATG14
CfAtg14-4R	TACCAACGTCTTCACCGTCA	3' flank sequence
CfAtg14-5F	GACTGCACGCTCATTGTCAT	Validation of
H855R	GCTGATCTGACCAGTTGC	CfATG14 gene
		deletion
CfAtg14-7F	GCTAAAGCGGGAAATCGCTG	Amplify CfATG14
CfAtg14-8R	AAGAGCGAATGCGTGACAGA	gene sequence
CfAtg14-9F	ACTCACTATAGGGCGAATTGGGTACTCAAATTGGTTTGGGACTTCTGGTCGTTTGT	Amplify
CfAtg14-10R	CACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCCTGTTCTTCAGCTTCGTCC	complemented
		sequence
CfAtg6-AD-F	TGGGCATCGATACGGGATCATGTACTGCCAAAAGTGTCG	Construct
CfAtg6-AD-R	TGCAGCTCGAGCTCGATGGATCCTTAGTTGTTGGCATTTCTTG	pGADT7-CfAtg6
CfAtg14-BD-F	AGGCCGAATTCCCGGGGATCATGAACTGCGACATTTGCCA	Construct
CfAtg14-BD-R	CGCTGCAGGTCGACGGATCC TTACCTGTTCTTCAGCTTCG	pGBKT7-CfAtg14

1.5 *CfATG6* 和 *CfATG14* 基因缺失突变体 回补菌株的获得

以野生型 CFHL16 基因组 DNA 为模板,参 照姚权等^[2]描述的方法构建 CfATG6 基因回补质 粒和回补菌株,并对其进行相关表型测定。 CfATG14 基因敲除突变体回补菌株的获得同 CfATG6 基因。

1.6 *CfATG6* 和 *CfATG14* 基因缺失突变体 表型分析

1.6.1 生长表型测定

试验菌株在 CM 和 MM 培养基上 28 ℃培 养 3 d, 之后参考姚权等^[25]描述的方法进 行 *CfATG6* 和 *CfATG14* 基因缺失突变体表型 分析。

1.6.2 敲除突变体产孢及附着胞形态观察

试验菌株于CM液体培养基中28℃、180 r/min 培养2d,之后参考姚权等^[2]描述1.6.5的方法进 行敲除突变体产孢及附着胞形态观察。

1.6.3 突变体细胞壁胁迫敏感性试验

使用细胞壁胁迫剂为 400 µg/mL 刚果红 (congo red, CR)、0.01%十二烷基硫酸钠(sodium dodecyl sulfate, SDS),试验参考郭源等^[26]描述的方 法进行突变体细胞壁胁迫敏感性试验。

1.6.4 突变体氧化胁迫敏感性试验

采用终浓度 10.0 mmol/L 的 H₂O₂,参考高亚兰 等^[27]描述的方法进行突变体氧化胁迫敏感性试验。

1.6.5 突变体内质网胁迫敏感性试验

采用终浓度为2.5 mmol/L和5.0 mmol/L的二硫 苏糖醇(dithiothreitol, DTT),参考李司政等^[28]描 述的方法进行突变体内质网胁迫敏感性试验。

1.6.6 突变体致病力测定

试验菌株分别接种于苹果和离体油茶叶片, 28 ℃培养,参考郭源等^[26]的方法测定突变体致 病力。

1.7 *CfATG6* 和 *CfATG14* 基因缺失突变体 自噬研究

1.7.1 表达 GFP-CfAtg8 突变体菌株的构建

将 CfATG8 基因片段与 pYF11 质粒连接,构 建 CfATG8::pYF11 载体成功后,使用聚乙二醇 (polyethylene glycol, PEG)介导法将载体导入 $\Delta Cfatg6、\Delta Cfatg14$ 菌株原生质体中,并对后续 转化子进行筛选,选取成功导入 CfATG8::pYF11 载体并稳定表达的菌株进行下一步试验。

1.7.2 突变体自噬研究

采用 CM 液体培养基 28 ℃、180 r/min 培养 36 h 后,无菌水清洗去除 CM 液体培养基,使用 MM-N 液体培养基饥饿诱导处理菌丝球 4 h,显 微观察绿色荧光变化情况,进一步提取菌丝球蛋 白进行 Western blotting 试验检测 CfAtg8 蛋白降 解情况。

2 结果与分析

2.1 CfAtg6/CfVps30 及 CfAtg14 的鉴定及 系统发育分析

从 C. fructicola 鉴定到一个与酿酒酵母 ScAtg6 同源的 CfAtg6 蛋白序列及一个与酿酒酵 母 ScAtg14 同源的 CfAtg14 蛋白序列。

其中 CfATG6 基因编码 491 个氨基酸,含有 1 个 Pfam APG6 识别域和 2 个未知结构域。进一 步分析发现果生刺盘孢内的 CfAtg6 氨基酸序列 与胶孢刺盘孢(C. gloeosporioides)的亲缘关系较 近,与构巢曲霉(Aspergillus nidulans)和 S. cerevisiae 的亲缘关系较远。

