

Hydrosphere Microbiology 水圈微生物

南海 F-冷泉和冲绳海槽热液区可培养二甲基巯 基丙酸内盐合成与降解细菌的分离鉴定及其 多样性

高熠^{1#},刘秀杰^{1#},刘仪¹,李倩宇¹,郭瑞红¹,张晓华^{1,2,3,4},张蕴慧^{1,2,3,4*}

- 2 青岛海洋科学技术中心,海洋生态与环境科学功能实验室,山东 青岛 266237
- 3 中国海洋大学, 深海圈层与地球系统前沿科学中心, 山东 青岛 266100
- 4 中国海洋大学,海洋生物多样性与进化研究所,山东 青岛 266003

高熠, 刘秀杰, 刘仪, 李倩宇, 郭瑞红, 张晓华, 张蕴慧. 南海 F-冷泉和冲绳海槽热液区可培养二甲基巯基丙酸内盐合成 与降解细菌的分离鉴定及其多样性[J]. 微生物学报, 2024, 64(12): 4515-4536.

GAO Yi, LIU Xiujie, LIU Yi, LI Qianyu, GUO Ruihong, ZHANG Xiaohua, ZHANG Yunhui. Isolation, identification, and diversity analysis of culturable DMSP-synthesizing and -degrading bacteria in F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough[J]. Acta Microbiologica Sinica, 2024, 64(12): 4515-4536.

摘 要:【目的】冷泉和热液是海洋中典型的化能生态系统,其独特的理化特征孕育了特殊的微生物类群。二甲基巯基丙酸内盐(dimethylsulfoniopropionate, DMSP)是地球上最丰富的有机硫化合物之一,多种海洋细菌能够合成与降解 DMSP,在驱动海洋碳、硫元素循环过程中发挥重要作用。本研究对南海 F-冷泉和冲绳海槽热液区的 DMSP 合成与降解细菌进行了分离鉴定,分析其多样性与分布,拓展了对海洋中 DMSP 代谢细菌的认识。【方法】选取南海 F-冷泉和冲绳海槽 Yaeyama Knoll 热液区不同深度水体、沉积物和动物为研究对象,利用 3 种富集培养基(甲硫氨酸添加、高盐低氮条件用于富集 DMSP 合成细菌, DMSP 添加用于富集 DMSP 降解细菌)和 2216E 分离培养基进行细菌的富集与分离培养。通过 16S rRNA 基因测序确定菌株分类地位,并检测代表菌株的

¹ 中国海洋大学 海洋生命学院,山东 青岛 266003

资助项目:中央高校基本科研业务费专项资金(202172002);国家自然科学基金(42306115);山东省自然科学基金 (ZR2023QD017);中国博士后科学基金(2022M722975);山东省博士后创新项目(SDCX-ZG-202201016)

This work was supported by the Fundamental Research Funds for the Central Universities (202172002), the National Natural Science Foundation of China (42306115), the Shandong Provincial Natural Science Foundation (ZR2023QD017), the China Postdoctoral Science Foundation (2022M722975), and the Postdoctoral Innovation Program of Shandong Province (SDCX-ZG-202201016).

[#]These authors contributed equally to this work.

^{*}Corresponding author. Tel: +86-532-82032721, E-mail: zhangyunhui@ouc.edu.cn

Received: 2024-11-11; Accepted: 2024-11-22

DMSP 合成与降解能力。【结果】本研究共获得 874 株可培养细菌,其中 γ-变形菌纲 (Gammaproteobacteria)为 3 种培养基中获得的优势纲;海杆菌属(Marinobacter)为优势属。经富集 后冷泉样品的可培养菌株数量和多样性均高于热液样品。冷泉来源的 14 株 DMSP 合成细菌分属 于 7 个属,其中 5 株属于近海螺旋菌属(Thalassospira)且含有 DMSP 合成基因 mmtN, 2 株属于假 栖大洋菌属(Pseudooceanicola)并含有 dsyB。冷泉来源的 130 株 DMSP 降解细菌分属于 39 个属, 谷氨酸杆菌属(Glutamicibacter)为最优势属(24 株)且不含已知 DMSP 降解基因。热液区来源的 DMSP 合成细菌仅 1 株,降解细菌 18 株,均远少于冷泉样品。具有 DMSP 裂解途径的菌株占降 解细菌总数(148 株)的 98.6%,其中 55 株裂解活性较强且以放线菌纲(Actinobacteria)为主。在 40 株不 同种且 DMSP 降解能力较强的菌株中,9 株含有已知的裂解基因,3 株含有已知的脱甲基基因。 【结论】南海 F-冷泉和冲绳海槽热液区存在丰富的 DMSP 合成与降解细菌,包括多种含有潜在新 型 DMSP 合成/降解基因的细菌类群。本研究为进一步深入理解化能生态系统中微生物驱动的有 机硫循环提供了基础。

关键词:二甲基巯基丙酸内盐;合成与降解;冷泉;热液区;细菌多样性

Isolation, identification, and diversity analysis of culturable DMSP-synthesizing and -degrading bacteria in F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough

GAO Yi^{1#}, LIU Xiujie^{1#}, LIU Yi¹, LI Qianyu¹, GUO Ruihong¹, ZHANG Xiaohua^{1,2,3,4}, ZHANG Yunhui^{1,2,3,4*}

1 College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China

2 Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China

- 3 Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, Shandong, China
- 4 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, Shandong, China

Abstract: [Objective] Cold seeps and hydrothermal fields are typical chemosynthetic ecosystems in the ocean. With distinctive physicochemical properties, they harbor unique microbial communities. Dimethylsulfoniopropionate (DMSP), one of the most abundant organic sulfur-containing compounds on Earth, is synthesized and degraded by a variety of marine bacteria, which plays an important role in driving carbon and sulfur cycles in the ocean. In this study, we isolated and identified DMSP-synthesizing and degrading bacteria from the F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough and analyzed their diversity and distribution, aiming to expand the understanding of these bacteria in the ocean. **[Methods]** Water, sediment, and animal samples were collected at different depths from both the F-cold seep of the South China Sea and the Yaeyama Knoll hydrothermal field of

the Okinawa Trough. Three enrichment media (L-methionine addition and high salinity and low nitrogen for DMSP-synthesizing bacteria; DMSP addition for DMSP-degrading bacteria) and the 2216E medium were used for the enrichment and isolation of bacteria. The taxonomic status of strains was determined by 16S rRNA gene sequencing, and the abilities of representative strains to synthesize or degrade DMSP were assessed. [Results] A total of 874 culturable strains were obtained. Gammaproteobacteria emerged as the dominant class in the three media, and Marinobacter was the most abundant genus. The number and diversity of culturable strains obtained from cold seep samples after enrichment were higher than those from the hydrothermal field. The 14 strains of DMSP-synthesizing bacteria from the cold seep belonged to 7 genera, including 5 Thalassospira strains carrying the DMSP synthesis gene mmtN and 2 Pseudooceanicola strains carrying dsyB. A total of 130 DMSP-degrading bacterial strains were obtained from the cold seep, belonging to 39 genera, among which *Glutamicibacter* was the most abundant genus (24 strains) without known genes associated with DMSP degradation. There was only 1 strain of DMSP-synthetizing bacteria and 18 strains of DMSP-degrading bacteria from the hydrothermal field, both were much fewer than those from the cold seep. The strains with DMSP cleavage pathway accounted for 98.6% of the total DMSP-degrading strains (148), among which 55 strains had strong cleavage activity and were mainly Actinobacteria. Among the 40 strains with strong DMSP-degrading activity, 9 strains contained known cleavage genes and 3 strains contained known demethylation genes. [Conclusion] Abundant DMSP-synthesizing and -degrading bacteria exist in F-cold seep of the South China Sea and hydrothermal fields of the Okinawa Trough, including a variety of bacterial groups carrying potential novel DMSP synthesis/degradation genes. This study provides a basis for further understanding the microbial-driven organosulfur cycling in chemosynthetic ecosystems.

Keywords: dimethylsulfoniopropionate; synthesis and degradation; cold seep; hydrothermal field; bacterial diversity

冷泉(cold seep)是富含 CH₄ 的流体从海底 深部向海底表面渗漏或喷发所形成的特殊地质 构造^[1]。目前全球已知的冷泉达数百个,主要 分布于大陆边缘,比如墨西哥湾、黑海和东地 中海等^[2]。F-冷泉位于中国南海北部大陆边缘, 水深约1125 m^[3-5],是中国海域发现的3个活动 冷泉之一^[6]。热液喷口(hydrothermal vent)指通 过海底裂隙向下渗流的海水与被岩浆加热的岩 石相互作用,进而以热液流体的形式喷发出海 底而形成的独特环境^[7]。目前全球已发现 500 多处活动热液喷口^[8],其中,Yaeyama Knoll 热 液区为中国东海冲绳海槽(Okinawa Trough)的 15 个热液区之一,其喷口水深约 2 190 m,温 度可达 364 ℃,是冲绳海槽中最深且温度最高 的喷口^[9]。冷泉和热液区都是深海中典型的化 能合成生态系统,且 2 种环境中富含 H₂S 等还 原性气体,在硫元素循环中起着重要作用,参与 硫循环的功能基因在这些区域广泛分布^[10]。

二 甲 基 巯 基 丙 酸 内 盐 (dimethylsulfoniopropionate, DMSP)是地球上含 量最丰富的有机含硫化合物之一^[11],首次在多 管藻(*Polysiphonia*)中被发现^[12]。DMSP 年产量 高达 10⁹ t (约 7×10¹³ mol)^[13],占全球初级生产 力的 1%−10%^[14]。DMSP 可作为生物体的渗

