

Geomicrobiological Applications 地质微生物应用

典型油气藏区域环境因素差异对甲烷氧化菌丰度与 群落结构分布的影响

许科伟^{1*},刘海峰²,顾磊¹,郑旭莹¹,贾仲君³,陈晟^{2*}

1 中国石化石油勘探开发研究院 无锡石油地质研究所, 江苏 无锡 214126

2 江南大学生物工程学院, 江苏 无锡 214122

3 中国科学院南京土壤研究所, 江苏 南京 210008

许科伟, 刘海峰, 顾磊, 郑旭莹, 贾仲君, 陈晟. 典型油气藏区域环境因素差异对甲烷氧化菌丰度与群落结构分布的影响[J]. 微生物学报, 2024, 64(6): 1992-2007.

XU Kewei, LIU Haifeng, GU Lei, ZHENG Xuying, JIA Zhongjun, CHEN Sheng. Effects of environmental factors on the abundance and distribution of methane-oxidizing bacteria in typical oil and gas reservoirs[J]. Acta Microbiologica Sinica, 2024, 64(6): 1992-2007.

摘 要:【目的】甲烷氧化菌(methane-oxidizing bacteria, MOB)是油气微生物勘探中重要的指标微 生物,其丰度与群落结构分布受到地理位置和多种环境因素的影响。本研究以采集的 7 个典型 油气藏区域的土壤样品为研究对象,探究油气藏区域环境因素差异对甲烷氧化菌丰度与群落结 构分布的影响。【方法】对采集自 7 个典型油气藏区域土壤样品进行 pmoA 基因实时荧光定量 PCR (real-time fluorescence quantitative PCR, qPCR)、细菌 16S rRNA 基因测序和甲烷氧化菌功能基因 pmoA 测序,结合环境因子,比较甲烷氧化菌丰度差异,分析环境因子对甲烷氧化菌分布的影响。 【结果】土壤样品的理化性质测定发现江汉盆地样品的含水量最高,约 22.8%,硝态氮平均含量 最高位于玉北油田,达到 31.96 μg/g 干重土壤,春光油田出现最高的 SO4²⁻ (6 425.0 mg/g 干重土壤) 及 CI⁻ (1 617.0 mg/g 干重土壤)浓度。qPCR 分析发现 pmoA 基因丰度仅为土壤样本总细菌丰度的 0.77%,表明甲烷氧化菌绝对数量较少。16S rRNA 基因测序发现 type I 型甲基八叠球菌属 (Methylosarcina)、甲基嗜热菌属(Methylocaldum)、甲基球菌属(Methylococcus)与 type II 型的甲基 胞囊菌属(Methylocystis) 4 种主要的甲烷氧化菌,甲烷氧化菌中的优势菌属的相对丰度极低,最高 仅为 0.124%。甲烷氧化菌功能基因 pmoA 测序发现 type II 型的甲基胞囊菌属、甲基弯曲菌属

资助项目:国家自然科学基金(41202241);中石化科技部项目(P22010)

*Corresponding authors. E-mail: XU Kewei, xukw.syky@sinopec.com; CHEN Sheng, chensheng@jiangnan.edu.cn Received: 2023-12-27; Accepted: 2024-02-26; Published online: 2024-02-29

This work was supported by the National Natural Science Foundation of China (41202241) and the Research Project of Sinopec Science and Technology Department (P22010).

(Methylosinus)为主要优势 pmoA 基因型。环境因子与甲烷氧化菌丰度相关性分析表明甲烷氧化菌绝对 丰度与铵态氮、pH、颗粒大小、硫酸根和氯离子显著相关,而环境因子与甲烷氧化菌的相对丰度的 相关性分析仅发现与颗粒大小、总氮、总磷、金属离子(Al、Fe、K、Ca、Mg、Mn、Zn 和 Cu)显著 相关。甲烷氧化菌 pmoA 功能基因组成判别相关分析(discriminant correlation analysis, DCA)表明含 水量(土壤湿度)、pH 值、<2 µm 的土壤颗粒、总氮及钙离子对甲烷氧化菌 pmoA 功能基因组成影 响具有显著性。【结论】本研究通过对来自 7 个典型油气藏区域的土壤样品的甲烷氧化菌的绝对丰 度与相对丰度进行分析,发现基于不同的测量方法,甲烷氧化菌的丰度存在较大差异,16S rRNA 基 因测序无法较为全面地反映土壤样本中优势甲烷氧化菌的群落结构,不同地理位置的甲烷氧化菌指 示群落存在差异,在全国尺度下油气区及背景点均无特有的甲烷氧化菌指示群落。对环境因子与甲 烷氧化菌相关性分析发现,基于不同的甲烷氧化菌丰度指标,环境因子的显著影响具有较大差别。 关键词: 微生物勘探;高通量测序;分子诊断;甲烷氧化菌;环境因子

Effects of environmental factors on the abundance and distribution of methane-oxidizing bacteria in typical oil and gas reservoirs

XU Kewei^{1*}, LIU Haifeng², GU Lei¹, ZHENG Xuying¹, JIA Zhongjun³, CHEN Sheng^{2*}

1 Wuxi Research Institute of Petroleum Geology, Sinopec Petroleum Exploration and Production Research Institute, Wuxi 214126, Jiangsu, China

2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China

3 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China

Abstract: [Objective] Methane-oxidizing bacteria (MOB) are crucial indicators in the microbial exploration of oil and gas reservoirs, while their diversity and distribution are influenced by geographical location and environmental factors. This study aims to explore the effects of environmental variations on the abundance and distribution of MOB in the soil samples collected from seven representative areas in typical oil and gas reservoirs. **[Methods]** Soil samples were subjected to real-time fluorescence quantitative PCR (qPCR) for *pmoA* and sequencing of bacterial 16S rRNA gene and *pmoA*. The abundance of MOB was compared among different samples, on the basis of which the impacts of environmental factors on the distribution of MOB were analyzed. **[Results]** The highest water content (approximately 22.8%) was detected in the samples from the Jianghan Basin. The average content of nitrate nitrogen was highest in the Yubei oil field, reaching approximately 31.96 µg/g. The Chunguang oil field showcased the highest concentrations of SO₄²⁻ (6 425.0 mg/g) and Cl⁻ (1 617.0 mg/g). The qPCR results revealed that the *pmoA* in MOB accounted for only 0.77% of that in total soil bacteria, indicating the low absolute abundance of MOB in the soil. The 16S rRNA gene sequencing identified three type I MOB genera (*Methylosarcina, Methylocaldum*, and

Methylococcus) and one type II MOB genera (*Methylocystis*). However, the dominant genera in the MOB had extremely low relative abundance, with the maximum of 0.124%. Sequencing of *pmoA* revealed that *Methylocystis* and *Methylosinus*, two genera of type II MOB, were dominant. The absolute abundance of MOB showed significant correlations with ammonium nitrogen, pH, particle size, SO4²⁻, and Cl⁻. The relative abundance of MOB had significant correlations only with particle size, total nitrogen, total phosphorus, and metal ions (Al, Fe, K, Ca, Mg, Mn, Zn, and Cu). The discriminant correlation analysis (DCA) indicated that soil moisture, pH, soil particles<2 μ m, total nitrogen, and Ca²⁺ significantly influenced the composition of the functional gene pmoA in MOB. [Conclusion] This study analyzed the absolute and relative abundance of MOB in soil samples from seven typical oil and gas reservoirs. The MOB abundance showed significant differences depending on the measurement method used. The 16S rRNA gene sequencing fails to comprehensively reflect the community structure of MOB in the soil samples. Different geographical locations showed variations in MOB communities, and no specific indicator communities were detected for oil and gas reservoirs or background sites on a national scale. The correlation analysis between environmental factors and MOB revealed that the environmental factors had different effects on the absolute and relative abundance of MOB. **Keywords:** microbial exploration; high-throughput sequencing; molecular diagnostics; methane-oxidizing bacteria; environmental factors