CfATG14 基因编码 466 个氨基酸,含有 1 个 Pfam Atg14 识别域和 2 个未知结构域。进一步 分析发现果生刺盘孢内的 CfAtg14 氨基酸序列与 *C. gloeosporioides* 和 *C. siamense* 的亲缘关系较 近,与 *A. nidulans* 和 *S. cerevisiae* 的亲缘关系较远。

2.2 CfAtg6 和 CfAtg14 在酵母双杂试验中 具有相互作用

在酿酒酵母中,蛋白 Atg6/Vps30 和 Atg14 存在互作关系^[19]。为验证在果生刺盘孢中蛋白 CfAtg6 和 CfAtg14 是否存在相互作用,我们构 建了相关载体进行酵母双杂交试验。结果表明 在果生刺盘孢中自噬相关蛋白 CfAtg6 和 CfAtg14 可能也存在互作关系(图 1),与酿酒酵 母中这 2 个蛋白互作的结果一致,说明自噬相 关蛋白 Atg6 和 Atg14 的功能可能比较保守。为 了进一步验证 CfAtg14 与 CfAtg6 在果生刺盘孢 中是否具有相似的生物学功能,本文对 2 个基因 的功能进行了研究。

2.3 $\Delta Cfatg6$ 、 $\Delta Cfatg14$ 同源重组、回复互补的筛选及分子验证

为了进一步阐明基因 CfATG6 和 CfATG14 的生物学功能,基于同源重组的原理,参考姚权 等^[2]试验方法获得回补菌株。敲除策略如图 2A 所示;分子验证如图 2B、2C 所示。

图 1 酵母双杂交试验分析 CfAtg6 与 CfAtg14 之间的相互作用

Figure 1 Yeast two hybrid assays between CfAtg6 and CfAtg14.

图 2 $\Delta C fatg6$ 、 $\Delta C fatg14$ 突变体的获得

Figure 2 Acquisition of the $\Delta Cfatg6$, $\Delta Cfatg14$ mutants of *Colletotrichum fructicola*. A: The $\Delta Cfatg6$, $\Delta Cfatg14$ mutant knockout strategy diagram. B: The confirmation of $\Delta Cfatg6$ mutants. Primer 1: CfAtg6-5F/H855R; Primer 2: CfAtg6-7F/CfAtg6-8R. C: The confirmation of $\Delta Cfatg14$ mutants. Primer 1: CfAtg14-5F/H855R; Primer 2: CfAtg14-7F/CfAtg14-8R; M: DL2000 DNA marker; W: CFLH16 positive control. Δ : Mutant. C: Complemented strain; -: Negative control.

2.4 *CfATG6* 和 *CfATG14* 基因参与果生刺 盘孢营养生长

在 CM 和 MM 培养基上, 突变体 $\Delta Cfatg6$ 菌落生长直径分别为 4.2 cm 和 3.0 cm 左右, $\Delta Cfatg14$ 菌落生长直径分别为 5.7 cm 和 4.0 cm 左右,对生长菌落直径进行统计分析,发现 $\Delta Cfatg6$ 和 $\Delta Cfatg14$ 菌落直径均小于 CFLH16 和其回补菌株(P < 0.01,图 3)。结果表明 CfATG6 和 CfATG14 基因均调控果生刺盘孢的营养生长 过程。

图 3 不同菌株的生长测定试验 A: CFLH16、 $\Delta C fatg 6$ 和 $\Delta C fatg 6$ -C 生长统计分析. B: CFLH16、 $\Delta C fatg 14$ 和 $\Delta C fatg 14$ -C 生长统计分析. **表示差异极显著(P < 0.01)

Figure 3 Growth analysis of different strain. A: Statistical analysis of CFLH16, $\Delta Cfatg6$ mutant, and $\Delta Cfatg6$ -C diameter. B: Statistical analysis of CFLH16, $\Delta Cfatg14$ mutant, and $\Delta Cfatg14$ -C diameter. Error bars are standard deviation and ** represent extremely significance at P < 0.01.

2.5 *CfATG6*基因参与调控果生刺盘孢分生 孢子形成

在真菌侵染植物的过程中,分生孢子是初侵 染和再侵染主要侵染来源,在病害循环中起着十 分重要的作用^[26]。我们研究了Δ*Cfatg6*和Δ*Cfatg14* 突变体的分生孢子形成过程,结果显示突变体 Δ*Cfatg6*产生少量分生孢子,仅为野生型和回补 菌株的 20%左右(图 4),统计分析差异显著;同 时我们对突变体Δ*Cfatg14*进行多次分生孢子形 成试验,发现突变体试验结果存在较大误差, 无法确定基因 *CfATG14* 是否参与调控果生刺盘 孢分生孢子形成过程。结果表明,*CfATG6* 基因参 与调控了果生刺盘孢分生孢子的形成,而*CfATG14* 基因是否参与这一过程仍需进一步研究。