透压保护剂^[15]、高压保护剂^[16]、抗氧化剂^[17]、 冷冻保护剂^[18]、化学引诱剂^[19]、信号分子^[20]、 细菌毒力因子合成前体^[21],并且是海洋生态系 统中的重要碳源和硫源^[22]。除此之外, DMSP 的裂解产物二甲基硫(dimethylsulfide, DMS)进 入大气后能对全球变暖产生负调控作用[22]。目 前,已发现浮游植物^[23]、大型藻类^[24]、珊瑚^[25]、 盐生被子植物^[26-28]和异养细菌^[29]能够合成 DMSP, 并阐明了3条 DMSP 的生物合成途径: 甲基化途径^[28]、转氨基途径^[30]以及脱羧基途 径^[31]。一系列参与 DMSP 合成的关键基因陆续 被鉴定,包括 dsyB^[29]、DSYB^[32]、TpMMT^[33]、 $mmtN^{[34]}$, $burB^{[21]}$, $dsyGD/dsyG^{[35]}$ 和 $DSYE^{[35]}$ 。 此外,海洋异养细菌还是 DMSP 的最主要降解 者^[36-37]。DMSP 降解途径包括脱甲基途径^[38]、 裂解途径^[39]和氧化途径^[40],目前已发现一系列 DMSP 降解基因,比如裂解基因 $dddL^{[41]}$ 、 $dddP^{[42]}$, $dddO^{[43]}$, $dddW^{[44]}$, $dddY^{[45]}$, $dddK^{[46]}$, *dddD*^[47]、*dddX*^[48]、*dddU*^[49]和脱甲基基因 dmdA^[14]。已有的一系列研究探究了中国东海^[50-51]、 中国南海^[52]、马里亚纳海沟^[16]、北极和南极^[53] 等环境中 DMSP 合成与降解细菌的多样性,但 尚未见深海化能生态系统冷泉和热液区 DMSP 合成与降解细菌多样性的研究,这2种环境中 均存在活跃的硫代谢过程,以及与硫代谢相关 的特殊微生物类群,因此很可能存在新型 DMSP 合成与降解细菌、途径及基因有待进一 步发掘。

本研究拟通过细菌分离培养等方法,探索 南海 F-冷泉和冲绳海槽 Yaeyama Knoll 热液区 DMSP 合成与降解细菌的多样性,丰富对深海 化能生态系统 DMSP 合成与降解细菌多样性的 认识,同时为筛选新的 DMSP 合成与降解途径 及基因提供菌株资源。

1 材料与方法

1.1 样品采集

本研究所用样品于 2022 年 5 月搭载中国海 洋大学"东方红 3 号"综合科学考察船采集自南 海 F-冷泉和冲绳海槽 Yaeyama Knoll 热液区。 获得的多个层次的海水、沉积物及动物样品, 站位及样品信息如表 1 所示。其中站位 Hot1、 RYSHW 和 HZ04 位于冲绳海槽 Yaeyama Knoll 热液区,其余站位均位于南海 F-冷泉。

1.2 富集培养和培养基

获得海水、沉积物及动物样品(现场解剖获 得各个动物组织)后,立即在现场进行富集培 养。分别将1mL海水样品、0.1g沉积物样品 或动物组织用50mL无菌生理盐水(质量分数为 0.85%)稀释,吸取1mL稀释液分别加入3种 50mL液体培养基[marine basal medium (MBM)+L-methionine (L-Met)混合培养基、高盐 低氮 MBM+L-Met 混合培养基、MBM+DMSP 混合培养基]中,在16℃以110r/min振荡培养。 其中 MBM+L-Met 混合培养基和高盐低氮 MBM+L-Met 混合培养基和高盐低氮 MBM+L-Met 混合培养基用于富集 DMSP 合成 细菌,MBM+DMSP 混合培养基用于富集 DMSP

MBM 培养基(PSU 35): 250 mL MBM Basal 溶液, 35 g 海盐, 50 mL 50 mg/mL FeEDTA 贮 存液, 10 mL 1 mol/L NH₄Cl 贮存液, 与 680 mL ddH₂O 混合均匀, 再分装成每份 50 mL, 121 ℃ 灭菌 20 min。高盐低氮 MBM 培养基(PSU 50): 250 mL MBM Basal 溶液, 50 g 海盐, 50 mL 50 mg/mL FeEDTA 贮存液, 1 mL 1 mol/L NH₄Cl 贮存液, 与 680 mL ddH₂O 混合均匀, 再分装成 每份 50 mL, 121 ℃灭菌 20 min。每 50 mL 培 养基随后在无菌超净台加入 50 µL 20×混合维 生素贮存液, 500 µL 混合碳源贮存液, 250 µL 100 mmol/L L-Met (终浓度 0.5 mmol/L)

neiu					
Location	Station	Longitude	Latitude	Depth (m)	Sample collection section
F-cold seep	ROV272	119°17.142 9′	' 22°06.902 5'	1 127	Pushcore sediments (1-2 cm, 5-6 cm)
	ROV272	119°17.142 9′	' 22°06.902 5'	1 127	Mussel (gill)
	QY01	119°17.520 2'	' 22°06.499 6'	1 154	Gravity column sediments (0–5 cm, 5–10 cm, 50–55 cm)
	CTD03	119°17.141 0'	' 22°06.932 0'	1 120	Surface water, 800 m water, bottom water
	C2-	119°17.149 4′	' 22°06.894 0'	1 130	Gravity column sediments (0-5 cm, 120-125 cm, 235-240 cm)
	C1	119°17.093 7'	' 22°06.965 8'	1 167	Gravity column sediments (0-3 cm, 54-57 cm, 105-108 cm)
	ROV277	119°17.153 8'	' 22°06.925 4'	1 129	Shinkaia crosnieri (intestine, bristle and male gonad) Mussel (visceral mass, mantle and foot)
	ROV277	119°17.140 6'	' 22°06.924 3'	1 124	Bottom water
	ROV277	119°17.153 8′	' 22°06.904 2'	1 129	Pushcore sediments (0-2 cm, 6-8 cm, 8-10 cm)
	ROV278	119°17.1615′	22°06.881 6'	1 135	Pushcore sediments (0-2 cm, 6-8 cm, 10-12 cm)
	ROV278	119°17.157 9′	' 22°06.884 3'	1 135	Bottom water
	ROV279	119°17.160 0'	' 22°06.920 5'	1 131	Pushcore sediments (0-2 cm, 6-8 cm)
	ROV279	119°17.136 7′	' 22°06.927 6'	1 131	Polynoidae Tubeworm <i>Shinkaja crosnieri</i> (egg and gill)
	ROV279	119°17.140 2'	' 22°06.925 2'	1 120	Water 5 m and 40 m from bottom
Yaeyama Knoll	Hot1	124°22.382 0'	25°15.795 0'	2 157	1 000 m water, bottom water
hydrothermal field	RYSHW	124°22.366 9'	' 25°15.843 7'	2 157	Pushcore surface and bottom sediments
	HZ04	124°22.363 2'	′ 25°15.141 5′	2 279	Gravity column sediments (0–5 cm, 40–45 cm, 60–65 cm, 65–70 cm)

表 1 F-冷泉和 Yaeyama Knoll 热液区采样站位及样品信息

Table 1Sampling station and sample information of the F-cold seep and the Yaeyama Knoll hydrothermalfield

或 500 µL 100 mmol/L DMSP (终浓度 1 mmol/L)。 MBM Basal 溶液: 34.61 g Tris, 0.17 g K₂HPO₄, 加入适量 ddH₂O 使其完全溶解,利用浓 HCl 调 节 pH 值为 7.5 后加 ddH₂O 定容为 1 L, 121 ℃ 灭菌 20 min,室温保存。1 000×混合维生素贮 存液: 20 mg 生物素(biotin, VH), 20 mg 叶酸 (folic acid),100 mg 盐酸吡哆醇(pyridoxine-HCl, VB₆-HCl), 50 mg 二水合盐酸硫胺素 (thiamine-HCl·2H₂O, VB₁-HCl·2H₂O), 50 mg 核 黄素(riboflavin, VB₂), 50 mg 烟酸(nicotinic acid), 50 mg D-泛酸钙(D-Ca-pantothenate), 1 mg 氰钴胺素(cyanocobalamine, VB₁₂), 50 mg 对氨 基苯甲酸(p-aminobenzoic acid), 50 mg 硫辛酸 (lipoic-acid), 溶于 1 L 无菌 ddH₂O,用 0.22 µm 滤膜过滤除菌并 50 mL 分装, 贮存于-20 ℃。 混合碳源贮存液: 54 g 六水合琥珀酸钠, 36.3 g 葡萄糖, 68.4 g 蔗糖, 22 g 丙酮酸钠, 14.6 mL 丙三醇, 溶解于 985.4 mL ddH₂O 中, 调节 pH 值至 7.5 后, 用 0.22 μm 滤膜过滤除菌并 50 mL 分装, 贮存于 4 ℃。

1.3 DMSP 合成情况检测

用 MBM+L-Met 混合培养基和高盐低氮 MBM+L-Met 混合培养基富集培养 DMSP 合成 细菌,以16 ℃、110 r/min培养14 d 后,在无 菌超净台中吸取 200 μL 菌液至 2 mL 棕色色谱 瓶中,瓶身平放后将100 μL 10 mol/L NaOH 加 至瓶颈,旋紧瓶盖后正立色谱瓶,使碱液与菌液 混合。将色谱瓶置于 28 ℃恒温摇床以 170 r/min 振荡 2 h,使菌液中的 DMSP 充分裂解为 DMS 气体。利用气相色谱仪(安捷伦科技有限公司) 采用顶空测定法抽取顶空 DMS 气体,从而检测 DMSP 合成细菌富集培养情况(DMSP 经裂解生 成相同物质的量的 DMS 气体)。

1.4 菌株的分离纯化及鉴定

1.4.1 菌株的分离纯化

将富集培养后的 DMSP 降解细菌菌液与经 气相色谱仪检测后 DMSP 合成量较高的合成细 菌菌液在无菌超净台中用生理盐水等梯度稀释 为 6 个浓度梯度(10⁻¹−10⁻⁶),吸取 10⁻⁴、10⁻⁵、 10⁻⁶这 3 个浓度梯度的菌液各 150 µL,涂布到 2216E 培养基^[54]上,在 28 ℃恒温培养箱中培养 24-48 h,随后挑取不同形态的单菌落进行三区 划线,继续放置在 28 ℃恒温培养箱中培养 24-48 h,待第一次纯化的单菌落生长出来后再 进行 2 次分离纯化和培养以获得纯菌落。