油气微生物勘探通过检测在油藏上方表层 土壤中形成的以轻烃为养料的高度专属性微生 物异常,进行油气勘探,因其成本低、周期短、 效率高等优点受到广泛的关注。在地下油气藏 压力的驱动下,甲烷、乙烷、丙烷和丁烷等低 分子量碳氢化合物可以垂直穿透储层中的断层 和裂缝,向上迁移到近地表土壤,并被当地的 碳氢化合物氧化微生物利用^[1]。因此,这些细 菌的异常富集是由长期和连续的轻烃泄露引起 的,可作为油气勘探指标微生物。在碳氢化合 物氧化微生物中,主要利用 CH4 的甲烷氧化菌 (methane-oxidizing bacteria, MOB)被确定为最重 要的指标微生物,因为油气藏中 90%以上的轻 质碳氢化合物是 CH4^[2]。截至目前, 甲烷氧化细 菌可分为: (1) γ 变形菌纲(Gammaproteobacteria) 甲烷氧化细菌(type I 型), 包含 Methylococcacea 科(type Ia/Ib)和 *Methylotermaceae* 科(type Ic); (2) α 变形菌纲(Alphaproteobacteria)甲烷氧化 细菌(type II 型),包含甲基胞囊菌科 (Methylocystaceae)(type IIa)和拜叶林克氏菌科 (Beijerinckiaceae)(type IIb);(3)疣微菌门 (Verrucomicrobia)甲烷氧化细菌,均属于 Methylacidophyliceae科;(4)NC10门甲烷氧化细 菌,均来自于 Candidatus Methylomirabilis 属, 代表菌 Candidatus Methylomirabilis oxyfera 和 Candidatus Methylomirabilis sinica^[3]。

大部分甲烷氧化菌都含有编码甲烷单加氧酶的 pmoA 基因,目前被认为是最有用的功能性和系统发育性甲烷菌标记之一,并已被广泛用于探索环境样品中的甲烷菌丰度^[4-5]。近 10 年来,提出了基于实时荧光定量 PCR (real-time fluorescence quantitative PCR, qPCR)的微生物异常分析,并通过比较从气田、油田和非油气区块以及不同油气区域采集的土壤中 pmoA 基因的丰度,成功地反映了潜在油气藏的存在^[6-8]。

甲烷氧化菌在不同生态系统中的丰度也受

到地理位置和各种环境因素的影响,如甲烷和氧 气浓度、营养物质可用性、pH、温度、盐度、 水分含量和植物覆盖^[9]。因此,具有不同地理位 置和显著异质性的油气田可能包括不同的微生 物群落结构。例如,I型甲烷氧化菌在适应不同 的环境条件(低温和高温、低 pH 和高 pH、高盐、 低氧)方面表现出很大的灵活性,而培养的 II 型 甲烷氧化杆菌则多样化较弱^[10-13]。

为进一步探究油气藏区域环境因素差异对 甲烷氧化菌丰度与群落结构分布的影响,本研究 采集的7个典型油气藏区域的土壤样品,拟从以 下几个方面进行研究:(1)确定油气藏区域土壤 的理化性质;(2)基于 qPCR 技术对土壤样本中甲 烷氧化菌的丰度进行精确定量,基于 16S rRNA 基 因测序确定油气藏区域中甲烷氧化菌的相对丰 度;(3)基于 pmoA 测序确定油气藏区域中 MOB 丰度;(4)确定环境因素对甲烷氧化菌群落结构 的影响。研究结果以期为油气藏区域环境因素如 何影响甲烷氧化菌群落结构提供了全面的信息, 并为微生物勘探油气提供了极具潜力的基础。

1 材料与方法

1.1 土壤样品采集

本研究通过现场实际的钻井情况进行取 样,选取其中产油气井位置作为明确的油气藏 土壤样品,而干井位置采集为背景区样品。根 据五点采样法,选取钻井点周围4个距离相等 的点,提取5个样本点土样混合作为一个样本。 采集的典型油气点及背景区点样品来自普光气 田(35个,106°03′E,30°80′N)、春光油田(26个, 86°08′E,44°32′N)、玉北油田(4个,82°30′E, 39°14′N)、江汉盆地油气田(6个,112°54′E, 29°43′N)、镇泾油田(3个,105°86′E,34°06′N)、 河南油田(2个,112°45′E,36°71′N)和鄂尔多斯 气田(3个,106°39′E,37°83′N)等7个区域,共 计 79 个。采集土壤表层 80 cm 深度样品,尽量 避免草根、石块对样品的影响。每个样品采集 100 g 土样装袋密封,采样结束后运回实验室 -20 ℃保存。

1.2 理化指标检测

样本中土壤含水量测定:将铝盒 105 ℃烘 干 2 h 后称重,精确称取土壤 5 g,加入铝盒中 105 ℃烘干 6 h,烘干土样放入干燥器冷却 20 min 后立即称重。含水量=(土样湿重-土样干重)/土 样湿重。

土壤 pH 值的测定: 取 5 g 过 2 mm 筛的土 壤,按 1:2.5 的比例加入去离子水,振荡混匀后, 用精密 pH 计测定上清的 pH 值。

土壤溶解态氮盐测定:称取新鲜土壤 4 g 置于 50 mL 离心管中,加入 20 mL 2 mol/L 的 KCl 浸提液, 150 r/min 振荡 30 min 后静置 0.5 h,滤 纸过滤上清至 50 mL 离心管,流动分析仪测定 滤液中的 NH_4^+ 、 NO_3^- 。

土壤 SO4²⁻、CΓ测定:称取 5g 土壤 105 ℃ 烘干至恒重后,研磨破碎,过 100 目筛,取 10g 加入无 CO2超纯水 50 mL,振荡 3 min,4 000 r/min 离心 5 min 后上清液用滤纸过滤,滤液 8 000 r/min 离心 10 min,上清液过 0.22 μm 滤膜后由 ICS-900 离子色谱仪(Dionex 公司)测定 SO4²⁻、Cl⁻浓度。

利用电感耦合等离子体发射光谱仪(赛默 飞世尔科技公司)测定样品中的金属元素(Al、 Ca、Cu、Fe、K、Mg、Mn、Na 和 Zn)含量, 利用原子荧光光谱仪(北京海光仪器有限公司) 测定样品中的总磷含量。

土壤颗粒大小测定通过 2 mm 筛的土样经 去除有机质、可溶性盐和石膏等前处理后,加 入分散剂充分分散,过 0.063 mm 洗筛;筛上的 土样经烘干后,逐级过 0.600 mm 和 0.212 mm 土 壤筛,并分别称重。筛下悬浊液定容至 500 mL 后,利用吸液管法逐级测定各级颗粒含量。