2.6 CfATG6 和 CfATG14 基因参与调控果 生刺盘孢附着胞形成

刺盘孢属真菌在侵染寄主时会形成附着胞 刺破寄主表皮,对病原菌侵染寄主有着至关重 要的作用^[4],因此我们进一步研究了上述菌株 的附着胞形成情况。野生型、Δ*Cfatg14-C* 附着 胞形成率可达 75%,回补菌株 $\Delta Cfatg6-C$ 相对 野生型略低,为 60%,而 $\Delta Cfatg6$ 和 $\Delta Cfatg14$ 突变体的附着胞形成率均显著下降,其中 $\Delta Cfatg6$ 附着胞形成率不足 5%, $\Delta Cfatg14$ 的附 着胞形成率不足 20% (图 5C、5D),数据分析显

图 4 ΔCfatg6 分生孢子产量统计分析

Figure 4 Conidiation production statistics of $\Delta C fatg 6$. Asterisks indicate the difference is significant (*P*<0.01).

图 5 附着胞统计分析

Figure 5 The statistical analysis of appressorium. A: The mutant $\Delta Cfatg6$ can form a small amount of appressorium. B: The conidia of CFLH16, $\Delta Cfatg14$, $\Delta Cfatg14$ -C strains were cultured on hydrophobic glasses and appressoria formation were observed. C: Statistical analysis of the appressorial formation rate of the mutant $\Delta Cfatg6$. D: Statistical analysis of the appressorial formation rate of the appressorial formation rate of the difference is significant (*P*<0.01). Bars=5 µm.

示差异显著(图 5A、5B)。结果表明 CfATG6 和 CfATG14 基因参与调控果生刺盘孢附着胞的 形成。

2.7 CfATG6 和 CfATG14 基因参与果生刺 盘孢应对细胞壁胁迫

细胞壁作为真菌最外侧的结构,是真菌抵抗 外界环境压力的第一层屏障,而细胞壁的完整性 对真菌致病过程有重大的影响^[29]。为了探究 *CfATG6、CfATG14* 是否响应细胞壁胁迫应答, 将 CFLH16、 $\Delta Cfatg6$ 、 $\Delta Cfatg6$ -C、 $\Delta Cfatg14$ 、 $\Delta Cfatg14$ -C 菌株分別接种于含有 0.01% SDS 和 400 µg/mL CR 细胞胁迫剂的 CM 培养基上,培 养 3 d 后比较生长情况。结果表明,在含有细 胞壁胁迫剂的培养基上突变体 $\Delta Cfatg6$ 、 $\Delta Cfatg14$ 的抑制率均相较于 CFLH16 和回补菌 株抑制率升高 5%以上(图 6),说明 CfATG6 和 CfATG14 基因参与调控果生刺盘孢对细胞壁胁 迫的应答。

图 6 细胞壁胁迫的敏感性测定

Figure 6 Cell wall stress sensitivity test. A: Statistical analysis of the inhibition rate of the related strains of the mutant $\Delta C fatg 6$. B: Statistical analysis of the inhibition rate of the related strains of the mutant $\Delta C fatg 14$. Asterisks indicate the difference is significant (P < 0.01).

2.8 CfATG6 基因参与果生刺盘孢应对氧化 胁迫

为了探究 CfATG6、CfATG14 是否参与果生 刺盘孢应对氧化胁迫过程,将 CFLH16、 Δ Cfatg6、 Δ Cfatg6-C、 Δ Cfatg14、 Δ Cfatg14-C 菌株接种于 含有 10.0 mmol/L 的 H₂O₂的 CM 培养基上,培 养 3 d 后比较生长情况。结果表明,突变体 $\Delta Cfatg6$ 对 H_2O_2 的抑制率相较于 CFLH16 和回 补菌株升高 10%以上,统计分析差异显著;对 突变体 $\Delta Cfatg14$ 则无显著影响(图 7),这表明 CfATG6 基因参与了果生刺盘孢应对氧化胁迫过 程,而基因 CfATG14 不参与调控这一过程。

图 7 $\Delta Cfatg6$ 、 $\Delta Cfatg14$ 对氧化胁迫的敏感性测定

Figure 7 Oxygen stress sensitivity test of $\Delta Cfatg6$, $\Delta Cfatg14$. A: Statistical analysis of the inhibition rate of the related strains of the mutant $\Delta Cfatg6$. B: Statistical analysis of the inhibition rate of the related strains of the mutant $\Delta Cfatg14$. Asterisks indicate the difference is significant (*P*<0.01).