1.4.2 菌株的物种鉴定

采用煮沸法并辅以酚-氯仿法[55]提取纯化 菌株的 DNA。利用通用引物 B8F (5'-AGAGTTT GATCCTGGCTCAG-3')和 B1510R (5'-GGTTAC CTTGTTACGACTT-3')^[56]对细菌的 16S rRNA 基因进行 PCR 扩增。PCR 扩增体系(30 μL): $2 \times Taq$ Plus Master Mix II (Dye Plus) 15 µL, ddH2O 13.2 µL, 通用引物 B8F 和 B1510R 各 0.3 µL, 模板 DNA 1.2 µL。PCR 扩增程序: 95 ℃ 预变性 5 min; 95 ℃变性 1 min, 55 ℃退火 1 min, 72 ℃延伸 1.5 min, 共 30 个循环; 72 ℃再延伸 10 min。随后将 PCR 扩增产物送至生工生物工 程(上海)股份有限公司进行测序。在 Chromas 软 件上对获得的原始 16S rRNA 基因序列进行剪 切,选取 650 bp 的高质量核酸序列上传至 EzBioCloud 网站(http://www.ezbiocloud.net/)进行 序列比对,得到最相似菌株的详细信息、相似 度和完整度等以此鉴定测序菌株的分类地位。

1.5 菌株 DMSP 合成与降解能力检测

1.5.1 菌株 DMSP 合成能力检测

洗择同一样品来源和富集条件下不同种的 代表性可培养菌株进行 DMSP 合成能力的检 测。在 2 mL 棕色色谱瓶中加入 300 μL MBM+ L-Met 混合培养基,挑取适量纯菌落置于色谱瓶 中,与培养基充分混合后旋紧瓶盖;同时在1.5 mL 无菌 EP 管中加入 500 uL MBM+L-Met 混合培养 基,挑取适量纯菌落置于 EP 管中, 与培养基充 分混合后盖紧管盖;以具有强 DMSP 合成能力 的菌株Labrenzia aggregate LZB033作为阳性对 照;以不加菌的培养基作为空白对照,每组均 设置3个平行。将加完菌的色谱瓶和 EP 管置于 28 ℃恒温摇床中以 170 r/min 避光培养 24 h, 直接利用气相色谱仪测定色谱瓶中产生的甲硫 醇(methanethiol, MeSH)和/或 DMS, 以确定菌 株是否利用 L-Met 为底物直接产生 MeSH 和/ 或 DMS;同时在避光条件下吸取 200 µL EP 管 中培养 24 h 的菌液到色谱瓶中, 平放瓶身后将 100 μL 10 mol/L NaOH 加至瓶颈,将瓶盖拧紧 后正置瓶身,置于 28 ℃恒温摇床中以 170 r/min 再振荡 2 h, 使菌液中的 DMSP 充分裂解为 DMS,用气相色谱仪测定色谱瓶中产生的 DMS 及其峰面积,以确定纯化菌株是否利用 L-Met 为底物产生 DMSP。最终判断菌株是否具有 DMSP 合成能力。

1.5.2 菌株 DMSP 降解能力检测

选择同一样品来源和富集条件下不同种的 代表性可培养菌株进行 DMSP 降解能力的检 测。在 2 mL 色谱瓶中加入 300 μL MBM+DMSP 混合培养基,挑取适量纯菌落置于色谱瓶中, 与培养基充分混合后旋紧瓶盖;同时在 2 mL 色 谱瓶中加入 300 μL 不加 DMSP 的 MBM 培养 基,挑取适量纯菌落置于色谱瓶中,充分混合 后旋紧瓶盖;以不加菌液的 MBM+DMSP 混合 培养基为空白对照,每组均设置 3 个平行, 28 ℃、170 r/min 培养 24 h,利用气相色谱仪测 定色谱瓶中产生的 MeSH 和/或 DMS 气体,以 此确定菌株是否将 DMSP 降解为 MeSH 和/或 DMS。

1.5.3 DMSP 浓度标准曲线绘制

DMSP 浓度标准曲线采用梯度浓度的 DMSP 标准溶液经碱解生成 DMS 的方法绘制。 配制 DMSP 终浓度为 750 mmol/L 的 DMSP 一级 标准溶液,按梯度稀释为终浓度 75 000、7 500 、 750、75、7.5 µmol/L 的 DMSP 系列标准溶液。 取 7.5 mmol/L 2 µL, 750 µmol/L 2、4、8 µL, 75 µmol/L 4、8 µL, 7.5 µmol/L 4、8 µL, 分别 加至 2 mL 棕色色谱瓶底部,将相应体积(体系 体积之和为 300 µL)的 10 mol/L NaOH 加到色谱

表 2 简并 PCR 引物序列

 Table 2
 Oligonucleotide primers information

瓶颈部,小心将瓶盖拧紧后正置瓶身,28 ℃、 170 r/min 振荡 2 h,使标准溶液中的 DMSP 充 分裂解为 DMS 气体,用气相色谱仪测定色谱瓶 中产生的顶空 DMS 气体峰面积,进而计算 DMS/P 物质的量和净峰面积关系的标准曲线, 如公式(1)所示,其中 R^2 =0.999。

√净峰面积 =117.85×DMS/P 物质的量 (1)

1.6 菌株 DMSP 合成与降解基因鉴定

利用已知 DMSP 合成与降解基因的简并引物(表 2), 对具有 DMSP 合成与降解能力的菌株进行简并 PCR。PCR 扩增体系(30 µL): 2×*Taq* Plus Master Mix II (Dye Plus) 15 µL, ddH₂O 13.2 µL, 正、反引物各 0.3 µL, 模板 DNA 1.2 µL。PCR 扩增程序: 95 ℃预变性 5 min; 95 ℃ 变性 30 s, T_m -5 ℃退火 30 s, 72 ℃延伸 20 s, 共

Target genes	Primers name	Oligonucleotide $(5' \rightarrow 3')$	Annealing temperature (°C)	References
dsyB	dsyB_F	CATGGGSTCSAAGGCSCTKTT	61	[29]
	dsyB_R	GCAGRTARTCGCCGAAATCGTA		
mmtN	mmtN_F	CCGAGGTGGTCATGAAYTTYGG	54	[34]
	mmtN_R	GGATCACGCACACYTCRTGRTA		
dddP	dddP_F	AAYGAAATWGTTGCCTTTGA	41	[42]
	dddP_R	GCATDGCRTAAATCATATC		
dddL	$dddL_{\rm F}$	CTGGGAATACGGCTACGAGA	53	[57]
	$dddL_R$	GTTCAAGATCAGCGATCCGG		
dddD	dddD_F	ACCAACGTCATTGCAGGACC	56	[57]
	dddD_R	TGTGCGTGTTCTTCCGGTG		
dddX	$dddX_F$	TTTGAAAACTCAGGCTTTTC	46	[48]
	$dddX_R$	TGAATATGGTAATGGTACTT		
dmdA (A/1)	A/1_F	ATGGTGATTTGCTTCAGTTTCT	53	[58]
	A/1_R	CCCTGCTTTGACCAACC		
dmdA (A/2)	A/2_F	CGATGAACATTGGTGGGTTTCTA	59	[58]
	$A/2_R$	GCCATTAGGTCGTCTGATTTTGG		
dmdA (B/3)	$B/3_F$	GATGTCTCCTGCCAACGTCAGGTCGA	62	[58]
	B/3_R	ACCGGGTCATTGATCATGCCTGCG		
dmdA (C/2)	C/2_291F	AGATGAAAATGCTGGAATGATAAATG	50	[58]
	C/2_482R	AAATCTTCAGACTTTGGACCTTG		
<i>dmdA</i> (D/1)	D/1_268F	AGATGTTATTATTGTCCAATAATTGATG	49	[58]
	D/1_356R	ATCCACCATCTATCTTCAGCTA		
<i>dmdA</i> (E/2)	E/2_F	CATGTTCAGATCTGGGACGT	57	[58]
	E/2 R	AGCGGCACATACATGCACT		

35 个循环; 72 ℃延伸 10 min。PCR 扩增产物进 行琼脂糖凝胶电泳并切胶回收后送至生工生物 工程(上海)股份有限公司进行目的基因测序,在 NCBI 数据库中查找各个已知 DMSP 合成与降 解基因的序列,与测序所得序列进行 BLAST 分析,以确定具有 DMSP 合成与降解能力的菌 株中是否含有已知的 DMSP 合成与降解基因。

2 结果与分析

2.1 富集培养后菌群的 DMSP 产量

总计 20 瓶 DMSP 合成细菌富集样品 (MBM+L-Met 混合培养基 7 瓶,高盐低氮 MBM+L-Met 混合培养基 13 瓶)中的 DMSP 浓 度明显升高(>1.5 µmol/L),其中 19 瓶为冷泉样 品, 热液区样品仅有 Hot1 (底层水) 1 瓶。 MBM+L-Met 混合培养基的 7 瓶富集培养样品 来源于冷泉水体、沉积物和贻贝。其中 ROV277 (底层水)富集后菌群产生的 DMSP 浓度最高, 为 14.35 μmol/L。贻贝内脏团和沉积物 QY01 (50-55 cm)最低,为 1.9 µmol/L。沉积物 C2-(0-5 cm)富集后菌群产生的 DMSP 浓度显著高 于沉积物 QY01 (50-55 cm)。贻贝足富集后菌群 产生的 DMSP 浓度显著高于内脏团和鳃富集后 菌群产生的 DMSP 浓度。高盐低氮 MBM+L-Met 混合培养基的 13 瓶富集培养样品来源于冷泉 水体、沉积物、潜铠虾、贻贝以及热液区水体。 其中热液区水体 Hot1 (底层水)富集后菌群产生 的 DMSP 浓度最高,为 45.6 μmol/L。潜铠虾卵 最低,为2.25 µmol/L。5 瓶冷泉水体样品中, CTD03 (表层水)和 ROV279 (距底 40 m 水)富集 后菌群产生的 DMSP 浓度显著高于其余 3 瓶。 总体上,高盐低氮 MBM+L-Met 混合培养基富 集培养样品中菌群产生的 DMSP 浓度高于 MBM+L-Met 混合培养基,证实高盐低氮条件确 实促进了细菌 DMSP 的合成过程^[29] (图 1)。