1.3 实时荧光定量 PCR

甲烷氧化菌 pmoA 基因 qPCR 的标准曲线制 作: 根据 pEASY-T3 Cloning Kit 说明书, 制备 pmoA 基因的重组质粒,以 10 倍梯度稀释含有 pmoA 基因的重组质粒,作为标准样品。然后对 标样和未知土壤样品 DNA 进行 pmoA 基因定量 分析。引物对为 A189f (5'-GGNGACTGGGACT TCTGG-3')和 mb661r (5'-CCGGMGCAACGTC YTTACC-3')。qPCR 的反应体系(20 µL): DNA 模 板 1 μL, SYBR Premix Ex TaqTM (Perfect Real Time 公司) 10 µL, 正、反引物(10 µmol/L)各 0.25 µL, 灭菌双蒸水 8.5 μL。扩增条件: 95 ℃预变性 5 min; 95 ℃变性 10 s, 55 ℃复性 30 s, 72 ℃ 延伸 30 s, 共 40 个循环; 80 ℃ 5 s 读取荧光值。 采用实时荧光定量仪(Bio-Rad公司)测定土壤样 品中的 pmoA 基因数量,结果以 copies/g 新鲜土 表示。按公式(1)计算。

$$N_{1} = \frac{N \times V \times D}{} \tag{1}$$

式中, *N*₁ 为土壤样品 *pmoA* 基因数量(copies/g); *N* 为定量 PCR 仪器中读取的拷贝数量(copies/µL); *V* 为土壤 DNA 溶解体积(µL); *D* 为稀释倍数; *m* 为土壤样品鲜重(g)。

微生物 16S rRNA 基因的 qPCR 方法与 pmoA 类似,所用引物对为 515F (5'-GTGCCAG CMGCCGCGG-3')和 907R (5'-CCGTCAATTCM TTTRAGTTT-3')。扩增反应体系同 pmoA 基因 的 qPCR 扩增。扩增条件:95 ℃预热 3 min;95 ℃ 变性 30 s, 55 ℃复性 30 s, 72 ℃延伸 30 s,共 40 次循环; 80 ℃ 5 s 读取荧光值。

1.4 微生物总 DNA 提取及高通量测序

称取1g土壤样品,采用TIANamp Bacteria DNA Kit [天根生化科技(北京)有限公司]提取 土壤微生物总 DNA,并测定浓度和质量检测。 DNA 样品基于 Illumina HiSeq 2500 高通量测序 平台进行 16S rRNA 基因测序, 扩增引物对为 515F (5'-GTGCCAGCMGCCGCGG-3')和 907R (5'-CCGTCAATTCMTTTRAGTTT-3')。PCR 反 应体系(50 μL): DNA 模板 1.5 μL, 正、反向引 物(10 µmol/L)各 0.5 µL, 无菌水 22.5 µL, Premix Taq^{TM} (TaKaRa Taq^{TM} version 2.0) 25 µL_o PCR 反 应条件:94 ℃预热 3 min:94 ℃变性 1 min.55 ℃ 复性 30 s, 72 ℃延伸 30 s, 共 30 次循环; 72 ℃延 伸 10 min。扩增产物进行胶回收和定量后进行 MiSeq 高通量测序。随后采用相同方法对功能 基因 pmoA 进行测序。其扩增引物、反应体系 参照甲烷氧化菌 pmoA 基因 qPCR, 扩增条件参 照 qPCR 程序,循环次数为 32 次,最后 72 ℃ 延伸 5 min。基于优化序列进行操作分类单元 (operational taxonomic unit, OTU)聚类分析和 物种分类学注释,统计每个样品注释到各分类 水平上的序列数目,明确各分类水平的整体注 释情况。基于 OTU 聚类结果进行物种群落结构 分析[14-17]。

2 结果与分析

2.1 原位土壤样品的理化性质

2.1.1 土壤含水量、pH 值的测定

七个采样区样品的平均含水量差异显著,其 中江汉盆地样品的含水量最高,约 22.8%,而 玉北油田样品的含水量仅为 3.6%。pH 测定结 果显示普光气田样品的 pH 接近中性(6.8),其他 区域的样品均属于弱碱性土壤(表 1)。

2.1.2 氮盐的测定

氮盐是土壤微生物生长所需的重要营养成 分,分为硝态氮、铵态氮和总氮。氮源在不同采 样区域的平均含量均表现出较大的变异范围,特 别是硝态氮。硝态氮平均含量最高位于玉北油 田,达到 31.96 μg/g 干重土壤,鄂尔多斯气田的 硝态氮含量仅为 0.96 μg/g 干重土壤。铵态氮

Regior	Numbe	er Water	μd	Nitrog	en salt d	ry	Perce	ntage (of soil	particl	e size (%	•	Total p	hospho	rus,	Meta	l elem	ent dry	weigh	t of se	oil (m	lg/g)		
	of	conten	t	weigh	t of soil								sulfate	ions, ar	pı									
	sample	(%) St		(g/gµ)									chlorid	e ions d	lry									
													weight	of soil	(µg/g)									
				NO_{X}^{-}	· NH4 ⁺ -	Total	\Diamond	2-5	5-10 1	0-50	50 - 100	100 - 500	Р	SO_4^{2-}	Cl ⁻	Al	Fe	K	Ca N	a M	lg V	4n Z	Cn (Cu
				N	Z	N)	(mu)														
1	35	10.8	6.8	5.97	3.87	720	22.6	14.9	1.8 2	26.9	6.6	13.9	377.1	49.9	29.1	77.2	36.9	21.3	7.7 11	.0 1(0.2 0	.677 0	.094 (0.020
5	26	11.5	8.0	17.55	5.97	480	24.5	13.1	1.5 2	26.8	14.2	9.9	561.3	6 425.0	1 617.0	66.8	32.7	22.6	57.7 10	5.7 19	9.8 0	.673 0	.083 (0.024
3	4	3.6	8.7	31.96	5.48	_	6.8	3.6 4	1.3	9.6	36.3	29.4	404.0	54.7	30.2	77.1	43.6	21.5	25.3 9.	5 14	4.6 0	.812 0	.102 (0.031
4	9	22.8	8.2	2.28	4.01	740	20.3	14.9	l6.6 3	33.3	6.4	8.5	384.0	136.2	21.6	66.6	33.5	20.4	32.5 13	3.0 12	2.2 0	.623 0	.072 (0.018
5	3	17.2	8.2	9.67	4.21	670	23.1	12.3	2.0 2	ł2.4	9.7	0.5	126.0	64.1	18.3	72.5	35.7	16.3	12.6 10	.0 9.	2 0	.596 0	.063 (0.019
9	2	21.1	7.7	5.99	5.46	470	21.9	19.2	8.2 3	36.5	4.1	0.1	135.0	134.2	28.9	56.6	19.8	17.7	28.7 18	3.1 6.	0 6	.355 0	.035 (0.004
7	3	7.1	8.9	0.96	4.23	220	9.0	4.0	8 6.3	8.8	24.7	50.6	/	/	_	73.9	35.9	21.1	19.2 12	2.1 11	0 6.1	.668 0	.088 (0.021
Region 6: Hen	n 1: Pug an oil fi	uang oil eld; Reg	field; ion 7:	Region	n 2: Chu gas fielo	nguan 1. /: No	g oil f o dete	ield; F ction.	tegion	1 3: Yu	bei oil fi	eld; Regic	n 4: Jia	ıngnan	basin o	il and	gas fi	eld; R	egion 2	: Zhe	njing	oil fie	eld; R	egion
))																			

