微生物学报 Acta Microbiologica Sinica 48(8): 1048~1055; 4 August 2008 ISSN 0001-6209; CN11-1995/Q http://journals.im.ac.cn

一株丁二酸产生菌的选育及代谢分析

姜绍通,李兴江,潘丽军,魏兆军,陈晓晖,章建国,唐学英,熊建春,袁媛,张袁园 (合肥工业大学生物与食品工程学院,合肥 230009)

摘要:【目的】了解细胞代谢过程,并最终选育出高产突变株,对丁二酸的工业生物转化有重要意义。【方 法】在菌株生化及分子鉴定基础上,讨论了菌株的代谢途径,便于实施有针对性的诱变选育,利用矩阵 计算了流量分布以及用扰动法分析了代谢节点。【结果】菌株 S.JST 经鉴定为产丁二酸放线杆菌,酶活检 测表明磷酸烯醇式丙酮酸羧激酶、苹果酸脱氢酶在丁二酸代谢过程中具有较高酶活,出发株的流量分布 显示副产物乙醇的流量仅次于丁二酸的流量,选育获得的突变株乙醇脱氢酶酶活显著降低,丁二酸与乙 醇的流量分别有 34%升高与 93%的降低,序列分析发现突变株的乙醇脱氢酶酶基因中存在一个突变位 点,且生物信息学表明该位点编码的氨基酸序列与该酶的 NADH 连接活性有联系。【结论】对产丁二酸 放线杆菌采用定向选育的方法能够有效改善细胞代谢,并最终提高丁二酸产量。

关键词:丁二酸;鉴定;代谢通量;选育

中图分类号:Q93 文献标识码:A 文章编号:0001-6209 (2008) 08-1048-08

丁二酸作为一种重要的有机酸,广泛应用于食品、医药、香料、染料、油漆、塑料和照相材料工业,可以取代苯合成 250 种以上的化工产品。目前丁二酸主要依赖石化原料制备,使其广泛应用受到限制^[1]。 生物转化可再生原料生产丁二酸的方法倍受重视,以可再生淀粉糖和二氧化碳作为主要原料,不仅摆脱了 对石化原料的依赖,而且开辟了温室气体二氧化碳利 用的新途径,使丁二酸成为未来最重要的生物基化工 产品之一,其工业规模的微生物转化将成为一个最具 发展潜力的绿色工艺模式^[2]。

丁二酸是许多严格厌氧菌和兼性厌氧菌的代谢 中间体^[3]。产生丁二酸的微生物包括丙酸产生菌、典 型的胃肠菌、瘤胃菌等^[4,5]。许多丁二酸产生菌是从 瘤胃中分离出来的,产丁二酸放线杆菌就是其中最重 要的一种^[6]。产丁二酸放线杆菌的代谢过程中伴有大 量副产物出现,如何对菌株进行准确代谢分析并实施 定向选育是产丁二酸菌株的研究重点^[7]。 测定分析的方法^[8]。在测定胞外物质变化的基础上, 通过细胞内各种生化反应的化学计量可以计算出胞 内各物质的流量分配^[9],在代谢分析基础上,遗传或 环境因素扰动可诱导各代谢物流量分配变化,通过比 较可以确定整个代谢过程中具有特殊地位的途径或 节点,并针对柔性节点实施诱变选育或分子选育,是 开发工业微生物的一个重要手段^[10]。

本文对分离得到的一株菌进行鉴定为产丁二酸 放线杆菌;在代谢途径及流量分布分析基础上,围绕 柔性节点处副产物的降低实施了定向选育,突变株丁 二酸产量获得了提高。

1 材料和方法

1.1 材料

1.1.1 菌株:动物瘤胃中分离获得,鉴定并命名为产 丁二酸放线杆菌(*Actinobacillus succinogenes* S.JST), 为本实验室保藏。

代谢通量分析是一种专门对代谢途径流量进行

1.1.2 发酵培养基(每升含g):玉米浆2,酵母浸粉3,

基金项目: 国家科技支撑计划 (2007BAD34B01); 安徽省自然基金 (070411024); 合肥工业大学基金 (073002F)