2.2 富集培养获得的可培养细菌多样性

对南海 F-冷泉和冲绳海槽 Yaevama Knoll 热液区的水体、沉积物及动物样品进行了细菌 的富集培养与分离纯化,共获得 874 株细菌。 经 16S rRNA 基因测序鉴定, 这 874 株细菌分 属于4门6纲24目36科74属157种。门水平 上(图 2A), 变形菌门(Proteobacteria, 557 株) 为主导类群,其次是厚壁菌门(Firmicutes, 167株)、 放线菌门(Actinobacteria, 117 株)和拟杆菌 门(Bacteroidetes, 33 株),分别占总分离菌株 的 64%、19%、13%和 4%。纲水平上(图 2B), γ-变形菌纲(Gammaproteobacteria, 447 株)菌株 最多,其次是芽孢杆菌纲(Bacilli, 167株)、放 线菌纲(Actinobacteria, 117 株)和 α-变形菌纲 (Alphaproteobacteria, 103 株)较多, 分别占总 分离菌株的 51%、19%、13%和 12%。黄杆菌 纲 (Flavobacteriia, 33 株)和 β-变形菌纲 (Betaproteobacteria, 7株)菌株较少,分别占总 分离菌株的 4%和 1%。属水平上(图 2C), γ-变 形菌纲的海杆菌属(Marinobacter)菌株最多,共 包括 156 株,占总分离菌株的 18%,这些菌株 分属于9个种;同为γ-变形菌纲的假单胞菌属 (Pseudomonas)为第 2 大优势属,由 10 个不同 的种组成,共79株细菌,占总分离菌株的9%。 谷氨酸杆菌属(Glutamicibacter)、芽孢杆菌属 (Bacillus)、海源菌属(Idiomarina)和假交替单胞 菌属(Pseudoalteromonas)菌株也较多,分别包含 2 个种 51 株、7 个种 49 株、5 个种 45 株和 5个种41株的细菌。此外,多个属仅包含1株 可培养菌株,如小陌生菌属(Advenella)、农球菌 属(Agrococcus)、农霉菌属(Agromyces)、短波单 胞菌属 (Brevundimonas) 、棒杆菌属 (Corynebacterium)、纤维芽孢杆菌属 (Cytobacillus)、德沃斯氏菌属(Devosia)、亨里赛 氏菌属(Henriciella)、海茎状菌属(Maricaulis)、海

冬 1 冷泉和热液区样品富集后菌群产生的 DMSP 浓度

DMSP concentration produced by flora in cold seep and hydrothermal field samples after enrichment. Figure 1

平(前 21 个属)

Figure 2 Culturable bacteria after enrichment incubation and isolation at different taxonomic levels. A: At phylum level. B: At class level. C: At genus level (top 21 dominant genera).

研站菌属(Mesonia)、鼠尾菌属(Muricauda)、涅 斯捷连科氏菌属(Nesterenkonia)、类芽孢八叠球 菌属(Paenisporosarcina)、副球菌属(Paracoccus)、 海境芽孢杆菌属(Paraliobacillus)、假节杆菌属 (Pseudarthrobacter)、盐水球菌属(Salinicoccus)、 盐土芽孢杆菌属(Saliterribacillus)、斯塔普氏菌 属(Stappia)和萨克利夫氏菌属(Sutcliffiella)。以 上研究结果表明,南海F-冷泉和冲绳海槽Yaeyama Knoll 热液区的水体、沉积物及动物样品富集培 养获得的可培养细菌具有丰富的多样性。

2.3 不同培养基和样品中可培养细菌的多 样性

经 MBM+L-Met 混合培养基、高盐低氮 MBM+L-Met 混合培养基、MBM+DMSP 混合培 养基富集培养后分离获得的可培养细菌菌株分 别为 103 株、210 株、561 株。门水平上, 变形 菌门占绝对优势(57%-79%)。厚壁菌门和放线 菌门在 MBM+DMSP 混合培养基中所占比例较 高,分别为23%和16%。拟杆菌门在3种培养 基中所占比例最低(2%-8%)(图 3A)。在纲水平 上, MBM+DMSP 混合培养基中的可培养菌株 来自 γ-变形菌纲、芽孢杆菌纲、放线菌纲、α-变形菌纲、黄杆菌纲和 β-变形菌纲 6 个纲,其 余 2 种培养基均缺少 β-变形菌纲的菌株, γ-变 形菌纲在 3 种培养基中均占绝对优势(图 3B)。 在属和种水平上, 经3种培养基富集培养后分 离获得的细菌多样性由高到低依次为 MBM+DMSP 混合培养基(65 属 120 种)、高盐 低氮 MBM+L-Met 混合培养基(29 属 54 种)、 MBM+L-Met 混合培养基(20 属 31 种)(图 3C)。

MBM+L-Met 混合培养基的 7 瓶富集培养 样品均来源于冷泉。其中,海杆菌属菌株最多, 共包括 33 株,分属于 5 个种,占总分离菌株的 32.0%,在水体、表层沉积物和贻贝鳃中均有分 布。假单胞菌属为第2大优势属,共包括10株, 分属于4个种,占细菌分离总数的9.7%,在表 层沉积物和贻贝鳃中均有分布。另外中华微菌 属(Sinomicrobium,8株1个种)、海源菌属(7株 2个种)、近海螺旋菌属(Thalassospira,7株1个 种)和谷氨酸杆菌属(6株1个种)获得的菌株也 较多,其中中华微菌属仅分布于深层沉积物, 海源菌属在沉积物和贻贝内脏团中均有分布, 近海螺旋菌属仅分布于底层水体,谷氨酸杆菌 属仅分布于贻贝内脏团。所有样品中贻贝内脏 团包括的可培养细菌多样性最高(7个属), ROV279 (距底5m水)包括的可培养细菌菌株 最多(25株),而贻贝足菌株最少(4株)(图4)。

高盐低氮 MBM+L-Met 混合培养基的富集 培养样品中,12瓶来源于冷泉,1瓶来源于热 液区。从这些样品中总计分离获得 210 株菌, 189 株来源于冷泉样品, 21 株来源于热液区样 品。海杆菌属菌株最多, 共包括 39 株, 分属于 6个种,占总分离菌株的18.6%,在冷泉水体、 动物和热液区水体来源的样品中均有分布。海 源菌属为第2大优势属,共包括25株,分属于 4个种,占总分离菌株的11.9%,在冷泉水体、 沉积物和动物样品中均有分布。其次是假单胞 菌属(21株3个种)、食烷菌属(Alcanivorax, 17株 1个种)和盐单胞菌属(Halomonas, 17株3个种), 其中假单胞菌属仅分布于动物样品。海研站菌 属和鼠尾菌属为热液区水体 Hot1 (底层水)特有 属。所有样品中冷泉水体 ROV279 (距底 5 m 水)、潜铠虾刚毛和热液区水体 Hot1 (底层水) 包括的可培养细菌多样性最高(8个属),潜铠虾 卵包括的可培养细菌多样性最低(2个属)。潜铠 虾刚毛和热液区水体 Hot1 (底层水)包括的可培 养细菌菌株最多(21 株), 而冷泉水体 ROV278 (底层水)菌株最少(8株)(图 5)。

图 3 分离自不同培养基的可培养细菌在不同分类水平上的分布和多样性 A:门水平.B:纲水平.C: 不同分类水平上的多样性

Figure 3 Diversity of culturable bacteria isolated from different culture media at different taxonomic levels. A: At phylum level. B: At class level. C: Diversity at different taxonomic levels.

Figure 4 Distribution and diversity of culturable bacteria in different samples from MBM+L-Met mixed medium.

MBM+DMSP 混合培养基的富集培养样品 中,36 瓶来源于冷泉,8 瓶来源于热液区。这 些样品中总计分离获得 561 株菌, 489 株来源 于冷泉样品,72株来源于热液区样品。海杆菌 属菌株最多,共包括84株,分属于6个物种, 占总分离菌株的15.0%,在冷泉水体、沉积物、 动物和热液区水体、沉积物样品中均有分布。 其次是假单胞菌属(47株6种)、谷氨酸杆菌属 (44株2种)和芽孢杆菌属(43株5种)菌株较多, 其中假单胞菌属和芽孢杆菌属仅分布于冷泉水 体、沉积物和动物样品, 而谷氨酸杆菌属在冷 泉水体、沉积物、动物和热液区沉积物样品中 均有分布。交替单胞菌属(Alteromonas)和希瓦 氏菌属(Shewanella)为热液区特有属。所有样品 中,冷泉沉积物 ROV277 (0-2 cm)的可培养细 菌多样性最高(17 个属)且菌株最多(45 株),冷 泉沉积物 ROV277 (6-8 cm)、贻贝外套膜和热 液区沉积物 HZ04 (40-45 cm)的可培养细菌多 样性最低(均只有 1 个属),其中冷泉沉积物 ROV277 (6-8 cm)中分离得到的菌株最少(仅1株)。 总体上, 冷泉和热液区不同深度水体、沉积物 和动物样品中可培养细菌的菌株数量和多样性 有很大差别,冷泉沉积物样品可培养细菌种类 和数量最多(85种,312株),其次是冷泉水体(33 种, 101 株)、潜铠虾(18 种, 49 株)和热液区沉 积物(17种,45株),热液区水体(10种,27株) 和贻贝(8种,27株)样品中可培养细菌种类和数 量相对较少(图 6)。

2.4 DMSP 合成细菌多样性及其合成基因 鉴定

从 MBM+L-Met 混合培养基富集培养样品 分离获得的细菌中选取 56株进行 DMSP 合成能 力检测,其中 8 株具有 DMSP 合成能力,占被 检测菌株的 14.3%,分属于 2 个门(变形菌门和 拟杆菌门)、3 个纲(γ-变形菌纲 4 株、α-变形菌 纲 3 株、黄杆菌纲 1 株)、6 个属和 6 个种。在属 水平上,具有 DMSP 合成能力的 8 株细菌包括交 替单胞菌属和近海螺旋菌属各 2 株,海源菌属、 中华微菌属、假栖大洋菌属(*Pseudooceanicola*) 和弧菌属(*Vibrio*)各 1 株。其中,来源于冷泉水 体 的 α-变 形 菌 纲 细 菌 海 假 栖 大 洋 菌 (*Pseudooceanicola marinus*) LXJ108 DMSP 合成 能力较强,合成量达到 8.23 nmol (表 3)。