也油气藏样品理化因子特征	Characteristics of physical and chemical factors of samples from typical oil and gas reservoir
乗	10
表 1	Table

和总氮的含量差异范围远小于硝态氮,最高值 与最低值差距在 2-3 倍之间(表 1)。

2.1.3 土壤颗粒组成

土壤颗粒组成是土壤的一种十分稳定的自 然属性,其大小决定于成土的母质类型。土壤 质地与土壤的通气、营养盐维持和水分的保持 关系密切,对土壤微生物生长具有重要的影响。 结果显示不同区域的样品颗粒组成具有较大差 异性(表 1),其中普光气田、春光油田和江汉盆 地油气田样品的颗粒以<50 μm 为主,而镇泾油 田样品颗粒集中在 10-50 μm,占 42.4%。河南 油田样品颗粒大小多在 50 μm 以下,超 50 μm 的颗粒仅占 4.2%。玉北油田样品以大颗粒为 主,直径 100 μm 以上的颗粒占比为 29.4%。

2.1.4 P、SO4²⁻、Cl⁻及金属元素含量测定

P、SO4²⁻及 CI⁻的平均浓度最高值均出现在春 光油田样品中,特别是 SO4²⁻(6425.0 mg/g 干重土 壤)及 CI⁻(1617.0 mg/g 干重土壤)的含量远 高于其他采样区域(表 1)。所有样品中 A1 含 量最高(56.6-77.2 mg/g 干重土壤),依次为 Fe (19.8-43.6 mg/g 干重土壤),K(16.3-22.6 mg/g 干 重土壤)。普光气田的样品与所有样品金属元素 平均含量排序基本一致,但 Ca 的平均含量仅有 7.7 mg/g 干重土壤。然而,春光油田样品的 Ca 含量远高于其他区域,达 57.7 mg/g 干重土壤, 并且 Mg 的含量也比其他样品高,这可能是由 于不同区域的土壤样品成土母质的差异导致 的。所有样品中 Mn、Zn、Cu 的含量约比其他 金属元素的含量低 2-3 个数量级。

2.2 土壤样品 *pmoA* 基因与 16S rRNA 基因 的 qPCR 分析

采用 qPCR 技术对所有 7 个典型的油气藏 区域及背景区土壤样本(79 个)中的总细菌及甲 烷氧化菌的丰度进行精确定量。结果发现春光 油田样品及背景区样品 16S rRNA 基因的平均 丰度为 2.53×10⁹ copies/g, 而 pmoA 基因平均丰 度为 1.46×10⁷ copies/g (图 1); 而河南油田、江 汉盆地油气田、鄂尔多斯气田、普光油田及镇 泾油田区域样品中 16S rRNA 基因、pmoA 基因 的平均丰度相差不大,16S rRNA 基因平均丰度 范围为 7.88×109-1.11×10¹⁰ copies/g, 而 pmoA 基因平均丰度在 7.61×10⁷-1.19×10⁸ copies/g;玉 北油田区域 16S rRNA 基因、pmoA 基因平均丰 度最低,与河南油田相差约2个数量级,平均丰 度分别为 4.27×10⁸ copies/g, 1.19×10⁶ copies/g。 所有区域样本中的pmoA基因与16SrRNA基因 绝对数量相差两个数量级以上, pmoA 基因平均 占土壤样本中总细菌的 0.77%, 土壤中检测到 的甲烷氧化菌绝对数量较少,这一结果与目前 被广泛接受的轻烃微渗策略吻合,即油气藏资 源形成的长期地质历史过程中,甲烷氧化菌并 未成为微生物群落的优势种群。

图 1 土壤微生物的 16S rRNA 基因及甲烷氧化 菌 *pmoA* 基因丰度

Figure 1 Abundance of 16S rRNA gene in soil microorganisms and *pmoA* gene in MOB.

此外,还对这些样本进行了 16S rRNA 基 因的高通量测序,通过与16SrRNA 基因分类数 据库进行比对,获得这些序列的微生物种类信 息, 选择其中的甲烷氧化 南分析其相对丰度和群 落结构。在所有样品中共检测出 11 种类型的甲 烷氧化菌,分别是 type I 型的甲基杆状菌属 (Methylobacter)、甲基嗜热菌属(Methylocaldum)、 甲基八叠球菌属(Methylosarcina)、甲基球菌属 (Methylococcus)、甲基微菌属(Methylomicrobium)、 甲基驱体菌属(Methylosoma)和甲基单胞菌属 (Methylomonas); type II 型的甲基胞囊菌属 (Methylocystis)、甲基弯曲菌属(Methylosinus)、 甲基胞菌属(Methylocella)和甲基荚膜菌属 (Methylocapsa)。其中普光气田样品中的甲烷氧 化菌主要类型为甲基八叠球菌属,甲基胞囊菌 属(图 2); 春光油田样本中的甲烷氧化菌主要为 甲基胞囊菌属; 玉北盆地油田样品中主要含有

图 2 基于 16S rRNA 基因高通量测序分析甲烷 氧化菌占微生物群落的比例

Figure 2 Analysis of the proportion of MOB in microorganisms based on high-throughput sequencing of 16S rRNA gene.

两类甲烷氧化菌,分别是甲基嗜热菌属和甲基 球菌属;甲基嗜热菌属是江汉油气田样本中的 主要甲烷氧化菌类型;镇泾油田、河南油田及 鄂尔多斯气田样本中的主要甲烷氧化菌类型均 以甲基胞囊菌属为主,优势甲烷氧化菌平均相 对丰度极低,最高仅为 0.124%,其占比小于由 pmoA 基因 qPCR 技术得到的甲烷氧化菌的绝对 丰度。

2.3 土壤样品的功能基因 pmoA 测序

本研究还采用与pmoA 基因 qPCR 方法相同 的引物对所有样品进行扩增,在 79 个样品中仅 有38个获得了足量的PCR产物用于后续的MiSeq 高通量测序,平均每个样品获得了1.8万条高质 量 pmoA 序列,用于和已知的功能基因分类数 据库进行比对。如表 2 所示, 普光气田点样品 主要以 Methylocystis、稻田簇-2 (rice paddy cluster-2, RPC-2)及稻田簇(rice paddy clusters, RPCs)为优势种,平均占比分别为 41.5%、29.7% 和 15.5%。Methylosarcina 和高地土壤簇 γ (upland soil cluster-γ, USC-γ)为次优势种,占比 分别为 4.8%和 2.1%。其中, RPC-2 基因型属于 首次在稻田土壤中发现并命名的生态型,然而, 目前尚未获得属于该生态型的纯培养菌株。RPCs 是另一种最初发现于稻田中的生态型,属于 type Ib 型甲烷氧化菌,与 Methylocaldum 亲缘关 系较近。普光背景点样品的甲烷氧化菌组成非 常单一, 以 USC-γ 为唯一优势类群, 占比超 85.0%。其他 pmoA 基因型占比均在 5.0%以下。 春光油田点样品以 Methylocystis 为唯一的优势 种,占比达到 84.9%。其余 pmoA 基因型占比 均在 5.0%以下。背景点样品以 Methylosinus 为 第一优势种, Methylocystis 为次优势种, 占比 分别为 52.9%与 16.1%。玉北油田背景点样品以 Methylocystis 为优势种,高地土壤团簇-α (upland soil cluster-alpha, USC-a)为次优势种,占比超