作者简介:姜绍通(1954-),男,江苏盐城人,教授,主要从事农产品生物转化研究。Tel/Fax: +86-551-2901507; E-mail: jiangshaotong1954 @163.com m

收稿日期:2008-01-14; 修回日期:2008-04-02

NaH₂PO₄·2H₂O 1.16, Na₂HPO₄·12H₂O 0.7, NaCl 1.0, MgCl₂·6H₂O 0.2, CaCl₂ 0.2,葡萄糖(分消)60, CaCO₃ 40, TSB/Tryptic Soy Broth 5, pH 6.5。

1.1.3 试剂和仪器: API 试剂盒及辅助试剂均购自梅 里埃公司; DNA 提取、回收及 PCR 反应试剂均购自 大连宝生物工程; 高效毛细管电泳色谱(HPCE)采 用美国 Beckman Coulter 公司 P/ACE MDQ 型毛细管 电泳仪;气相采用安捷伦科技上海分析仪器有限公司 色谱系统; 细胞破碎仪为 JY92- 系统;光学显微镜 为 OLYMPUS BH-2; 厌氧培养系统为 CBJS-5B/1;软 X 射线装置为中国科技大学国家同步辐射实验室 提供。

1.2 菌种富集、分离与培养

样品富集:样品采自城市郊区生牛屠宰场,厌氧 富集培养后,采用含溴甲酚绿琼脂培养基作为选择性 平板,之后 TLC 点样初筛,通过摇瓶发酵复筛,所 获菌株的发酵条件为 37℃摇瓶厌氧发酵,厌氧混合气 中的二氧化碳及氢气的浓度通过厌氧气室控制。

1.3 菌株鉴定

在细胞形态鉴定基础上^[11],按照试剂盒操作进行 API 生理生化及 16S r RNA 基因序列分析,引物的设 计为:正向引物 EH₁:5 -AGAGTTTGATCATGGCTC-AG-3',反向引物 EH₂:5 -TACGGT TACCTTGTTACG-ACT-3。

1.4 产物检测

1.4.1 生物量测定:常温减压干燥至恒重。

1.4.2 残糖检测:DNS法^[12]

1.4.3 有机酸检测(HPCE 定量检测):石英毛细管 内径 75 μm,外径 375 μm,有效长度 50 cm,以 500 mmol/L H₃PO₄ 及 0.5 mmol/L CTAB/Cetyltrimethyl Ammonium Bromide (pH6.5,以10 mol/L NaOH 调节)为运行电解质,运行电压 9 kV,运行时 间 20 min,柱温 20 ,检测波长 200 nm,压力进样 (0.5 psi×5 s)。

1.4.4 乙醇检测:采用 1790 气相色谱仪,配有氢火 焰离子化检测器及 N2000 色谱数据工作站,色谱柱采 用的是 DB-WAX 毛细管柱,柱长 30 m,内径 0.25 mm, 液膜厚度 0.5 μm,色谱条件:N₂ 为载气,流速为 15 mL/min,进样器 240 ,柱温 220 ,检测温度 250 ,进样量 1 μL,分流比 1 100,外标法定量。

1.5 代谢途径酶活检测

1.5.1 细胞粗酶液的制备: 取1mL发酵培养菌悬液

9000×g 离心获得菌体, pH 7.5, 0.1 mol/L 磷酸盐缓 冲液稀释至 10 mL,冰浴超声粉碎 10 min(超声 2 s/间隔5 s), 4 下, 9000×g 冷冻离心 15 min,上 清液即为原始粗酶液。

1.5.2 酶活测定: Pc/pyruvate carboxylase 的测定参 考文献^[6]; Mdh/Malate dehydrogenase 与 Adh/alcohol dehydrogenase 的测定参考文献[13]; Pepck/phosphoenolpyruvate carboxykinase 测定采用 25 条件, 于对照比色皿中加入 3 mL pH 7.5, 0.1 mol/L 磷酸盐 缓冲液,测定比色皿中分别加入 2.3 mL 缓冲液,依 次快速取 50 mmol/L MnCl₂、 0.5 mol/L 碳酸氢钠、 0.5 mol/L 磷酸烯醇式丙酮酸钠、50mmol/L 腺嘌呤核 苷二磷酸 ADP、0.1 mL 5 mmol/L NADH 溶液、 500 U/mL 的苹果酸脱氢酶纯酶液各 0.1 mL,最后加 入适量粗酶液 x μ L,混合均匀;在 340 nm 处,3 min 内每 30 s 以对照比色皿调零,记录测定比色皿吸光 值,计算一定时间内吸光度的降低值△A;