二硫苏糖醇是一种小分子有机还原剂,可影 响肽链间二硫键的生成,致使错误折叠蛋白增 多,造成内质网压力,引起内质网的应激反应^[30]。为了探究 CfATG6、CfATG14 是否参与果生刺盘 泡应对内质网压力胁迫,将 CFLH16、ΔCfatg6、 ΔCfatg6-C、ΔCfatg14、ΔCfatg14-C 菌株分别接 种于含有终浓度为 2.5 mmol/L 和 5.0 mmol/L DTT 的 CM 平板上,培养 3 d 后比较生长情况。 结果表明,在含有 DTT 的培养基上,ΔCfatg14 突变体的生长抑制率相较于 CFLH16 和回补菌 株显著升高 5%以上,但突变体 ΔCfatg6 的生长 则无显著影响(图 8),上述结果表明 CfATG14 响 应了果生刺盘孢的内质网压力胁迫应答,基因 CfATG6 不参与调控该过程。

2.10 *CfATG6* 和 *CfATG14* 基因参与调控果 生刺盘孢致病力

果生刺盘孢为油茶炭疽病的优势致病菌,其 致病能力直接影响着经济损失,因此致病力是其 最重要的表型特征。本文对突变体 Δ*Cfatg6* 和 Δ*Cfatg14* 进行致病力测定。结果表明,在离体的油茶叶片上, Δ*Cfatg6* 突变体菌株形成的病斑 显著小于 CFLH16 和回补菌株形成的病斑面积, 不足 CFLH16 和回补菌株的 1/3;突变体 Δ*Cfatg14* 在有伤的油茶叶片上形成的病斑面积 显著减少, 仅为 CFLH16 和回补菌株 1/4 左右, 且在无伤叶片上无法形成病斑(图 9A-9H, P<0.01)。以苹果为寄主分别接种果生刺盘孢野 生型菌株、Δ*Cfatg6、*Δ*Cfatg14* 突变体和回补菌 株 Δ*Cfatg6-C、*Δ*Cfatg14-C*,结果发现 Δ*Cfatg6* 和 Δ*Cfatg14* 突变体在苹果上造成的病斑面积同 样显著小于野生型和回补菌株(图 9I-9L, P<0.01)。这些结果表明 *CfATG6* 和 *CfATG14* 基 因参与调控果生刺盘孢的致病力。

2.11 *CfATG6* 和 *CfATG14* 基因参与调控果 生刺盘孢自噬过程

细胞自噬对维持真核生物的代谢平衡和生存能力是必需的^[31]。营养缺乏(MM-N诱导)是诱导自噬的一种常用方式^[7]。本文对 GFP-CfAtg8标记的 CFLH16、Δ*Cfatg6*和 Δ*Cfatg14*菌株进行荧光观察发现,在营养充足条件下,CFLH16、

图 8 基因缺失突变体对 DTT 的敏感性测定

Figure 8 DTT stress sensitivity test of gene-deletion mutants. A: Statistical analysis of the inhibition rate of the related strains of the mutant $\Delta C fatg 6$. B: Statistical analysis of the inhibition rate of the related strains of the mutant $\Delta C fatg 14$. Asterisks indicate the difference is significant (*P*<0.01).

图 9 突变体 $\Delta C fatg 6$ 、 $\Delta C fatg 14$ 的致病力测定

Figure 9 Testing of mutant $\Delta Cfatg6$ and $\Delta Cfatg14$ pathogenicity. A: Wounded *Camellia oleifera* leaves were inoculated with mycelial plugs of CFLH16, $\Delta Cfatg6$ and $\Delta Cfatg6$ -C. B: Unwounded C. *oleifera* leaves were inoculated with mycelial plugs of CFLH16, $\Delta Cfatg6$ and $\Delta Cfatg6$ -C. C: Statistical analysis of lesion area on wounded C. *oleifera* of the mutant $\Delta Cfatg6$. D: Statistical analysis of lesion area on unwounded C. *oleifera* of the mutant $\Delta Cfatg6$. E: Wounded Camellia oleifera leaves were inoculated with mycelial plugs of CFLH16, $\Delta Cfatg14$ and $\Delta Cfatg14$ -C. F: Unwounded C. *oleifera* leaves were inoculated with mycelial plugs of CFLH16, $\Delta Cfatg14$ and $\Delta Cfatg14$ -C. G: Statistical analysis on the difference of lesion area on wounded C. *oleifera* of the mutant $\Delta Cfatg14$. H: Statistical analysis on the difference of lesion area on unwounded C. *oleifera* of the mutant $\Delta Cfatg14$. I: The apples were inoculated with mycelial plugs of CFLH16, $\Delta Cfatg6$. K: The apples were inoculated with mycelial plugs of disease lesion size on apple of the mutant $\Delta Cfatg6$. K: The apples were inoculated with mycelial plugs of CFLH16, $\Delta Cfatg14$ -C. L: Statistical analysis of disease lesion size on apple of the mutant $\Delta Cfatg14$. Asterisks indicate the difference is significant (P<0.01).