从高盐低氮 MBM+L-Met 混合培养基富集 培养样品分离获得的细菌中选取 75 株进行 DMSP 合成能力检测,其中 7 株(冷泉 6 株,热 液区 1 株)具有 DMSP 合成能力,占被检测菌株 的 9.3%,均属于变形菌门,其中 α-变形菌纲 4 株,γ-变形菌纲 3 株。在属水平上,具有 DMSP 合成能力的 7 株细菌包括近海螺旋菌属 3 株, 交替单胞菌属、假交替单胞菌属、海源菌属和 假栖大洋菌属各 1 株。其中 α-变形菌纲的海假 栖大洋菌(*Pseudooceanicola marinus*) LXJ117 和 深层近海螺旋菌(*Thalassospira profundimaris*) LXJ021、LXJ027 DMSP 合成能力较强,分别来 源于潜铠虾刚毛和冷泉水体(表 4)。

总体上,冷泉和热液区中可培养 DMSP 合 成细菌占比和多样性均较低,以α-变形菌纲和 γ-变形菌纲为主。简并 PCR 结果表明,7 株菌 中含有已知的 DMSP 合成基因,2 株含有 *dsyB*, 5 株含有 *mmtN*,其余菌株中未发现已知的 DMSP 合成基因,因此这些菌株可能含有潜在 的新型 DMSP 合成基因(表3、表4)。

2.5 DMSP 降解细菌多样性及其降解基因 鉴定

从 MBM+DMSP 混合培养基富集培养样品分 离获得的细菌中选取 266 株(冷泉 233 株, 热液 33 株)进行 DMSP 降解能力检测,其中 148 株(冷 泉 130 株, 热液区 18 株)具有 DMSP 降解活性, 占被检测菌株的 55.6%,分属于 4 门 6 纲(γ-变形 菌纲 53 株、放线菌纲 48 株、芽孢杆菌纲 26 株、 α-变形菌纲 17 株、β-变形菌纲 2 株和黄杆菌纲 2 株) 19 目 27 科 40 属 71 种。属水平上,谷氨酸杆菌属 为冷泉样品中的第一优势属,共包括 24 株,分属 于 2 个物种,占冷泉 DMSP 降解菌株的 18.5%, 在冷泉水体、沉积物和动物中均有分布;热液区

图 5 分离自高盐低氮 MBM+L-Met 混合培养基的可培养细菌在不同样品中的分布和多样性 Figure 5 Distribution and diversity of culturable bacteria in different samples from HSLN MBM+L-Met mixed medium.

图 6 分离自 MBM+DMSP 混合培养基的可培养细菌在不同样品中的分布和多样性 Figure 6 Distribution and diversity of culturable bacteria in different samples from MBM+DMSP mixed medium.

Strain source	Strain number	Species	DMSP synthesis activity (nmol)	DMSP synthesis gene			
ROV277	LXJ078	Thalassospira profundimaris	0.75	$mmtN^{[34]}$			
(bottom water)	LXJ079	Thalassospira profundimaris	0.55	$mmtN^{[34]}$			
QY01 (50-55 cm)	LXJ044	Sinomicrobium oceani	0.63				
	LXJ048	Idiomarina zobellii	0.57				
Mussel (gill)	LXJ091	Alteromonas tagae	0.42				
	LXJ093	Alteromonas tagae	0.30				
ROV279	LXJ106	Vibrio chagasii	0.73				
(water 5 m from bottom)	LXJ108	Pseudooceanicola marinus	8.23	<i>dsyB</i> ^[29]			

表 3 分离自 MBM+L-Met 混合培养基的 DMSP 合成细菌信息

Table 3 DMSP synthesis strains isolated from MBM+L-Met mixed medium

表 4	分离自高盐	低氮	MB	M+	L-Me	t 混	合	培养基的	DMSP	合成细	」菌信!	恴
m 1 1	1	. 4	•				1 0	TTOTAL				

|--|

Strain source	Strain number	Species	DMSP synthesis DMSP synthesi		
			activity (nmol)	gene	
Hot1 (bottom water)	LXJ035	Alteromonas macleodii	0.29		
ROV279 (water 40 m from bottom)	LXJ021	Thalassospira profundimaris	1.84	<i>mmtN</i> ^[34]	
ROV277 (bottom water)	LXJ027	Thalassospira profundimaris	2.86	$mmtN^{[34]}$	
ROV272 (5-6 cm)	LXJ008	Thalassospira profundimaris	0.30	$mmtN^{[34]}$	
ROV277 (8-10 cm)	LXJ110	Idiomarina loihiensis	0.47		
Shinkaia crosnieri (bristle)	LXJ113	Pseudoalteromonas shioyasakiensis	0.41		
	LXJ117	Pseudooceanicola marinus	3.18	$dsyB^{[29]}$	

DMSP 降解菌株中不同属的数量相差不大,海杆 菌属菌株数量最多(4 株),在热液区水体和沉积物 中均有分布,希瓦氏菌属为热液区特有的 DMSP 降解类群。冷泉沉积物 ROV277 (0-2 cm)中 DMSP 降解细菌多样性最高(14 个属)且菌株数量最多 (16 株)。冷泉和热液区不同深度水体、沉积物和 动物样品中 DMSP 降解细菌数量和多样性有很 大差别,冷泉沉积物中 DMSP 降解菌种类和数 量最多(49 个种,78 株),其次是冷泉水体(17 个 种,24 株)、潜铠虾(13 个种,16 株)、贻贝(6 个种, 12 株)、热液区水体(8 个种,10 株)和热液区沉积 物(7 个种,8 株)(图 7)。

在 148 株 DMSP 降解细菌中, 19 株可通过 裂解和脱甲基 2 种途径降解 DMSP 产生 DMS 和 MeSH, 127 株仅能通过裂解途径产生 DMS, 2 株仅能通过脱甲基途径产生 MeSH。可通过裂 解途径降解 DMSP 的菌株共计 146 株,远多于

🖂 actamicro@im.ac.cn, 🕾 010-64807516

能通过脱甲基途径降解 DMSP 的菌株(21 株),表 明冷泉和热液区的 DMSP 降解细菌可能主要通 过裂解途径降解 DMSP。在 146 株 DMSP 裂解 菌中,有55株活性较强,产生DMS的速率超 过 0.10 nmol/h, 其中放线菌纲 28 株、α-变形菌 纲 10 株、γ-变形菌纲 10 株、芽孢杆菌纲 7 株, 属水平上谷氨酸杆菌属的菌株最多(17 株),表 明谷氨酸杆菌属可能是冷泉中介导 DMSP 裂解 的主要类群(表 5)。简并 PCR 结果表明, DMSP 降解菌株中有 2 株(海源菌属)含有 dddD^[47], 2 株 (海源菌属和亚硫酸盐杆菌属)含有 dddL^[41],5 株 (海源菌属、海杆菌属和假交替单胞菌属)含有 dddX^[48], 3 株(海源菌属和假单胞菌属)含有 *dmdA*(C2)^[58], 未检测到 *dddP*^[42]和 *dmdA* (A1、 A2、B3、D1、E2)^[58],其余菌株中未发现已知 的 DMSP 降解基因,可能含有潜在的新型 DMSP 降解基因。

图 7 DMSP 降解细菌在不同样品中的分布和多样性

Figure 7 Distribution and diversity of DMSP-degrading bacteria in different samples.

表 5 分离自 MBM+DMSP 混合培养基的 DMSP 降解细菌信息

Table 5	DMSP	degradation	strains	isolated	from	MBM-	+DMSP	mixed	medium

Strain source	Strain	Species	DMSP demethylation	DMSP cleavage
	number	-	activity	activity (nmol/h)
CTD03 (bottom water)	LXJ198	Hyphomonas oceanitis	_	1.58
	LXJ143	Pseudohoeflea suaedae	-	1.57
	LXJ144	Pseudomonas stutzeri	-	1.27
	LXJ145	Pseudohoeflea suaedae	-	1.62
	LXJ197	Staphylococcus cohnii	-	0.12
	LXJ199	Nesterenkonia halobia	_	0.17
C1 (105–108 cm)	LXJ231	Sulfitobacter pontiacus	-	1.83
	LXJ232	Sulfitobacter pontiacus	_	1.83
ROV278 (bottom water)	LXJ189	Glutamicibacter creatinolyticus	_	1.35
	LXJ190	Bacillus spizizenii	-	1.21
	LXJ268	Alcanivorax dieselolei	-	1.89
	LXJ269	Marinobacter nauticus	_	0.20
Shinkaia crosnieri (male gonad)	LXJ165	Marinobacter flavimaris	+	1.82
	LXJ166	Marinobacter flavimaris	+	1.74
	LXJ177	Glutamicibacter creatinolyticus	_	0.15
				(待续)