1.5.3 酶活力计算:酶活力单位相当于每分钟直接或间接消耗1μmol NADH的量,计算式如下:

$$U = \frac{\Delta A \times V}{\epsilon \times b \times \Delta t} \times n \times 10^3$$

specific activity =
$$\frac{U}{V \times C \times n} = \frac{\Delta A}{\varepsilon \times b \times \Delta t \times C} \times 10^3$$

其中 \triangle A—340 nm 处吸光度的变化值,无量纲; V—酶 促反应体积,指比色皿中酶液体积,为3 mL; ε— NADH 的表观摩尔消光系数,为 6.22×10³ L/(mol•cm); b—比色皿的光程,为1 cm; \triangle t—时间 间隔,为3 min; n—稀释倍数, n=30000/x; x—向反 应比色皿内加入的粗酶液体积,单位为 μ L; C—比色 皿中酶蛋白质量浓度,单位为 mg/mL。

1.6 代谢途径分析

丁二酸作为细胞内 TCA 代谢中间体,其代谢累 积只可能来自富马酸或酮戊二酸的代谢,因此,丁二 酸脱氢酶的活性对丁二酸累积有重要影响,而丙二酸 对于丁二酸脱氢酶具有竞争性抑制作用,可以采用添 加丙二酸检测其对丁二酸代谢累积的影响。

同时利用氟乙酸的致死效应,对 TCA 代谢过程 中柠檬酸及异柠檬酸合成的影响进行检验,以进一步 确定丁二酸合成的主代谢途径。

1.7 代谢通量分析

在拟稳态的条件下,代谢通量模型中只考虑菌体 利用培养基中的碳源,并将其分解成菌体生长代谢所 需的前体物质和能量,并且代谢中间体在某时刻流量 进、出平衡,不处于累积状态,根据分解代谢途径与 合成代谢途径组成整体代谢信息网络,由胞内代谢物 的质量平衡得到:dx/dt=S×v-b,考虑拟稳态假设 dx/dt=0,可得:S×v=b,其中,x为胞内代谢中间物 浓度向量(n×l),S为胞内代谢反应计量系数矩阵 (n×m),v为代谢反应速率向量(m×1),b为代谢物累积 速率向量(n×1),m与n分别为代谢中间体个数和反 应方程的个数,n也为代谢中间体的约束条件数,J 为总的待求速率流量数,J-n=F,F为自由度,只要 测定代谢物的数据多于或等于自由度数,就可以利用 矩阵进行特定解的直接求解或超定解的最小二乘法 求解,从而确定整体代谢网络的流量分布情况。

在代谢流计算过程中,各种产物参数的获得通过 本文1.4介绍的方法,时间点取第20h和第24h,细 胞量取第22h的作为平均值近似处理。

1.8 代谢节点分析

通过扰动查看流量振幅变化大小以判断节点刚 柔性:产丁二酸放线杆菌的各种产物的累积与 Pep/phosphoenolpyruvate、Pyr/pyruvate两个关键中间 体的代谢有重要相关性,若能找出中间体对应节点的 刚柔性,则为工艺调控及定向选育提供指导,而考虑 影响 Pep 及 Pyr 节点流量分布时主要采用中间体丙酮 酸的添加、H 电子供体的操纵、CO₂ 的调控,其调控 方法参考文献^[13]与文献^[14],添加微量中间体或一定 浓度的其他代谢底物对下游代谢物进行扰动,其中丙 酮酸的调控是通过控制发酵过程中丙酮酸的添加浓 度(分别为0及 0.2 mol/L)实现的;CO₂的调控是通 过控制其发酵气体中 CO₂ 体积含量(分别为 1%及 90%)实现的;H₂电子供体的调控是通过控制发酵气 体中 H₂体积含量(分别为 0.02%及 10%)实现的。