Sai	npling area	Mcystis	Msarcina	Mbacter	Mcaldum	Msinus	RPC-2	USC-γ	RPCs	USC-α	JRC-3	LW	JR3	JR2
												s		
1	Gas field	41.5	4.8	0.5	0.2	/	29.7	2.1	15.5	1.6	/	/	/	/
	Background	2.5	0.9	0.1	0.1	/	2.1	88.2	0.4	3.2	/	/	/	/
2	Oil field	84.9	2.5	/	/	1.6	3.3	/	3.0	0.1	0.0	/	/	/
	Background	16.1	3.7	/	1.9	52.9	1.4	/	5.3	0.6	11.2	/	/	/
3	Oil field	29.7	4.5	/	0.9	47.2	1.6	/	2.4	0.6	6.4	/	/	/
	Background	44.2	9.0	/	/	0.8	1.8	/	7.5	25.7	0.2	/	/	/
4	Oil field	1.3	/	0.1	2.9	42.6	0.2	37.3	1.5	/	/	0.0	/	/
	Background	2.3	/	74.6	4.2	3.3	1.5	3.1	5.3	/	/	0.4	/	/
	of oil field													
	Gas field	14.5	/	2.9	3.4	7.9	9.6	1.3	46.5	/	/	1.3	/	/
	Background	1.5	/	15.3	0.3	0.2	15.0	0.8	39.2	/	/	20.3	/	/
	of gas field													
5	Oil field	2.0	1.4	/	/	28.5	/	53.8	1.3	/	6.1	/	3.2	0.1
	Background	1.6	0.7	/	/	23.1	/	36.4	0.9	/	3.4	/	30.9	0.1
6	Oil field	2.4	2.7	/	/	29.2	/	5.4	1.4	/	6.6	/	1.3	43.5
	Background	3.8	1.2	/	/	34.0	/	49.9	1.6	/	4.8	/	0.1	0.1
7	Gas field	2.6	1.0	/	/	39.2	/	45.3	1.2	/	4.3	/	2.4	0.1
	Background	1.5	1.0	/	/	19.9	/	46.5	1.7	/	2.9	/	23.7	0.2

表 2	典型油气	瓦藏样品中	℩优势ϳ	pmoA	基因型
-----	------	-------	------	------	-----

Table 2 Analysis of *pmoA* genotypes in samples from typical oil and gas reservoir

Region 1: Puguang oil field; Region 2: Chunguang oil field; Region 3: Yubei oil field; Region 4: Jiangnan basin oil and gas field; Region 5: Zhenjing oil field; Region 6: Henan oil field; Region 7: Ordos gas field. Mcystis: *Methylocystis*; Msarcina: *Methylosarcina*; Mbacter: *Methylobacter*; Mcaldum: *Methylocaldum*; Msinus: *Methylosinus*; RPC-2: Rice paddy cluster-2; USC-γ: Upland soil cluster-γ; RPCs: Rice paddy clusters; USC-α: Upland soil cluster-alpha; JRC-3: Uncultured phylogenetic clusters of methanotrophs; JR3: Uncultured phylogenetic clusters of methanotrophs; JR2: Uncultured phylogenetic clusters of methanotrophs. /: No detection.

25.0%。玉北油田点样品以 Methylosinus 为第一 优势种,约占 47.2%,而在背景点该种类占比 仅为 0.8%,次优势种 Methylocystis 占比(29.7%) 明显小于背景区样本。江汉盆地油田的背景点 和油田点样品甲烷氧化菌优势种完全不同,背 景点样品中以 Methylobacter 为绝对优势种 (74.6%),而在油田点样品中 Methylobacter 可以 忽略不计,其优势种为 Methylosinus (42.6%)及 USC-γ (37.3%)。气田点及背景点样品第一优势 种相同,均为 RPCs,但两者的次优势种差别很 大,分别为 Methylocystis 和未培养的甲烷营养生 物系统发育簇(uncultured phylogenetic clusters of methanotrophs, LWs)。镇泾油田点样品中 USC-γ 和 Methylosinus 为优势种,平均占比分别为 53.8% 和 28.5%。在背景点 USC-γ和 Methylosinus 同样 属于优势种,各自占比超 20.0%。此外,甲烷 氧化菌 JR3 占比为 30.9%,是镇泾油田背景点 另一个优势种。河南油田点与背景点样品中的 甲烷氧化菌组成差别显著,第一优势种分别为 JR2 (43.5%)和 USC-γ (49.9%),但相同之处是都 含有约 30.0%的 Methylosinus。鄂尔多斯气田的 情况正好相反,气田点和背景点样品的第一优 势种均为 USC-γ,不同的是次优势种:分别为 Methylosinus (39.2%)和甲烷氧化菌 JR3 (23.7%)。采用非度量多维排列 (non-metric multidimensional permutations, NMDS)对甲烷 氧化菌群落结构分异性进行分析,结果如图 3 所示。气田点和气田区域背景点互相交错,未 完全分开;油田点和油田区域背景点情况类似。 2.4 地表环境因子与油气指示微生物相关性 分析

2.4.1 环境因子与甲烷氧化菌丰度相关性分析

本研究采用 Pearson 和 Spearman 相关性分 析法测定含水量、硝态氮、铵态氮、pH 值及颗 粒组成等环境因子对甲烷氧化菌丰度的影响。 如表 3 所示,含水量和甲烷氧化菌丰度无相关 性。两种分析法均表明铵态氮与甲烷氧化菌丰 度呈显著负相关关系,而硝态氮与甲烷氧化菌 丰度无相关性。pH 对甲烷氧化菌丰度具有一定 的负相关性,但显著性系数因方法不同而有所 差异。颗粒大小对甲烷氧化菌丰度的影响显著 不同,相关性最强的为 50-100 µm 颗粒,呈现

图3 油气区及背景区甲烷氧化菌群落结构的NMDS 差异分析

Figure 3 NMDS differentiation analysis of MOB community structure in oil and gas areas and background areas. Gas: Sample located in gas field; Gas background: Sample located in gas field without producing gas; Oil: Sample located in oil field; Oil background: Sample located in oil field without producing oil.