				(续表 5)
Strain source	Strain	Species	DMSP demethylation	DMSP cleavage
	number		activity	activity (nmol/h)
Mussel (visceral mass)	LXJ194	Hyphomonas oceanitis	-	1.67
	LXJ155	Glutamicibacter creatinolyticus	-	0.22
	LXJ193	Glutamicibacter creatinolyticus	-	0.13
ROV278 (6-8 cm)	LXJ258	Glutamicibacter creatinolyticus	-	0.39
	LXJ260	$Brachy bacterium\ paraconglomeratum$	-	0.92
	LXJ195	Glutamicibacter creatinolyticus	-	0.18
ROV279 (6-8 cm)	LXJ261	Staphylococcus equorum subsp. linens	-	0.91
	LXJ262	Staphylococcus cohnii	-	0.52
RYSHW (bottom sediments)	LXJ271	Shewanella xiamenensis	+	0.90
	LXJ270	Georgenia muralis	-	0.12
	LXJ273	Shewanella seohaensis	-	0.20
CTD03 (surface water)	LXJ186	Micrococcus endophyticus	-	0.12
CTD03 (800 m water)	LXJ200	Pseudohoeflea suaedae	-	0.15
	LXJ245	Exiguobacterium mexicanum	-	0.11
Hot1 (5 m water)	LXJ205	Pseudohoeflea suaedae	-	0.16
Hot1 (1 000 m water)	LXJ148	Pseudohoeflea suaedae	-	0.30
	LXJ149	Idiomarina loihiensis	-	0.14
QY01 (5-10 cm)	LXJ134	Glutamicibacter creatinolyticus	-	0.14
	LXJ214	Micrococcus endophyticus	-	0.15
	LXJ215	Micrococcus luteus	-	0.15
C2- (0-5 cm)	LXJ136	Glutamicibacter creatinolyticus	-	0.19
C2- (235-240 cm)	LXJ182	Glutamicibacter creatinolyticus	-	0.13
C1 (0-3 cm)	LXJ201	Paracoccus halotolerans	-	0.22
	LXJ202	Glutamicibacter creatinolyticus	-	0.17
	LXJ223	Kocuria palustris	-	0.18
	LXJ224	Halomonas meridiana	-	0.19
C1 (54–57 cm)	LXJ137	Glutamicibacter creatinolyticus	-	0.18
ROV277 (0-2 cm)	LXJ241	Staphylococcus equorum subsp. linens	-	0.19
ROV278 (0-2 cm)	LXJ251	Marinobacter nauticus	-	0.13
	LXJ253	Micrococcus luteus	-	0.28
ROV279 (water 5 m from bottom)	LXJ181	Micrococcus luteus	-	0.15
Shinkaia crosnieri (bristle)	LXJ170	Micrococcus endophyticus	-	0.12
Shinkaia crosnieri (egg)	LXJ159	Glutamicibacter creatinolyticus	-	0.21
	LXJ162	Staphylococcus equorum subsp. linens	-	0.13
	LXJ163	Kocuria rosea	-	0.12
	LXJ176	Glutamicibacter arilaitensis	-	0.14
Mussel (gill)	LXJ152	Glutamicibacter creatinolyticus	-	0.12
Mussel (mantle)	LXJ158	Glutamicibacter creatinolyticus	-	0.24
Mussel (foot)	LXJ156	Glutamicibacter creatinolyticus	-	0.19
	LX1157	Glutamicibacter creatinolyticus	_	0.22

LXJ157Glutamicibacter creatinolyticus-0.22DMSP cleavage rate over 0.10 nmol/h. DMSP lysed strains that can produce MeSH are indicated by "+", and those cannot
produce MeSH are indicated by "-".

3 讨论与结论

DMSP 的合成与降解是海洋中碳、硫元素 循环的重要环节,对于多种海洋生物有重要的 生理意义。尽管宏基因组学等非培养方法已广 泛应用于 DMSP 合成与降解细菌的研究,但仍 需要与纯培养方法相结合,从而发掘和鉴定潜 在的新型 DMSP 合成与降解细菌。本研究对南 海 F-冷泉和冲绳海槽 Yaeyama Knoll 热液区的 DMSP 合成与降解细菌进行了富集培养和分离 鉴定,探究了这 2 种特殊海洋环境中可培养的 DMSP 合成与降解细菌的多样性,并发现了潜 在的新型 DMSP 代谢细菌。

本研究利用3种富集培养基对来自南海 F-冷泉和冲绳海槽 Yaeyama Knoll 热液区多个站 位的水体、沉积物和动物样品进行了富集培养, 随后利用2216E培养基共分离纯化出874株菌。 样品富集培养后分离获得的可培养细菌以变形 菌门为优势类群,其余为厚壁菌门、放线菌门 和拟杆菌门, 纲水平为 γ-变形菌纲占主导, 这 与此前海洋环境的可培养细菌研究得到的结论 一致^[59-61]。属水平上,海杆菌属菌株最多,而 周田田^[62]对 F-冷泉样品的分菌结果为弧菌属占 绝对优势,杨硕等^[63]在 F-冷泉沉积物中分离的 细菌以芽孢杆菌属为主。周田田[62]只使用了 MBM+L-Met 混合培养基和 MBM+DMSP 混合 培养基在 16 ℃条件下进行富集培养, 后续利用 2216E 培养基在 28 ℃条件下进行分离培养;杨 硕等^[63]将部分样品直接稀释涂布于 R2A 培养 基并在 28 ℃条件下分离培养,另一部分样品先 使用 2216E 液体培养基在 28 ℃下富集培养,后 续使用 2216E 固体培养基在 28 ℃条件下进行 分离培养。样品来源、培养基和培养条件等因 素的区别,可能是导致所分离菌株类群存在差 异的主要原因。

经 MBM+DMSP 混合培养基富集培养后分 离获得的细菌种类和数量(561株, 120个种)远 高于高盐低氮 MBM+L-Met 混合培养基(210 株, 54个种)和MBM+L-Met混合培养基获得的数量 (103 株, 31 个种)。这主要是因为 DMSP 可作 为细菌的碳源和硫源,所以在培养基中添加 DMSP 能提高所获得细菌的多样性和数量。相 比之下,高盐低氮 MBM+L-Met 混合培养基富 集后细菌种类和数量远高于 MBM+L-Met 混合 培养基,这可能是由于高盐低氮条件促进了 DMSP 的合成,影响了能够利用 DMSP 的细菌 生长和繁殖。门水平上, 经3种不同培养基富 集培养后分离得到的细菌均以变形菌门占绝对 优势,拟杆菌门占比均最低。纲水平上,γ-变 形菌纲均占绝对优势,β-变形菌纲只存在于 MBM+DMSP 混合培养基中且占比最低。属水 平上,海杆菌属菌株在不同的富集培养基中均 为优势属、且广泛分布于冷泉水体、沉积物、 动物和热液区水体、沉积物样品中, 推测其物 种有极强的环境适应性。假单胞菌属也占优势 但只分布于冷泉各样品中,说明其物种适应冷 泉环境而非热液区环境。值得注意的是,谷氨 酸杆菌属在 MBM+DMSP 混合培养基中为优势 属,可能与其能够利用 DMSP 有关。

在 2 种 DMSP 合成富集条件下, 富集培养 后 DMSP 浓度升高的样品都占少数, 其中高盐 低氮 MBM+L-Met 混合培养基 DMSP 浓度升高 的样品瓶数多于 MBM+L-Met 混合培养基, 说 明高盐低氮条件的确能够促进细菌 DMSP 合 成^[29]。进一步检测代表性菌株的 DMSP 合成能 力, DMSP 合成细菌在分离得到的可培养细菌 中占比较低, 且多数合成能力较弱。α-变形菌 纲和 γ-变形菌纲菌株为主要的 DMSP 合成类 群, 这与 Liu 等^[51]、Zhang 等^[52]和高雪雨等^[53] 的研究结果一致。Liu 等^[51]在中国东海水体和 沉积物中所分离的 DMSP 合成细菌以 α-变形菌 纲为主, Zhang 等^[52]和高雪雨等^[53]对中国南海 沉积物、北极北欧海海水、南极菲尔德斯半岛 海水和沉积物的研究发现, DMSP 合成细菌较 少且 γ-变形菌纲为优势类群。另外值得注意的 是,在检测代表菌株是否具有 DMSP 合成能力 的过程中,发现有不少菌株具有合成 DMS 的能 力,主要是海杆菌属,海杆菌属此前被认为具 有 DMSP 合成活性,现在发现其能裂解 L-Met 产生 MeSH,再将 MeSH 甲基化生成 DMS^[64]。 DMS 的合成可能是冷泉和热液生态系统中比 DMSP 合成更为普遍的过程。

与 DMSP 合成细菌情况不同,具有 DMSP 降解活性的菌株在被检测的总菌株中的数量占 比和多样性均较高, 且超过 1/3 的菌株降解能 力较强。其中具有 DMSP 裂解途径的菌株占比 为 54.9%, 与中国东海水体中的 DMSP 裂解菌 株比例(约 42.0%)接近^[50]。在所有 DMSP 降解 菌株中,具有 DMSP 裂解能力的菌株(146 株) 远多于具有 DMSP 脱甲基能力的菌株(21 株)。 刘骥^[50]对夏季东海的研究和赵秀秀^[65]对马里亚 纳海沟的研究也发现,DMSP裂解细菌比DMSP 脱甲基细菌数量多。然而, Howard 等^[66]研究发 现海洋表层水体中能够通过脱甲基途径降解 DMSP 的细菌占细菌总数的一半以上。在纲水 平上, 冷泉来源的 DMSP 降解菌以放线菌纲和 γ-变形菌纲为主, 热液区来源的 DMSP 降解菌 以γ-变形菌纲为主,林钰等^[61]和高雪雨等^[53]也 发现 γ-变形菌纲细菌是马里亚纳海沟沉积物和 南、北极环境 DMSP 降解菌的主要类群。值得 一提的是,放线菌纲的谷氨酸杆菌属为本研究 发现的新型 DMSP 降解类群,在冷泉和热液区 广泛分布。不同水体、沉积物和动物样品中 DMSP 降解类群差异很大,其中冷泉沉积物 DMSP 降解菌的数量和种类远高于其余样品,

DMSP 的降解可能对不少冷泉沉积物中的细菌 有重要的生理意义。

本研究对冷泉和热液区这 2 个化能生态系统不同深度水体、沉积物以及动物中 DMSP 合成与降解细菌及相关基因进行了发掘与分析,拓展了对自然界 DMSP 合成与降解细菌多样性的认识,为进一步了解参与全球 DMSP/DMS循环的海洋微生物提供了基础资料,同时为寻找新型 DMSP 合成与降解途径/基因提供了菌株资源。

致谢

感谢中国海洋大学"东方红 3 号"综合科学 考察船全体科学家和船员在航次中协助采集海 水、沉积物和动物样品。

作者贡献声明

高熠、刘秀杰:实验操作、数据收集和处理、论文撰写和修改;刘仪、李倩宇:实验操作、数据收集和处理;郭瑞红:论文修改;张晓华、张蕴慧:研究构思和设计、论文修改。

作者利益冲突公开声明

作者声明没有任何可能会影响本文所报告 工作的已知经济利益或个人关系。

参考文献

- BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6: 725-734.
- [2] SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916.
- [3] MACHIYAMA H, LIN S, FUJIKURA K, HUANG C, KU C, LIN L, LIU C, MORITA S, NUNOURA T, SOH W, TOKI T, YANG TF. Discovery of "Hydrothermal"

chemosynthetic community in a cold seep environment, Taiwan Ridge: seafloor observation results from first rov cruise, off southwestern Taiwan[C]//AGU Fall Meeting Abstracts, US: American Geophysical Union, 2007: OS23A-1041.