Δ*Cfatg6* 和 Δ*Cfatg14* 菌株的细胞质中均可以观 察到荧光,在液泡中未观察到荧光。MM-N 处 理 4 h 后,在 CFLH16 细胞质中几乎观测不到荧 光,但可以在液泡中观察到荧光;在 Δ*Cfatg6* 和 Δ*Cfatg14* 中,荧光仍定位在细胞质中,液泡中 仍不能观测到荧光(图 10A)。接下来,我们通过 免疫印迹试验来监测自噬的发生情况,发现在 CFLH16、Δ*Cfatg6* 和 Δ*Cfatg14* 突变体中都可以 检测到完整的 GFP-CfAtg8 (46 kDa)和游离 GFP

🖂 actamicro@im.ac.cn, 🕾 010-64807516

(26 kDa)的蛋白条带。通过计算游离 GFP 与完整 GFP-CfAtg8 和游离 GFP 蛋白总量的比值来评估 自噬程度,在 MM-N 处理 4 h 后,CFLH16 中游 离 GFP 蛋白的比例相较于处理前升高 40%左右, 而在 $\Delta C fatg6$ 和 $\Delta C fatg14$ 中,游离 GFP 的蛋白 水平未发生变化(图 10B),这说明在 $\Delta C fatg6$ 和 $\Delta C fatg14$ 中,自噬相关蛋白 CfAtg8 的转运和降 解受到阻碍。以上试验表明 CfATG6 和 CfATG14 基因正调控果生刺盘孢的细胞自噬过程。

CfATG6、CfATG14 正调控自噬 图 10

Figure 10 CfATG6, CfATG14 positive regulates autophagy. A: The CFLH16 and $\Delta Cfatg6$ mutant strains, transformed with GFP-CfAtg8, were incubated in MM-N for 4 h. Then, the autophagy was observed with a microscope. B: The CFLH16 and $\Delta C fatg14$ mutant strains, transformed with GFP-CfAtg8, were incubated in MM-N for 4 h. C: Immunoblot analysis of GFP-CfAtg8 proteolysis in CFLH16 and $\Delta Cfatg6$. The upper and lower lanes point to the intact GFP-CfAtg8 (46 kDa) and free GFP (26 kDa), respectively. D: The level of autophagy was estimated by calculating the amount of free GFP relative to the total amount of intact GFP-CfAtg8 plus free GFP of CFLH16 and $\Delta Cfatg6$. E: Immunoblot analysis of GFP-CfAtg8 proteolysis in CFLH16 and $\Delta C fatg14$. F: The level of autophagy of CFLH16 and $\Delta C fatg14$. Bars=5 µm. Error bars represent the standard deviation with three replicates, and different letters represent statistically significant differences (P<0.01).

3 讨论与结论

PI3K 是细胞内一类重要的信号调控分子, 通过对膜上的磷脂酰肌醇进行磷酸化修饰而控 制细胞的生长、分化、胞内物质运输等过程^[32]。 在酵母中, Vps15、Atg6/Vps30、Vps34、Atg14 和Atg38形成自噬特异性的III型PI3K复合物I, 即 PI3KC3-I,并定位于自噬前体组装位点 (phagophore assembly site, PAS)^[19,33-34]。PI3K 复 合物 I 相关蛋白 ATG6 和 ATG14 基因在稻瘟病菌、 禾谷镰刀菌和灰葡萄孢中都已被证明与致病过程 相关联[21-24,35]。本研究从果生刺盘孢中鉴定到两个 自噬相关蛋白 CfAtg6 和 CfAtg14, 它们都参与调 控果生刺盘孢的营养生长、附着胞形成、自噬过 程和致病过程。酵母双杂试验结果表明 CfAtg6 和 CfAtg14 在果生刺盘孢中可能存在互作关系, 但仍需使用免疫共沉淀(co-inmunoprecipitation, Co-IP)等试验进一步验证。

分生孢子对于植物病原真菌的侵染循环十 分重要。在灰葡萄孢 B. cinerea 中, BcATG6 基 因缺失后,病菌分生孢子产量下降且形态异常, 而缺失 BcATG14 基因后分生孢子不能形成。在 M. oryzae 和 F. graminearum 中,敲除基因 ATG6 后,虽然会导致致病菌分生孢子产量下降,但对 分生孢子形态不会产生影响;基因 ATG14 敲除 后,分生孢子产量均不足野生型的 5%^[21,23,35-36]。 本研究发现,CfATG6 基因的敲除导致果生刺盘 孢分生孢子产量相较于野生型极显著下降,但分 生孢子形态无明显变化,这与基因 FgATG6 和 MoATG6 的研究结果相一致;CfATG14 基因敲除 后,突变体 ΔCfatg14 产孢量经多次试验,结果 误差较大,不能确定基因 CfATG14 是否参与调 控分生孢子形成,需进一步研究。

植物病原真菌分生孢子萌发后形成的附着 胞是侵染寄主的关键结构^[37]。本实验室前期研 究发现,果生刺盘孢 CfPMK1、CfSNF1 和 CfMKK1 基因的缺失导致菌株不能正常形成附 着胞进而影响其致病力^[4,38-39]。在本研究中,突 变体 ΔCfatg6 和 ΔCfatg14 致病力均降低,这可 能是 CfATG6 或 CfATG14 基因缺失之后,降低 了果生刺盘孢附着胞的形成。