显著负相关关系(P<0.01),其次为 2-5 μm 颗粒, 呈显著正相关性(P<0.05),其他粒径的颗粒含量 和甲烷氧化菌的丰度无相关关系。磷对甲烷氧 化菌丰度无影响,而硫酸根和氯离子与甲烷氧 化菌丰度呈显著负相关。多数金属离子与甲烷 氧化菌丰度未显示出直接相关性。钙、锌及总 氮对甲烷氧化菌丰度的影响尚不能确定,两种 方法的分析结果差别较大,需要进一步研究。 2.4.2 环境因子与甲烷氧化菌的相对数量的相 关性分析

基于 16S rRNA 基因测序结果可计算甲烷 氧化菌在总微生物中的相对含量,在一定程度 上表示特定环境下甲烷氧化菌在总细菌中的相 对优势度。结果如表 4 所示,含水量,氮盐及 pH 均未表现出与甲烷氧化菌相对数量的相关 性,5 µm 以下的颗粒和甲烷氧化菌相对数量呈 负相关,但这种关系的显著性因 Pearson 和 Spearman 分析方法的不同而有所差异。100 µm 以上的颗粒与甲烷氧化菌相对数量呈正相关, 特别是 500 µm 以上的颗粒,具有显著性 (P<0.05)。总氮和总磷与甲烷氧化菌相对数量呈 负相关,总磷影响具有显著性(P<0.01)。硫酸根 和氯离子尚未显著影响甲烷氧化菌相对数量。所 有检测的金属离子(除 Na)外都和甲烷氧化菌相 对数量呈负相关,其中 Mg、Mn、Zn 及 Cu 相关 性显著。

2.4.3 环境因子与甲烷氧化菌 pmoA 功能基因 组成相关性分析

本研究对甲烷氧化菌 pmoA 功能基因组成 进行判别相关分析(discriminant correlation analysis, DCA),坐标轴长度最大值为 3.32,单 峰模型的冗余分析(redundancy analysis, RDA) 与蒙特卡罗置换检验联用分析环境因子对 pmoA 功能基因组成分布解释具有显著性。结果 如表 5 所示,对甲烷氧化菌 pmoA 功能基因组

表 3	理化参数与甲烷氧化菌丰度的相关关系

Table 3 The relationship between physicochemical parameters and abundance of MOB

Physicochemical parameters	Pearson correlation coefficient	Significance	Spearman correlation coefficient	Significance
Water content	0.173	0.127	0.127	0.265
NO_X -N	-0.240	0.033*	-0.211	0.062
NH4 ⁺ -N	-0.336	0.002**	-0.388	0.000**
pH	-0.221	0.050	-0.295	0.008*
Particles (<2 µm)	0.069	0.543	0.194	0.086
Particles (2-5 µm)	0.244	0.030*	0.269	0.017*
Particles (5-10 µm)	0.189	0.095	0.165	0.147
Particles (10-50 µm)	0.062	0.585	0.044	0.697
Particles (50-100 µm)	-0.311	0.005**	-0.426	0.000**
Particles (100-500 µm)	-0.042	0.715	-0.117	0.305
Particles (500-1 000 µm)	0.042	0.714	0.019	0.868
Total N	0.094	0.408	0.271	0.016*
Р	0.102	0.370	0.113	0.320
SO_4^{2-}	-0.504	0.000**	-0.301	0.023*
Cl	-0.464	0.000**	-0.364	0.005**
Al	0.117	0.303	0.161	0.157
Fe	0.153	0.179	0.221	0.050
К	0.073	0.522	0.081	0.477
Ca	-0.233	0.038*	0.010	0.931
Na	-0.077	0.500	-0.093	0.414
Mg	-0.097	0.393	-0.015	0.897
Mn	0.152	0.181	0.140	0.218
Zn	0.186	0.101	0.245	0.030*
Cu	0.094	0.408	0.064	0.577

*: 在 0.05 水平(双侧)上显著相关; **: 在 0.01 水平(双侧)上显著相关

*: Significantly correlated at the 0.05 level (two-tailed); **: Highly significantly correlated at the 0.01 level (two-tailed).

成影响具有显著性的为含水量(即土壤湿度)、 pH值、<2 μm的土壤颗粒、总氮及钙离子。选择上述6种环境因子进行 RDA 排序分析(图4), 甲烷氧化菌群落的总变化量为2713,环境因子 的总解释量为1399,占51.6%。随后进一步针 对各个因子进行偏分析,即固定其他因子,测 定单个因子的解释量,其中含水量的解释量最大 占13.07%,说明样品含水量对甲烷氧化菌的组 成影响最大,其次为 pH占4.77%,总氮及<2 μm 的土壤颗粒解释量都在2.80%左右,钙的单独解 释量在1.20%左右。

3 讨论

本研究基于 qPCR 技术、16S rRNA 基因测序 技术评估典型油气藏区域样品中甲烷氧化菌的 绝对和相对丰度,同时通过 pmoA 功能基因测序 揭示了甲烷氧化菌的优势群落结构特征。研究结 果表明,甲烷氧化菌的绝对丰度远高于优势甲烷 氧化菌的相对丰度,基于 16S rRNA 基因测序技 术与 pmoA 功能基因测序技术鉴定得到的优势甲 烷氧化菌有所不同。这可能是由于一些未知的 16S rRNA 基因序列没有已知甲烷氧化菌种作为

Table 4 The relationshi	p between physicochennear p	arameters an	u relative number of WOB	
Physicochemical parameters	Pearson correlation coefficient	Significance	Spearman correlation coefficient	Significance
Water content	0.005	0.965	0.134	0.239
NO _X ⁻ -N	-0.137	0.230	-0.173	0.128
NH4 ⁺ -N	0.050	0.661	-0.104	0.364
pH	0.061	0.590	-0.178	0.117
Particles (<2 µm)	-0.328	0.003**	-0.201	0.076
Particles (2-5 µm)	-0.237	0.035*	-0.074	0.517
Particles (5-10 µm)	-0.139	0.222	-0.083	0.468
Particles (10-50 µm)	-0.111	0.331	-0.043	0.704
Particles (50-100 µm)	0.120	0.294	-0.132	0.246
Particles (100-500 µm)	0.320	0.004**	0.108	0.345
Particles (500-1 000 µm)	0.258	0.022*	0.224	0.048*
Total N	-0.282	0.034*	-0.245	0.066
Р	-0.493	0.000**	-0.585	0.000**
$\mathrm{SO_4}^{2-}$	-0.199	0.138	0.023	0.864
Cl	-0.205	0.126	-0.260	0.051
Al	-0.145	0.281	-0.026	0.845
Fe	-0.306	0.021*	-0.216	0.106
К	-0.260	0.051	-0.255	0.056
Ca	-0.072	0.593	-0.115	0.394
Na	0.168	0.213	0.040	0.766
Mg	-0.313	0.018*	-0.320	0.015*
Mn	-0.383	0.003**	-0.375	0.004**
Zn	-0.484	0.000**	-0.410	0.002**
Cu	-0.352	0.007**	-0.458	0.000**

表 4 理化参数与甲烷氧化菌相对数量的相关关系

Table 4 The relationship between physicochemical parameters and relative number of MOB

*: 在 0.05 水平(双侧)上显著相关; **: 在 0.01 水平(双侧)上显著相关

*: Significantly correlated at the 0.05 level (two-tailed); **: Highly significantly correlated at the 0.01 level (two-tailed).