1.9 诱变选育研究

1.9.1 软 X 射线诱变条件的确立:无菌制备细胞浓度 为 10^7 个/mL 的菌悬液,取 5 µL 均匀涂于直径为 5 mm 的纤维素膜片上,再将膜片装于样品架,然后放入同步 辐射软 X 射线线路的真空舱。利用真空抽机将真空舱 抽至 1.6×10^{-3} Pa,用同步辐射软 X 射线对样品进行辐射 3 min,软 X 射线 NK 边对放线杆菌的致死率为 70%~80%,将辐射后的膜片放入无菌小管内,加 1 mL

生理盐水,充分振荡,进行下步筛选或保存于冰箱待用。 1.9.2 Adh 途径缺陷型菌株的筛选:将诱变后的细胞 涂布于含有丙烯醇的平板上,由于丙烯醇与 Adh 的结 合会产生对细胞有致死效应丙烯醛,在平板上生长旺 盛的菌株,其 Adh 酶活必定减弱,那么所筛选的阳性 菌株极可能 adh 基因被实施了突变。

1.9.3 突变株的代谢流量及酶活分析:从中筛选那些 具有明显突变特征并副产物乙醇代谢明显减少的菌株,对其细胞代谢中间体流量及末端产物产量进行对 比分析,并分析其乙醇脱氢酶的酶活变化情况。

1.9.4 *adh* 基因突变前后对比分析:对乙醇脱氢酶活 力降低的阳性突变株进行 *adh* 基因克隆分析,原始株 及突变株克隆引物相同, H_1 :5-ATGAAACTCGAAA-CCCTTTC-3, H_2 :5-TTATTCGAATCTGAGTTGGA-C-3, PCR 反应、产物回收、连接、转化及测序按试 剂盒操作,测序的 *adh* 突变基因通过生物信息学进行 对比分析,找出其突变位点。

2 结果

2.1 菌株的筛选及鉴定 在细胞形态鉴定基础上,结合伯杰手册分析待测

表1 菌株 API 试验的生理生化特性

 Tabel 1
 Physiological and biochemical characteristics of strain

 S.JST by API test

Biochemical assays	Result
ONPG/β-galactosidase	+
ADH/Arginine dihydrolase	-
LDC/Lysine decarboxylase	-
ODC/Ornithine decarboxylase	-
CIT/Citrate utilization	-
H_2S/H_2S	-
URE/Urease	-
TDA/Tryptophan deaminase	-
IND/Tryptophanase(indole)	-
VP/Acetoin/Voges-Proskauer	-
GEL/Gelatin hydrolysis	-
GLU/Glucose	+
MAN/Mannitol	+
INO/Inositol	_
SOR/Sorbitol	+
RHA/Rhamnose	-
SAC/Salicin	+
MEL/Melibiose	-
AMY/Amygdalin	+
ARA/Arabitose	+
OX/Oxidase	+
NO3-NO2/Nitrate reduction	+
MOB/Motile	-
MaC/MacConkey	+
OF-F/Fermentation	+
OF-O/oxidation	+

菌与巴斯德菌科中几个属接近,于是采用 API 生化试 剂条进行鉴定,结果见表 1,表明菌株 S.JST 可能为 放线杆菌属的某个种。进一步做 16S r RNA 基因序列 分析,将所得 1507 bp 序列 (Accession No.EU074771) 与常见的其他类产丁二酸菌株进行序列对比,所筛菌 株与 Actinobacillus succinogenes 种的同源性为 99%, 见表 2,鉴定为产丁二酸放线杆菌,菌株命名为 Actinobacillus succinogenes S.JST,保藏于本实验室。

2.2 代谢网络的构建

2.2.1 结合氟乙酸盐、丙二酸盐抑制结果分析:表3 显示,低浓度的丙二酸盐有明显抑制,且丁二酸的产 量有明显降低,正常情况下丙二酸盐对丁二酸脱氢酶 有强烈抑制,本文的试验现象说明丁二酸脱氢酶的活 跃对合成丁二酸至关重要,且其产物合成主要来自于 富马酸的代谢。但是高浓度的丙二酸盐的绝对抑制条 件下仍有极少量的丁二酸源源不断生成,同时柠檬酸 与异柠檬酸副产物却升高明显,则说明在这种丙二酸 盐强烈抑制条件下 TCA 的回补循环乙醛酸循环被启 动,但是流量不大,同时伴随副产物增多。随着氟乙 酸盐浓度的增加,对丁二酸、乙醇、乙酸的合成抑制 不明显,对柠檬酸和异柠檬酸的合成抑制明显,说明 本出发菌株细胞内有一定通路的 TCA 代谢流存在,但 是对于合成丁二酸来说,胞内代谢以富马酸为主要 前体。