病原菌侵染寄主时会诱导产生活性氧等物 质,阻止病菌的侵入,而病原菌则会清除 H₂O₂来 应对寄主的防御机制^[40]。在灰葡萄孢中,缺失基 因 *BcATG14*,会导致灰葡萄孢对高于 4 mmol/L H₂O₂ 耐受性降低^[35]。在果生刺盘孢中,敲除 *CfATG14* 基因后,相较于 CFLH16 和回补菌株, 10 mmol/L H₂O₂ 对突变体抑制率无明显差异,不 参与 H₂O₂ 胁迫应答,另外研究发现,Δ*Cfatg14* 对 2.5 mmol/L 内质网胁迫剂 DTT 十分敏感;缺 失 *CfATG6* 基因的突变体对 10.0 mmol/L H₂O₂抑 制率相较于 CFLH16 和回补菌株显著升高,对 DTT 胁迫则不敏感。这表明基因 *CfATG6* 和 *CfATG14* 虽然都参与调控果生刺盘孢响应外界 胁迫,但调控的生物学过程有所不同。

自噬相关蛋白 GFP-Atg8 作为自噬过程的一 个标记蛋白,常被用来辅助研究自噬的进程^[7]。 在 *B. cinerea* 中,使用 GFP-BcAtg8 作为标记蛋 白对自噬进程进行研究,发现缺失基因 *BcATG6* 后,突变体自噬进程被严重阻碍。在 *M. oryzae* 中,突变体 Δ*Moatg14* 在饥饿诱导后, GFP-MoAtg8 标记蛋白无法被降解,自噬进程无 法正常进行^[23-24]。本研究发现在饥饿诱导4h后, 突变体 Δ*Cfatg6* 和 Δ*Cfatg14* 的自噬进程被阻碍, 无法降解 GFP-CfAtg8 蛋白,说明果生刺盘孢缺 失 *CfATG6* 或 *CfATG14* 基因影响细胞自噬过程, 这与稻瘟病菌、禾谷镰刀菌和灰葡萄孢的研究结 果一致,同时证实了 GFP-CfAtg8 也可以作为一 个标记蛋白用于果生刺盘孢细胞自噬研究。

本研究从果生刺盘孢中鉴定到两个自噬相

关蛋白 CfAtg6 和 CfAtg14,研究结果表明它们 参与调控了果生刺盘孢的营养生长、附着胞形 成、应对外界胁迫、自噬和致病过程。试验结果 为进一步揭示果生刺盘孢的致病分子机理提供 理论依据。

参考文献

- 谭晓风. 油茶分子育种研究进展[J]. 中南林业科技 大学学报, 2023, 43(1): 1-24.
 TAN XF. Advances in the molecular breeding of *Camellia oleifera*[J]. Journal of Central South University of Forestry & Technology, 2023, 43(1): 1-24 (in Chinese).
- [2] 姚权,郭源,魏丰园,李司政,张盛培,李河. bZIP 转录因子 CfHac1参与调控果生刺盘孢菌的生长发育 和致病力[J]. 菌物学报, 2019, 38(10): 1643-1652.
 YAO Q, GUO Y, WEI FY, LI SZ, ZHANG SP, LI H. A bZIP-type transcription factor CfHac1 is involved in regulating development and pathogenesis in *Colletotrichum fructicola*[J]. Mycosystema, 2019, 38(10): 1643-1652 (in Chinese).
- [3] 李河,李杨,蒋仕强,刘君昂,周国英. 湖南省油茶 炭疽病病原鉴定[J]. 林业科学, 2017, 53(8): 43-53.
 LI H, LI Y, JIANG SQ, LIU JA, ZHOU GY. Pathogen of oil-tea trees anthracnose caused by *Colletotrichum* spp. in Hunan Province[J]. Scientia Silvae Sinicae, 2017, 53(8): 43-53 (in Chinese).
- [4] 肖宇,李河. 丝裂原活化蛋白激酶基因 CfMKK1 调 控果生炭疽菌的生长发育和致病力[J]. 微生物学报, 2021, 61(1): 141-151.
 XIAO Y, LI H. MAPKK-encoding gene *CfMKK1* in *Colletotrichum fructicola* is required for its growth and pathogenicity[j]. Acta Microbiologica Sinica, 2021, 61(1): 141-151 (in Chinese).
- [5] 吴泳仪, 李琳, 李河. 油茶果生炭疽菌小分子 GTP 酶 Rab7 的功能研究[J]. 微生物学报, 2022, 62(7): 2509-2520.
 WU YY, LI L, LI H. Function of small GTPase Rab7 in *Colletotrichum fructicola*[J]. Acta Microbiologica Sinica, 2022, 62(7): 2509-2520 (in Chinese).
- [6] LI H, ZHOU GY, LIU JN, XU JP. Population genetic analyses of the fungal pathogen *Colletotrichum fructicola* on tea-oil trees in China[J]. PLoS One, 2016, 11(6): e0156841.