- [4] LIN S, LIM Y, LIU C, YANG TF, CHEN YG, MACHIYAMA H, SOH W, FUJIKURA K. Taiwan Ridge, a cold seep with densely populated chemosynthetic community in the passive margin, southwest of Taiwan[J]. Geochimica et Cosmochimica Acta, 2007, 71: 582.
- [5] LIN S, MACHIYAMA H, CHEN Y, SOH W, YANG T, WANG Y, LIM Y. Near sea floor gas hydrate formation and influence on pore water chemistry and authigenic carbonate at the Taiwan Ridge, South China sea[C]//AGU Fall Meeting Abstracts, US: American Geophysical Union, 2007: OS21A-05.
- [6] WANG XD, GUAN HX, QIU JW, XU T, PECKMANN J, CHEN DF, FENG D. Macro-ecology of cold seeps in the South China Sea[J]. Geosystems and Geoenvironment, 2022, 1(3): 100081.
- [7] TIVEY MK. How to build a black smoker chimney[J]. Oceanus, 1998, 41(2): 22-26.
- [8] BEAULIEU SE, BAKER ET, GERMAN CR, MAFFEI A. An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4892-4905.
- [9] MIYAZAKI J, KAWAGUCCI S, MAKABE A, TAKAHASHI A, KITADA K, TORIMOTO J, MATSUI Y, TASUMI E, SHIBUYA T, NAKAMURA K, HORAI S, SATO S, ISHIBASHI JI, KANZAKI H, NAKAGAWA S, HIRAI M, TAKAKI Y, OKINO K, WATANABE HK, KUMAGAI H, et al. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll[J]. Royal Society Open Science, 2017, 4(12): 171570.
- [10] LEVIN LA, BACO AR, BOWDEN DA, COLACO A, CORDES EE, CUNHA MR, DEMOPOULOS AWJ, GOBIN J, GRUPE BM, LE J, METAXAS A, NETBURN AN, ROUSE GW, THURBER AR, TUNNICLIFFE V, van DOVER CL, VANREUSEL A, WATLING L. Hydrothermal vents and methane seeps: rethinking the sphere of influence[J]. Frontiers in Marine Science, 2016, 3: 72.
- [11] KIENE RP, LINN LJ, BRUTON JA. New and important roles for DMSP in marine microbial communities[J]. Journal of Sea Research, 2000, 43(3/4): 209-224.

- [12] CHALLENGER F, SIMPSON MI. A precursor of the dimethyl sulphide evolved by *Polysiphonia fastigiata*; dimethyl-beta-propiothetine (dimethyl-betacarboxythylsulphonium hydroxide) and its salts[J]. Biochemical Journal, 1947, 41(3): xl.
- [13] ARCHER SD, WIDDICOMBE CE, TARRAN GA, REES AP, BURKILL PH. Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea[J]. Aquatic Microbial Ecology, 2001, 24: 225-241.
- [14] HOWARD EC, HENRIKSEN JR, BUCHAN A, REISCH CR, BÜRGMANN H, WELSH R, YE WY, GONZÁLEZ JM, MACE K, JOYE SB, KIENE RP, WHITMAN WB, MORAN MA. Bacterial taxa that limit sulfur flux from the ocean[J]. Science, 2006, 314(5799): 649-652.
- [15] KIRST GO, THIEL C, WOLFF H, NOTHNAGEL J, WANZEK M, ULMKE R. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role[J]. Marine Chemistry, 1991, 35(1/2/3/4): 381-388.
- [16] ZHENG YF, WANG JY, ZHOU S, ZHANG YH, LIU J, XUE CX, WILLIAMS BT, ZHAO XX, ZHAO L, ZHU XY, SUN C, ZHANG HH, XIAO T, YANG GP, TODD JD, ZHANG XH. Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments[J]. Nature Communications, 2020, 11(1): 4658.
- [17] SUNDA W, KIEBER DJ, KIENE RP, HUNTSMAN S. An antioxidant function for DMSP and DMS in marine algae[J]. Nature, 2002, 418(6895): 317-320.
- [18] KARSTEN U, KÜCK K, VOGT C, KIRST GO. Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant[M]//KIENE RP, VISSCHER PT, KELLER MD, KIRST GO. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Boston. MA: Springer US, 1996: 143-153.
- [19] WOLFE GV, STEINKE M, KIRST GO. Grazing-activated chemical defence in a unicellular marine alga[J]. Nature, 1997, 387: 894-897.
- [20] JOHNSON WM, KIDO SOULE MC, KUJAWINSKI EB. Evidence for quorum sensing and differential metabolite production by a marine bacterium in response to DMSP[J]. The ISME Journal, 2016, 10(9): 2304-2316.
- [21] TROTTMANN F, ISHIDA K, FRANKE J, STANIŠIĆ A, ISHIDA-ITO M, KRIES H, POHNERT G,

HERTWECK C. Sulfonium acids loaded onto an unusual thiotemplate assembly line construct the cyclopropanol warhead of a *Burkholderia* virulence factor[J]. Angewandte Chemie International Edition, 2020, 59(32): 13511-13515.

- [22] CHARLSON RJ, LOVELOCK JE, ANDREAE MO, WARREN SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate[J]. Nature, 1987, 326: 655-661.
- [23] KELLER MD, BELLOWS WK, GUILLARD RRL. Dimethylsulfide production and marine phytoplankton: an additional impact of unusual blooms[M]//Novel Phytoplankton Blooms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989: 101-115.
- [24] EDWARDS DM, REED RH, CHUDEK JA, FOSTER R, STEWART WDP. Organic solute accumulation in osmotically-stressed *Enteromorpha intestinalis*[J]. Marine Biology, 1987, 95(4): 583-592.
- [25] RAINA JB, TAPIOLAS DM, FORÊT S, LUTZ A, ABREGO D, CEH J, SENECA FO, CLODE PL, BOURNE DG, WILLIS BL, MOTTI CA. DMSP biosynthesis by an animal and its role in coral thermal stress response[J]. Nature, 2013, 502(7473): 677-680.
- [26] PAQUET L, RATHINASABAPATHI B, SAINI H, ZAMIR L, DA GG, HUANG ZH, HANSON AD. Accumulation of the compatible solute 3-dimethylsulfoniopropionate in sugarcane and its relatives, but not other gramineous crops[J]. Functional Plant Biology, 1994, 21(1): 37.
- [27] JAMES F, PAQUET L, SPARACE SA, GAGE DA, HANSON AD. Evidence implicating dimethylsulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis[J]. Plant Physiology, 1995, 108(4): 1439-1448.
- [28] KOCSIS MG, NOLTE KD, RHODES D, SHEN TL, GAGE DA, HANSON AD. Dimethylsulfoniopropionate biosynthesis in *Spartina alterniflora1*. evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates[J]. Plant Physiology, 1998, 117(1): 273-281.
- [29] CURSON ARJ, LIU J, BERMEJO MARTÍNEZ A, GREEN RT, CHAN Y, CARRIÓN O, WILLIAMS BT, ZHANG SH, YANG GP, BULMAN PAGE PC, ZHANG XH, TODD JD. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process[J]. Nature Microbiology, 2017, 2: 17009.
- [30] GAGE DA, RHODES D, NOLTE KD, HICKS WA,

🖂 actamicro@im.ac.cn, 🕾 010-64807516

LEUSTEK T, COOPER AJ, HANSON AD. A new route for synthesis of dimethylsulphoniopropionate in marine algae[J]. Nature, 1997, 387(6636): 891-894.

- [31] UCHIDA A, OOGURI T, ISHIDA T, ISHIDA Y. Incorporation of methionine into dimethylthiopropanoic acid in the dinoflagellate *Crypthecodinium cohnii*[J]. Nippon Suisan Gakkaishi, 1993, 59(5): 851-855.
- [32] CURSON ARJ, WILLIAMS BT, PINCHBECK BJ, SIMS LP, MARTÍNEZ AB, RIVERA PPL, KUMARESAN D, MERCADÉ E, SPURGIN LG, CARRIÓN O, MOXON S, CATTOLICO RA, KUZHIUMPARAMBIL U, GUAGLIARDO P, CLODE PL, RAINA JB, TODD JD. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton[J]. Nature Microbiology, 2018, 3(4): 430-439.
- [33] KAGEYAMA H, TANAKA Y, SHIBATA A, WADITEE-SIRISATTHA R, TAKABE T. Dimethylsulfoniopropionate biosynthesis in a diatom *Thalassiosira pseudonana*: identification of a gene encoding MTHB-methyltransferase[J]. Archives of Biochemistry and Biophysics, 2018, 645: 100-106.
- [34] WILLIAMS BT, COWLES K, MARTÍNEZ AB, CURSON ARJ, ZHENG YF, LIU JL, NEWTON-PAYNE S, HIND AJ, LI CY, RIVERA PPL, CARRIÓN O, LIU J, SPURGIN LG, BREARLEY CA, MACKENZIE BW, PINCHBECK BJ, PENG M, PRATSCHER J, ZHANG XH, ZHANG YZ, MURRELL JC, TODD JD. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments[J]. Nature Microbiology, 2019, 4(11): 1815-1825.
- [35] WANG JY, CURSON ARJ, ZHOU S, CARRIÓN O, LIU J, VIEIRA AR, WALSHAM KS, MONACO S, LI CY, DONG QY, WANG Y, RIVERA PPL, WANG XD, ZHANG M, HANWELL L, WALLACE M, ZHU XY, LEÃO PN, LEA-SMITH DJ, ZHANG YZ, ZHANG XH, TODD JD. Alternative dimethylsulfoniopropionate biosynthesis enzymes in diverse and abundant microorganisms[J]. Nature Microbiology, 2024, 9(8): 1979-1992.
- [36] CURSON ARJ, TODD JD, SULLIVAN MJ, JOHNSTON AWB. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes[J]. Nature Reviews Microbiology, 2011, 9(12): 849-859.
- [37] REISCH CR, MORAN MA, WHITMAN WB. Bacterial catabolism of dimethylsulfoniopropionate

(DMSP)[J]. Frontiers in Microbiology, 2011, 2: 172.