Accession No.	Strain Description	Similarity/%
EU074771.1	Actinobacillus succinogenes strain S.JST	100
AF024525.1	Actinobacillus succinogenes 130Z	99
AY749153.1	Bisgaard Taxon 10 strain 53665-03	95
AE016827.1	Mannheimia succiniciproducens MBEL55E	93
AF224299.1	Haemophilus segnis	93
AF224288.1	Pasteurella aerogenes MCCM 01550 🛛 🔿 🔍	93
L06081.1	Bisgaard Taxon 6	93
DQ301922.1	Mannheimia glucosida strain P741	93
AF224283.1	Actinobacillus pleuropneumoniae MCCM 00189	93
DQ851143.1	Haemophilus simiae strain ROG53	93
AY613469.1	Haemophilus influenzae strain M10980	93

表 2	S.JST	与相关菌种的同源性

Table 2 T	The level of sequences	homology between	S.JST and other	r related strains
-----------	------------------------	------------------	-----------------	-------------------

表 3 抑制剂对产物代谢的影响

Table 3	The effection	of inhibitor on	the end	products vield
I a o i o o	The encetion	or minoritor on	the end	producto fiera

e(End products)/(g/L)	$\Lambda(0)$	Co	oncentration of inhibito	or	
C(End products)/(g/L)	No inhibitor	c(Propane diacid)/(g/L)		c(Fluoroacetic acid)/(g/L)	
	0	0.5	10	0.05	1.0
Succinic acid	32.3	20.3	5.5	29.1	28.4
Ethanol	11.8	8.5	9.2	7.8	7.5
Citrate+isocitrate	3.4	4.5	7.7	1.2	1.1
Acetic acid	2.1	3.4	4.3	1.5	1.4
Formic acid	0.5	0.6	0.8	0.4	0.6
Lactic acid	0.4	0.7	0.9	0.5	0.6

2.2.2 结合酶活检测结果分析:通过表 4 酶活检测可 知该菌株的 Pepck 酶活最高,保证了 Pep 与草酰乙酸 之间代谢流的畅通,Mdh 的酶活很高决定了草酰乙酸 向丁二酸方向代谢畅通,说明了 Pepck、Mdh 是丁二 酸合成过程中重要代谢酶,此外 Adh 酶活也很高,解 释了大量副产物乙醇的存在。

表 4 出发株的各种酶比活力检测

Table 4	The enzymic specific activity determination of parent strain				
	Enzyme	Pepck	Pc	Mdh	Adh
Specif	ic activity/(U/mg)	994	268	804	544

2.2.3 构建代谢网络简图:结合途径抑制剂及相关酶 活初步构建代谢途径如图1。

2.3 代谢通量及节点分析

2.3.1 代谢反应及其系数矩阵方程:在忽略培养基中 少量酵母粉与玉米浆代谢分流的情况下,主要考虑葡 萄糖的碳代谢,其代谢涉及反应如下^[15,16], PEP+Glc= G6P+Pyr,ATP+Glc=ADP+G6P,G6P=F6P,ATP+F6P= ADP+2*G3P,G3P+NAD⁺+Pi+ADP=PEP+NADH+ATP+ H₂OH⁺,G3P=3PG,ADP+PEP=ATP+Pyr,G6P+2*NADP⁺= 2*NADPH+Ru5P+CO₂,Ru5P=Ro5P,Ru5P=X5P,Ro5P+