- [7] ZHANG SP, GUO Y, LI SZ, LI H. Histone acetyltransferase CfGcn5-mediated autophagy governs the pathogenicity of *Collectorichum fructicola*[J]. mBio, 2022, 13(5): e0195622.
- [8] NAKATOGAWA H, SUZUKI K, KAMADA Y, OHSUMI Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast[J]. Nature Reviews Molecular Cell Biology, 2009, 10(7): 458-467.
- [9] XIE ZP, KLIONSKY DJ. Autophagosome formation: core machinery and adaptations[J]. Nature Cell Biology, 2007, 9(10): 1102-1109.
- [10] MUNZ C. Antigen processing via autophagy—not only for MHC class II presentation anymore?[J]. Current Opinion in Immunology, 2010, 22(1): 89-93.
- [11] CECCONI F, LEVINE B. The role of autophagy in mammalian development: cell makeover rather than cell death[J]. Developmental Cell, 2008, 15(3): 344-357.
- [12] JING KP, LIM K. Why is autophagy important in human diseases?[J]. Experimental & Molecular Medicine, 2012, 44(2): 69-72.
- [13] MIZUSHIMA N, LEVINE B, CUERVO AM, KLIONSKY DJ. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182): 1069-1075.
- [14] LIU XH, LU JP, ZHANG L, DONG B, MIN H, LIN FC. Involvement of a Magnaporthe grisea serine/threonine kinase gene MgATG1 in appressorium turgor and pathogenesis[J]. Eukaryotic Cell, 2007, 6(6): 997-1005.
- [15] ZHANG Y, WEI Y, WU M, LIU M, LIANG S, ZHU X, LIU X, LIN F. Cand2 inhibits CRL-mediated ubiquitination and suppresses autophagy to facilitate pathogenicity of phytopathogenic fungi[J]. Plant Communications, 2023: 100720.
- [16] FENG YC, HE D, YAO ZY, KLIONSKY DJ. The machinery of macroautophagy[J]. Cell Research, 2014, 24(1): 24-41.
- [17] OBARA K, NODA T, NIIMI K, OHSUMI Y. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae[J]. Genes to Cells, 2008, 13(6): 537-547.
- [18] OBARA K, OHSUMI Y. Dynamics and function of PtdIns(3)P in autophagy[J]. Autophagy, 2008, 4(7): 952-954.
- [19] KIHARA A, NODA T, ISHIHARA N, OHSUMI Y. Two distinct Vps34 phosphatidylinositol 3-kinase

complexes function in autophagy and carboxypeptidase Y sorting in *Saccharomyces cerevisiae*[J]. The Journal of Cell Biology, 2001, 152(3): 519-530.

- [20] MILLER S, TAVSHANJIAN B, OLEKSY A, PERISIC O, HOUSEMAN BT, SHOKAT KM, WILLIAMS RL. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34[J]. Science, 2010, 327(5973): 1638-1642.
- [21] 吕务云. 禾谷镰刀菌细胞自噬途径相关基因的功能 分析[D]. 杭州: 浙江大学博士学位论, 2018.
 LÜ WY. Functional analysis of genes related to autophagy pathway in *Fusarium graminearum* cells[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2018 (in Chinese).
- [22] KERSHAW MJ, TALBOT NJ. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15967-15972.
- [23] LIU XH, ZHAO YH, ZHU XM, ZENG XQ, HUANG LY, DONG B, SU ZZ, WANG Y, LU JP, LIN FC. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus *Magnaporthe oryzae*[J]. Scientific Reports, 2017, 7: 40018.
- [24] LIU N, ZHOU SY, LI BH, REN WC. Involvement of the autophagy protein Atg6 in development and virulence in the gray mold fungus *Botrytis cinerea*[J]. Frontiers in Microbiology, 2021, 12: 798363.
- [25] 姚权,李司政,王成玉,李河. CfNop12 参与调控果 生刺盘孢生长发育、低温胁迫响应和致病力[J]. 菌物 学报, 2023, 42(11): 2257-2268.
 YAO Q, LI SZ, WANG CY, LI H. CfNop12 regulates the development, cold stress response and pathogenicity of *Colletotrichum fructicola*[J]. Mycosystema, 2023, 42(11): 2257-2268 (in Chinese).
- [26] 郭源,李河,周国英,刘君昂,张盛培. 自噬相关蛋 白 CfAtg8 在果生刺盘孢中的功能分析[J]. 菌物学报, 2021,40(3): 592-602.
 GUO Y, LI H, ZHOU GY, LIU JA, ZHANG SP. Functional analysis of the autophagy-related protein CfAtg8 in *Colletotrichum fructicola*[J]. Mycosystema, 2021, 40(3): 592-602 (in Chinese).
- [27] 高亚兰,何苑皋,李河. 调控油茶果生刺盘孢 bZIP 转录因子 CfAp1 的生物学功能[J]. 林业科学, 2020, 56(9): 30-39.