- [38] REISCH CR, STOUDEMAYER MJ, VARALJAY VA, AMSTER IJ, MORAN MA, WHITMAN WB. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria[J]. Nature, 2011, 473(7346): 208-211.
- [39] YOCH DC. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide[J]. Applied and Environmental Microbiology, 2002, 68(12): 5804-5815.
- [40] THUME K, GEBSER B, CHEN L, MEYER N, KIEBER DJ, POHNERT G. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle[J]. Nature, 2018, 563(7731): 412-415.
- [41] CURSON ARJ, ROGERS R, TODD JD, BREARLEY CA, JOHNSTON AWB. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and *Rhodobacter sphaeroides*[J]. Environmental Microbiology, 2008, 10(3): 757-767.
- [42] TODD JD, CURSON ARJ, DUPONT CL. NICHOLSON P, JOHNSTON AWB. The dddP gene, encoding а novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi[J]. Environmental Microbiology, 2009, 11(6): 1376-1385.
- [43] TODD JD, CURSON ARJ, KIRKWOOD M, SULLIVAN MJ, GREEN RT, JOHNSTON AWB. DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria[J]. Environmental Microbiology, 2011, 13(2): 427-438.
- [44] TODD JD, KIRKWOOD M, NEWTON-PAYNE S, JOHNSTON AWB. DddW, a third DMSP lyase in a model *Roseobacter* marine bacterium, *Ruegeria pomeroyi* DSS-3[J]. The ISME Journal, 2012, 6(1): 223-226.
- [45] CURSON ARJ, SULLIVAN MJ, TODD JD, JOHNSTON AWB. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of *Proteobacteria*[J]. The ISME Journal, 2011, 5(7): 1191-1200.
- [46] SUN J, TODD JD, THRASH JC, QIAN YP, QIAN MC, TEMPERTON B, GUO JZ, FOWLER EK, ALDRICH JT, NICORA CD, LIPTON MS, SMITH RD, de LEENHEER P, PAYNE SH, JOHNSTON AWB,

DAVIE-MARTIN CL, HALSEY KH, GIOVANNONI SJ. The abundant marine bacterium *Pelagibacter* simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol[J]. Nature Microbiology, 2016, 1(8): 16065.

- [47] TODD JD, ROGERS R, LI YG, WEXLER M, BOND PL, SUN L, CURSON ARJ, MALIN G, STEINKE M, JOHNSTON AWB. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria[J]. Science, 2007, 315(5812): 666-669.
- [48] LI CY, WANG XJ, CHEN XL, SHENG Q, ZHANG S, WANG P, QUARESHY M, RIHTMAN B, SHAO X, GAO C, LI FC, LI SY, ZHANG WP, ZHANG XH, YANG GP, TODD JD, CHEN Y, ZHANG YZ. A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA[J]. eLife, 2021, 10: e64045.
- [49] WANG SY, ZHANG N, TENG ZJ, WANG XD, TODD JD, ZHANG YZ, CAO HY, LI CY. A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria[J]. Environmental Microbiology, 2023, 25(7): 1238-1249.
- [50] 刘骥. 中国东海 DMSP 分解和合成代谢细菌多样性及典型菌株相关功能基因研究[D]. 青岛:中国海洋大学博士学位论文, 2018.
 LIU J. Diversity of DMSP-decomposing and anabolic bacteria and related functional genes of typical strains in the East China Sea of China[D]. Qingdao: Doctoral Dissertation of Ocean University of China, 2018 (in Chinese).
- [51] LIU J, ZHANG YH, LIU JL, ZHONG HH, WILLIAMS BT, ZHENG YF, CURSON ARJ, SUN C, SUN H, SONG DL, WAGNER MACKENZIE B, BERMEJO MARTÍNEZ A, TODD JD, ZHANG XH. Bacterial dimethylsulfoniopropionate biosynthesis in the East China Sea[J]. Microorganisms, 2021, 9(3): 657.
- [52] ZHANG YH, SUN K, SUN C, SHI XC, TODD JD, ZHANG XH. Dimethylsulfoniopropionate biosynthetic bacteria in the subseafloor sediments of the South China Sea[J]. Frontiers in Microbiology, 2021, 12: 731524.
- [53] 高雪雨,商丽,吴蕾蕾,张晓华,史晓翀.参与 DMSP/DMS 循环的极地细菌初步筛选及其多样性研 究[J]. 中国海洋大学学报(自然科学版), 2022, 52(9): 61-70.

GAO XY, SHANG L, WU LL, ZHANG XH, SHI XC. Preliminary screening of polar bacteria participating in DMSP/DMS cycle and the diversity analysis[J]. Periodical of Ocean University of China, 2022, 52(9): 61-70 (in Chinese).

- [54] 张晓华,刘吉文,于敏,战渊超,史晓翀,莫照兰, 张蕴慧,王晓磊,杨世民,李伟,高风,于淑贤,李 静,张钰琳,何新新,王金燕,冉凌蔓,刘荣华,翟 欣奕,顾冰玉,等.海洋微生物学[M].3 版.北京: 科学出版社,2024:1-496.
 ZHANG XH, LIU JW, YU M, ZHAN YC, SHI XC, MO ZL, ZHANG YH, WANG XL, YANG SM, LI W, GAO F, YU SX, LI J, ZHANG YL, HE XX, WANG JY, RAN LM, LIU RH, ZHAI XY, GU BY, et al. Marine Microliology[M]. 3rd Edition. Beijing: Science Press, 2024: 1-496 (in Chinese).
- [55] MOORE E, ARNSCHEIDT A, KRÜGER A, STRÖMPL C, MAU M. Section 1 update: simplified protocols for the preparation of genomic DNA from bacterial cultures[M]//Molecular Microbial Ecology Manual. Dordrecht: Springer Netherlands, 2008: 1905-1919.
- [56] WEISBURG WG, BARNS SM, PELLETIER DA, LANE DJ. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2): 697-703.
- [57] RAINA JB, TAPIOLAS D, WILLIS BL, BOURNE DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur[J]. Applied and Environmental Microbiology, 2009, 75(11): 3492-3501.
- [58] VARALJAY VA, HOWARD EC, SUN SL, MORAN MA. Deep sequencing of a dimethylsulfoniopropionatedegrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data[J]. Applied and Environmental Microbiology, 2010, 76(2): 609-617.
- [59] 商丽, 史晓翀, 王晓宇, 张晓华. 北欧海海水可培养 细菌多样性[J]. 微生物学报, 2017, 57(9): 1323-1331. SHANG L, SHI XC, WANG XY, ZHANG XH. Diversity of culturable bacterial in the surface seawater of the Nordic Sea[J]. Acta Microbiologica Sinica, 2017, 57(9): 1323-1331 (in Chinese).
- [60] 孙创,王金燕,张钰琳,张蕴慧,朱晓雨,陈朝晖, 张晓华.利用改良培养基探究西太平洋海水可培养 细菌多样性[J]. 微生物学报, 2021, 61(4): 845-861. SUN C, WANG JY, ZHANG YL, ZHANG I, ZHU XY, CHEN HC, ZHANG XH. Exploring the diversity of cultivated bacteria in the Western Pacific waters

through improved culture media[J]. Acta Microbiologica Sinica, 2021, 61(4): 845-861 (in Chinese).

- [61] 林钰,刘荣华,周顺,朱晓雨,王金燕,张晓华.马里亚纳海沟沉积物可培养异养细菌的多样性及其DMSP 降解能力[J].微生物学报,2021,61(4):828-844.
 LIN Y, LIU RH, ZHOU S, ZHU XY, WANG JY, ZHANG XH. Diversity of culturable heterotrophic bacteria from sediments of the Mariana Trench and their ability to degrade dimethylsulfoniopropionate (DMSP)[J]. Acta Microbiologica Sinica, 2021, 61(4):828-844 (in Chinese).
- [62] 周田田. 南海 F 冷泉区 DMSP 降解与合成菌的筛选 及弧菌中新型 DMSP/L-Met 降解基因的研究[D]. 青岛: 中国海洋大学硕士学位论文, 2024. ZHOU TT. Screening of DMSP degrading and producing strains in F Cold Seep of the South China Sea and research on the new-type DMSP/L-Met degradation genes in vibrios[D]. Qingdao: Master's Thesis of Ocean University of China, 2024 (in Chinese).
- [63] 杨硕,高峥,邵宗泽.南海冷泉区深海沉积物中细菌的分离培养及多样性分析[J]. 氨基酸和生物资源,2016,38(1):34-40.
 YANG S, GAO Z, SHAO ZZ. Diversity of cultivable bacteria in deep sea sediments from cold seeps in the South China Sea[J]. Amino Acids & Biotic Resources, 2016, 38(1): 34-40 (in Chinese).
- [64] ZHANG YH, SUN C, GUO ZH, LIU LY, ZHANG XT, SUN K, ZHENG YF, GATES AJ, TODD JD, ZHANG XH. An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria[J]. Nature Microbiology, 2024, 9(10): 2614-2625.
- [65] 赵秀秀. 马里亚纳海沟异养细菌的分离培养、碳源利用及 DMSP 合成与降解能力研究[D]. 青岛: 中国海洋大学硕士学位论文, 2020. ZHAO XX. Isolation, culture, carbon source utilization, DMSP synthesis and degradation ability of heterotrophic bacteria in Mariana Trench[D]. Qingdao: Master's Thesis of Ocean University of China, 2020 (in Chinese)
- [66] HOWARD EC, SUN SL, BIERS EJ, MORAN MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters[J]. Environmental Microbiology, 2008, 10(9): 2397-2410.