Flux unit:mmol/(g·h), Left flux from parent strain, Right flux from mutant strain

$$\begin{split} X5P=S7P+G3P \ , \ S7P+G3P=F6P+E4P \ , \ X5P+E4P=F6P+\\ G3P \ , \ CO_2+ \ PEP+ADP=OAA+ATP \ , \ ATP+Pyr+HCO_3^-=\\ ADP+Pi+OAA \ , OAA+NADH+H^+=Mal+NAD^+ \ , Mal=Fum\\ +H_2O \ , Fum+FADH_2=FAD+Suc \ , Pyr+CoA+NAD^+=AcCoA\\ +CO_2+NADH \ , \ AcCoA+H_2O+OAA=Cit+CoA \ , \ Cit=Isoc \ , \end{split}$$

 $\label{eq:AcCoA+Pi=CoA+Ac-P} , Ac-P+ADP=Ace+ATP , AcCoA+NADH+H^{+}=CcH.+CoA+NAD^{+} , AC.H.+NADH+H^{+}=EtOH+NAD^{+} , Pyr+CoA=For+AcCoA , Pyr+NADH +H^{+}=Lac+NAD^{+} , 1.2522*ATP+0.5270*NADPH+0.06989*NH_3+0.05610*G6P+0.01724*F6P+0.083*Ro5P+0.02568*E4P+$

1053

0.008852*G3P+0.1341*3PG+0.04667*PEP+0.1279*Pyr+0
.1280*AcCoA+0.1043*OAA=1.0*Biomass+1.0547*ADP
+0.5263*NADP ⁺ ,其中缩写如下:PEP/phosphoenolpy
ruvate, Pyr/pyruvate, Glc/glucose, G6P/glucose-6-phos-
phate, F6P/fructose-6-phosphate, F-1,6-2P/fructose-1,6-
bisphosphate, G3P/glyceraldehydes-3-phosphate, 3PG/3-
phosphoglycerate, Ru5P/ribulose 5-phosphate, Ro5P/ribose
5-phosphate, X5P/xylulose-5-phosphate, S7P/Sedoheptu-
lose-7-phosphate, E4P/Erythrose-4-phosphate, OAA/ Ox-
aloacetate, Mal/Malate, Fum/Fumarate, Suc/Succinic acid,
CoA/Coenzyme A, AcCoA/Acetyl-CoA, Cit/Citrate, Isoc/
Isocitrate, Ac-P/Acetyl phosphate, Ace/Acetate, AC.H./
Acetaldehyde, EtOH/Alcohol, For/formate, Lac/lactate, a-
Ket/α-Ketoglutaric acid)。总的方程为 28 个,其中菌体
合成的方程等式左边 13 项属于固定搭配,可分解成
13 个方程,所以一共40 个方程,加上有8 个检测参
数可以提供 8 个等式,因此所有等式和加数为 48,有
47 个待求流量,可以采用最小二乘法进行超定解求
解 ,也可以采用矩阵进行特定解求解 ,之后进行验证。
上述方程反映了丁二酸为主 C 代谢流的同时也存在
大量副产物生成。表 5 是根据代谢反应将含系数矩阵
的代谢流量方程列出。

2.3.2 代谢通量计算结果:在对表 5 中代谢流量方程 的系数矩阵进行计算时,将菌体量及发酵时间考虑在 内,前47 个矩阵列成方阵,利用逆矩阵求出 J₁到 J₄₇, 其流量结果见图 1,其中第48 个方程用于对矩阵解进 行验证,结果验证该方法可靠。通过代谢反应及代谢流 量发现:细胞内丁二酸大流量的过程引起 H 电子供体 不足,为了满足细胞电子代谢的平衡,该菌株从两方面 代谢增加电子供体,其一是通过 HMP 途径弥补,其二 是细胞内增大了乙酰辅酶 A 的流量,但这在提供电子 供体的同时也增大了乙酸、甲酸、柠檬酸副产物的流量, 其中最不利的是高流量的乙酰辅酶 A 也造成了大流量 的乙醇,而乙醇在与丁二酸竞争 C 流量分布的同时更是 加剧的细胞内 H 电子供体的不足,尤其菌株乙醇脱氢 酶酶活很高,因此应设法降低乙醇脱氢酶的酶活。