比对参考而无法确定其分类地位,而基于 qPCR 技术检测到的 pmoA 基因序列即使没有相似的 已知甲烷氧化菌 pmoA 序列作为参考,仍能够 确定其为某种未知的甲烷氧化菌种类^[18]。这表 明基于 16S rRNA 基因测序技术得到的甲烷氧 化菌的群落结构可能不够准确。同时在 7 个典 型油气藏区域的土壤样本中发现了一些广泛存 在的甲烷氧化菌属,如 Methylocystis 属、USC-γ。 Ricke 等和 Pratscher 等研究也发现了甲烷氧化 细菌 Methylocystis 属在旱地土壤和森林土壤中 广泛存在^[19-20]。这可能是由于 Methylocystis 属 甲烷氧化细菌的颗粒性甲烷单加氧酶(particle methane monooxygenase, pMMO)对甲烷的亲和 力范围极广^[21]。USC-γ 是一种广泛分布于旱地 土壤且未获得纯培养菌株的 pmoA 基因型,被认 为与大气中的低浓度甲烷的氧化紧密相关^[22]。 此外,利用 pmoA 功能基因测序在 7 个典型油 气藏区域样本中得到的优势甲烷菌群落结构存 在较大差异,不同的油气藏区域样本中具有独 特的甲烷氧化菌群落结构,并且发现河南油田、 江汉盆地油气田等多处区域油气点和背景点 pmoA 基因组成具有显著差别,这表明,除了油

Factors	RDA1	RDA2	r^2	Р	Explained variable (%)
Moisture	-0.203	0.979	0.505	0.001**	13.07
NO _X ⁻ -N	0.998	0.058	0.007	0.909	/
NH4 ⁺ -N	0.369	0.930	0.008	0.902	/
pH	0.397	0.918	0.628	0.001**	4.77
Particles (<2 µm)	0.965	-0.261	0.311	0.007**	2.77
Particles (2-5 µm)	0.952	-0.307	0.199	0.053	/
Particles (5-10 µm)	0.486	0.874	0.044	0.516	/
Particles (10-50 µm)	-0.762	0.648	0.110	0.195	/
Particles (50-100 µm)	-1.000	-0.005	0.005	0.960	/
Particles (100-500 µm)	-0.934	-0.356	0.057	0.461	/
Particles (500-1 000 µm)	-0.909	-0.417	0.126	0.130	/
TN	0.967	-0.254	0.368	0.001**	2.82
Р	0.998	-0.061	0.113	0.194	/
Al	-0.506	-0.863	0.077	0.295	/
Ca	0.191	0.982	0.475	0.002**	1.14
Cu	0.041	0.999	0.020	0.741	/
Fe	-0.857	0.516	0.007	0.907	/
Κ	0.178	-0.984	0.095	0.251	/
Mg	-0.534	0.845	0.176	0.054	/
Mn	0.971	-0.240	0.027	0.655	/
Na	-0.943	0.332	0.064	0.395	/
Zn	0.409	-0.912	0.080	0.311	/
SO4 ²⁻	0.644	0.765	0.011	0.846	/
Cl	0.894	-0.448	0.022	0.781	/
BHC	1.000	0.029	0.245	0.014*	1.25
DDT	0.228	-0.974	0.009	0.937	/

表 5 环境因子对甲烷氧化菌群落分布解释的显著性

Table 5 Significance of environmental factors in explaining the distribution of MOB communities

BHC: 六氯环己烷; DDT: 双对氯苯基三氯乙烷.*: 在 0.05 水平上显著相关; **: 在 0.01 水平上显著相关./: 未检测 BHC: Benzenehexachloride; DDT: Dichlorodiphenyltrichloroethane. *: Significantly correlated at the 0.05 level; **: Highly significantly correlated at the 0.01 level. /: No detection.

气存在与否这一因素,其他环境地理因素也在 很大程度上影响了甲烷氧化菌的组成及分布。 为了研究在全国尺度下油气区与背景区甲烷优 势群落的差异特征,本研究分别选取了7个典 型油气藏区域样本的油气点样本与背景点样 本,基于 NMDS 分析识别其中的差异。NMDS 分析结果显示,气田点和气田区域背景点互相 交错,未完全分开;油田点和油田区域背景点 情况类似。基于 pmoA 功能基因测序得到的7个 典型油气藏区域样本中的油气区与背景区具有 不同的优势甲烷群落,因此我们认为在全国的 尺度下,油气区和油气区背景点样品中甲烷氧 化菌群落结构并无显著差异,即油气区及背景 点均无特有甲烷氧化菌指示群落。

为了解释环境因素对典型油气藏区域样本 甲烷氧化菌群落的影响,本研究基于 Pearson 和 Spearman 相关性分析法研究环境因素和甲 烷氧化菌的绝对和相对丰度之间的相关关系。

图 4 环境因子和甲烷氧化菌群落的样本分布关系的 RDA 排序图

Figure 4 RDA ranking diagram of the sample distribution relationship between environmental factors and MOB communities.

研究结果显示,基于不同的甲烷氧化菌丰度指标 (绝对和相对丰度),环境因子具有不同的显著影 响。土壤样本中的总氮、总磷与甲烷氧化菌的 相对丰度呈显著负相关关系,与甲烷氧化菌的 绝对丰度未呈现相关关系。这可能是由于一些 不能通过 16S rRNA 基因序列测序及分析技术 鉴定出来的甲烷氧化菌受环境中氮、磷浓度的 正调控,如 Rigler 等的研究证实氨氮的添加可 能会通过改变土壤碳氮比从而促进甲烷氧化细 菌的生长^[23], Bodelier 等通过对稻田土壤施加 尿素和磷酸铵也观察到了甲烷氧化细菌丰度和 活性的提升^[24]。此外,发现土壤样本中氨态氮 和硝态氮与甲烷氧化细菌的相对丰度无相关关 系,而氨态氮与甲烷氧化细菌的绝对丰度呈现 负相关关系,这可能是由于 pmoA 功能基因测 序检测到受氨态浓度负调控的优势甲烷氧化菌 属。正如 Walkiewicz 等研究发现, 氨氮对好氧 甲烷氧化细菌的影响还与土壤类型有关,在砂 土和壤土中,结果完全相反^[25]。土壤颗粒大小 对甲烷氧化菌的绝对和相对丰度产生显著不同 的影响。在与甲烷氧化菌的绝对丰度相关性的 分析中, 50-100 um 颗粒与其显示出显著的负 相关关系, 2-5 um 颗粒呈现显著的正相关性。 然而,在与甲烷氧化菌的相对丰度相关性的分 析中, >100 μm 特别是>500 μm 的颗粒与甲烷 氧化菌的绝对丰度呈现出正相关性。我们推测 造成这种现象差异的原因可能是由于不同土壤 颗粒的大小能够影响土壤中甲烷氧化菌吸收氧 气的速率, 而 pmoA 功能基因测序识别出了一 些反硝化型厌氧甲烷菌属,这些菌属与好氧甲 烷氧化菌属受到氧气调控的作用截然相反^[26]。 同时,为了进一步地探究环境因素与单个样本中 的甲烷氧化菌群落结构的关系,基于甲烷氧化菌 pmoA 功能基因组成进行判别相关分析。研究结 果显示出了含水量(即土壤湿度)、pH值、<2 μm 的土壤颗粒、总氮及钙离子对甲烷氧化菌 pmoA 功能基因组成具有显著性影响。这与国际上研 究甲烷氧化菌分布的主流观点非常一致[27-29]。