⊠ actamicro@im.ac.cn, ☎ 010-64807516

GAO YL, HE YG, LI H. Biological function bZIP-type transcription factor CfAp1 in *Colletotrichum fructicola*[J]. Scientia Silvae Sinicae, 2020, 56(9): 30-39 (in Chinese).

- [28] 李司政, 李河. 果生刺盘孢 CfHAC1 调控应答二硫 苏糖醇胁迫的转录组分析[J]. 菌物学报, 2020, 39(10): 1886-1896.
 LI SZ, LI H. Genome-wide transcriptome analysis of *Colletotrichum fructicola* CfHAC1 regulation of the response to dithiothreitol stress[J]. Mycosystema, 2020, 39(10): 1886-1896 (in Chinese).
- [29] YIN ZY, FENG WZ, CHEN C, XU JY, LI Y, YANG LN, WANG JZ, LIU XY, WANG WH, GAO CY, ZHANG HF, ZHENG XB, WANG P, ZHANG ZG. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of *Magnaporthe oryzae*[J]. Autophagy, 2020, 16(5): 900-916.
- [30] 冯若,张娓,杨继要,刘国红,张钦宪. 二硫苏糖醇 诱导 Eca109 细胞凋亡及 P38 磷酸化检测[J]. 郑州大 学学报(医学版), 2005, 40(5): 833-834.
 FENG R, ZHANG W, YANG JY, LIU GH, ZHANG QX. Detection of phosphory lated P38 MAP kinase in human esophageal carcinoma Eca109 apoptotic cells induced by DTT[J]. Journal of Zhengzhou University (Medical Sciences), 2005, 40(5): 833-834 (in Chinese).
- [31] 李秀芝. 氨基酸缺失诱导细胞自噬过程中关键调控 蛋白质的鉴定和功能分析[D]. 武汉: 华中农业大学 博士学位论文, 2021.

LI XZ. Identification and functional analysis of key regulatory protein in autophagy induced by amino acid deletion[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2021 (in Chinese).

- [32] 王海燕, 倪涛, 谢志平. 酵母中细胞自噬的研究进展[J]. 中国细胞生物学学报, 2010, 32(6): 829-839.
 WANG HY, NI T, XIE ZP. Current knowledge of autophagy in yeasts[J]. Chinese Journal of Cell Biology, 2010, 32(6): 829-839 (in Chinese).
- [33] OBARA K, SEKITO T, OHSUMI Y. Assortment of phosphatidylinositol 3-kinase complexes: Atg14p directs association of complex I to the pre-autophagosomal structure in *Saccharomyces cerevisiae*[J]. Molecular Biology of the Cell, 2006, 17(4): 1527-1539.
- [34] ARAKI Y, KU WC, AKIOKA M, MAY AI, HAYASHI Y, ARISAKA F, ISHIHAMA Y, OHSUMI Y. Atg38 is required for autophagy-specific

phosphatidylinositol 3-kinase complex integrity[J]. The Journal of Cell Biology, 2013, 203(2): 299-313.

- [35] 余秋玉. 灰葡萄孢细胞自噬相关基因 BcATG26、 BcATG17和 BcATG14的功能研究[D]. 武汉: 华中农 业大学硕士学位论文, 2017.
 YU QY. Functional study on autophagy-related genes BcATG26, BcATG17 and BcATG14 of Botrytis cinerea[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2017 (in Chinese).
- [36] ZHU XM, LI L, WU M, LIANG S, SHI HB, LIU XH, LIN FC. Current opinions on autophagy in pathogenicity of fungi[J]. Virulence, 2019, 10(1): 481-489.
- [37] BECHINGER C, GIEBEL KF, SCHNELL M, LEIDERER P, DEISING HB, BASTMEYER M. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus[J]. Science,

1999, 285(5435): 1896-1899.

- [38] 李河. 油茶炭疽病菌群体遗传及 MAPK 基因 CfPMK1 功能研究[D]. 长沙: 中南林业科技大学博士学位论文, 2018.
 LI H. Population inheritance of Collectorichum gloeosporioides in Camellia oleifera and study on the function of MAPK gene CfPMK1[D]. Changsha: Doctoral Dissertation of Central South University of Forestry & Technology, 2018 (in Chinese).
- [39] ZHANG SP, GUO Y, LI SZ, ZHOU GY, LIU JN, XU JP, LI H. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus *Colletotrichum fructicola* on tea-oil tree[J]. BMC Genetics, 2019, 20(1): 94.
- [40] ZHANG N, LV FJ, QIU FH, HAN DH, XU Y, LIANG
 WX. Pathogenic fungi neutralize plant-derived ROS
 via Srpk1 deacetylation[J]. The EMBO Journal, 2023, 42(9): e112634.