4 结论

本研究通过 qPCR 技术、16S rRNA 基因测 序技术测定了来自 7 个典型油气藏区域样本中 甲烷氧化菌属的绝对丰度与相对丰度,发现基 于不同的测量方法,甲烷氧化菌的丰度存在较 大差异,基于 16S rRNA 基因测序无法较为全 面地反映土壤样本中优势甲烷氧化菌的群落结 构。同时,通过 *pmoA* 功能基因测序揭示土壤 样本中甲烷氧化菌群落结构,发现一些目前广 泛存在的甲烷氧化菌属,如 *Methylocystis* 属、 USC-γ 等,不同的油气藏区域样本中具有独特 的甲烷氧化菌群落结构,基于 NMDS 分析得到 的结果,我们更加确信了这一点,即在全国的 尺度下,油气区和油气区背景点样品中甲烷氧 点均无特有甲烷氧化菌指示群落。最后,本研 究分析了环境因素与甲烷氧化菌绝对丰度、相 对丰度以及 pmoA 功能基因组成之间的相关关 系,发现基于不同的甲烷氧化菌丰度指标,环 境因子具有不同的显著影响,含水量(即土壤湿 度)、pH值、<2 μm 的土壤颗粒、总氮及钙离子 对甲烷氧化菌 pmoA 功能基因组成具有显著性 影响,符合甲烷氧化菌分布研究的主流观点。

参考文献

- SINGH NK, CHOUDHARY S. Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting[J]. Environmental Science and Pollution Research, 2021: 1-18.
- [2] XU K, TANG Y, REN C, ZHAO K, SUN Y. Diversity and abundance of *n*-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field[J]. Biogeosciences, 2013, 10(3): 2041-2048.
- [3] KALYUZHNAYA MG, GOMEZ OA, MURRELL JC. The methane-oxidizing bacteria (methanotrophs)[J]. Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes, 2019: 245-278.
- [4] LUKE C, KRAUSE S, CAVIGIOLO S, GREPPI D, LUPOTTO E, FRENZEL P. Biogeography of wetland rice methanotrophs[J]. Environmental Microbiology, 2010, 12(4): 862-872.
- [5] KNIEF C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on *pmoA* as molecular marker[J]. Frontiers in Microbiology, 2015, 6: 1346.
- [6] TIKHONOVA EN, RUSANOV II, KADNIKOV VV, DEMKINA EV, TOSHCHAKOV SV, IZOTOVA AO, PIMENOV NV. Microbial processes of methane oxidation at the Kara Sea sites of gas prospecting[J]. Microbiology, 2023, 92(2): 171-182.
- [7] ZHANG CY, HE Z, ZHANG S, YIN MY, NING Z, LIU YC. A DNA-based analysis of a microbial technique for the prospecting of oil and gas applied to a known oil field, China[J]. Geomicrobiology Journal, 2017, 34(1): 63-70.
- [8] ZAKHARENKO AS, GALACHYANTS YP, MOROZOV IV, SHUBENKOVA OV, MOROZOV AA, IVANOV VG, PIMENOV NV, KRASNOPEEV AY, ZEMSKAYA TI. Bacterial communities in areas

of oil and methane seeps in pelagic of Lake Baikal[J]. Microbial Ecology, 2019, 78: 269-285.

- [9] KAMBARA H, SHINNO T, MATSUURA N, MATSUSHITA S, AOI Y, KINDAICHI T, OZAKI N, OHASHI A. Environmental factors affecting the community of methane-oxidizing bacteria[J]. Microbes and Environments, 2022, 37(1): ME21074.
- [10] ZHANG SH, YAN L, CAO JH, WANG KX, LUO Y, HU HY, WANG LX, YU RH, PAN BZ, YU K, ZHAO J, BAO ZH. Salinity significantly affects methane oxidation and methanotrophic community in Inner Mongolia lake sediments[J]. Frontiers in Microbiology, 2023, 13: 1067017.
- [11] CAPPELLETTI M, GHEZZI D, ZANNONI D, CAPACCIONI B, FEDI S. Diversity of methaneoxidizing bacteria in soils from "Hot Lands of Medolla" (Italy) featured by anomalous high-temperatures and biogenic CO₂ emission[J]. Microbes and Environments, 2016, 31(4): 369-377.
- [12] ZHAO J, CAI Y, JIA Z. The pH-based ecological coherence of active canonical methanotrophs in paddy soils[J]. Biogeosciences, 2020, 17(6): 1451-1462.
- [13] RISSANEN AJ, SAARENHEIMO J, TIIROLA M, PEURA S, AALTO SL, KARVINEN A, NYKANEN H. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters[J]. Aquatic Microbial Ecology, 2018, 81(3): 257-276.
- [14] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998.
- [15] ONDOV BD, BERGMAN NH, PHILLIPPY AM. Interactive metagenomic visualization in a Web browser[J]. BMC Bioinformatics, 2011, 12(1): 1-10.
- [16] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J, GLOCKNER FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2012, 41(D1): D590-D596.
- [17] SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.

- [18] LUKE C, FRENZEL P. Potential of *pmoA* amplicon pyrosequencing for methanotroph diversity studies[J]. Applied and Environmental Microbiology, 2011, 77(17): 6305-6309.
- [19] RICKE P, KUBE M, NAKAGAWA S, ERKEL C, REINHARDT R, LIESACK W. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase[J]. Applied and Environmental Microbiology, 2005, 71(11): 7472-7482.
- [20] PRATSCHER J, VOLLMERS J, WIEGAND S, DUMONT MG, KASTER AK. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α[J]. Environmental Microbiology, 2018, 20(3): 1016-1029.
- [21] BAANI M, LIESACK W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in *Methylocystis* sp. strain SC2[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 10203-10208.
- [22] KNIEF C, LIPSKI A, DUNFIELD PF. Diversity and activity of methanotrophic bacteria in different upland soils[J]. Applied and Environmental Microbiology, 2003, 69(11): 6703-6714.
- [23] RIGLER E, ZECHMEISTER-BOLTENSTERN S.
 Oxidation of ethylene and methane in forest soils: effect of CO₂ and mineral nitrogen[J]. Geoderma, 1999, 90(1/2): 147-159.

- [24] BODELIER PL, ROSLEV P, HENCKEL T, FRENZEL P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots[J]. Nature, 2000, 403: 421-424.
- [25] WALKIEWICZ A, BRZEZIŃSKA M, BIEGANOWSKI A. Methanotrophs are favored under hypoxia in ammonium-fertilized soils[J]. Biology and Fertility of Soils, 2018, 54: 861-870.
- [26] SHEN LD, HU BL, LIU S, CHAI XP, HE ZF, REN HX, LIU Y, GENG S, WANG W, TANG JL, WANG YM, LOU LP, XU XY, ZHENG P. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology and Biotechnology, 2016, 100: 7171-7180.
- [27] GALLOWAY JN, TOWNSEND AR, ERISMAN JW, BEKUNDA M, CAI Z, FRENEY JR, MARTINELLI LA, SEITZINGER SP, SUTTON MA. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
- [28] DANILOVA OV, SUZINA NE, van de KAMP J, SVENNING MM, BODROSSY L, DEDYSH SN. A new cell morphotype among methane oxidizers: a spiral-shaped obligately microaerophilic methanotroph from northern low-oxygen environments[J]. The ISME Journal, 2016, 10(11): 2734-2743.
- [29] MOHANTY SR, TIWARI S, DUBEY G, AHIRWAR U, KOLLAH B. How methane feedback response influence redox processes in a tropical vertisol[J]. Biology and Fertility of Soils, 2016, 52: 479-490.