2.3.3 代谢节点的判断:在 Pep 与 Pyr 节点分析中, 通过运用 H 电子供体调节、CO₂ 调控代谢以及添加代 谢中间体 Pyr 扰动,发现 Pep 节点流量振幅总体偏小, 尽管 Pepck 是丁二酸代谢关键酶, Pep 节点特性倾向 弱刚性,但 Pyr 处节点流量振幅变化大, Pyr 属于柔 性节点,围绕柔性节点改造是可行的,既然主要副产 物乙醇是作为 Pyr 柔性节点下的代谢产物,因此应重 点围绕 Adh 酶活降低实施诱变选育。 其中节点分析 情况见表 6。

Table 5	Equations	of metaboli	c flux
14010 0	Lquations	01 1110100011	•

-			
1	No.	Metabolic	Metabolic flux equations
		intermediate	Å.
	1	Gle	$1*J_1+1*J_2-1*J_{47}=0$
	2	G6P _{J1}	$1*J1-1*J_6=0$
	3	G6P	$1*J_1+1*J_2-1*J_3-1*J_{26}-1*J_{32}=0$
	4	G6P _{J2}	$1*J_1-0.0666/*J_2=0$
	5	FOP	$1*J_3-0.5*J_4+0.5*J_{29}+0.5*J_{31}-1*J_{33}=0$
	0	GSP	$1*J_4-1*J_5+0.5*J_{31}-1*J_{36}-1*J_{37}=0$
	/	3PG	$1*J_{37}-1*J_{38}=0$
	8	PEP	$1*J_5-1*J_6-1*J_7-1*J_9-1*J_{39}=0$
	9	RUSP	$1*J_{26}-1*J_{27}-1*J_{30}=0$
	10	K05P S7D	$1*J_{27} - 0.5*J_{28} - 1*J_{34} = 0$
	11	S/P V5D	$1*J_{28}-1*J_{29}=0$
	12	AJP E4D	$1*J_{28}-2*J_{30}+1*J_{31}=0$
	13	E4P OAA	$1*J_{29}-1*J_{31}-2*J_{35}=0$
	14		$1 J_{8} + 1 J_{9} - 1 J_{10} - 1 J_{14} - 1 J_{42} = 0$
	15	UAA _{J8} Mal	$1^{*}J_{8}-0.05^{*}J_{9}=0$
	10	Niai	$1 J_{10} - 1 J_{11} + 1 J_{18} = 0$
	17	Suc	$1*J_{11}-1*J_{12}=0$
	10	Cit	$1^*J_{12} - \bigtriangleup (Suc)$
	20	Isoa	$1*J_{14}-1*J_{15}=\Delta$ (Cff)
	20	a Ket	$1*J_{15} = \triangle$ (ISOC) 1*L = 0
	21	Glyt	$1 J_{16} = 0$ 1 * L = 0
	22	Malua	1^{-} $J_{17} = 0$ $1 * L_{27} = 0$
	23		1^{-} $1_{18} = 0$ $1 \times 1 \times 1 \times 1 = 0$
	24	Ace	$1 \cdot J_{19} - 1 \cdot J_{20} = 0$ 1*L = (A_{22})
	25		$1^{+}J_{20} - \Delta$ (Ace)
	20	FtOH	$1 J_{21} = 1 J_{22} = 0$ $1 J_{21} = 0$
	28	AcCoAm	1*L1*L=0
	29	For	$1*J_{22} = A(For)$
	30	Lac	$1*J_{25} = \triangle (Iac)$
	31	Pvr	$1*I_{c+1}*I_{c-1}*I_$
	32	AcCoA	$ = 1 * I_{32} + 1 * I_{32} + 1 * I_{32} + 1 * I_{32} + 1 * I_{32} = 0 $
	33	Biomasscen	$1*J_{22} = 186.9383*L_{\ell} = 0$
	34	Biomass	$1*J_{32} = 608 + 1840*L_{4} = 0$
	35	BiomassRosP	$1*J_{3,-}=1117589*J_{4,-}=0$
	36	BiomassE4P	$1*I_{25}-314\ 0389*I_{46}=0$
	37	Biomass	$1*J_{26}-774.3922*J_{46}=0$
	38	Biomassapg	$1*J_{28}-55.9259*J_{46}=0$
	39	Biomassper	$1*J_{20}-145, 1497*J_{46}=0$
	40	Biomass _{Pyr}	$1*J_{40}-27.7494*J_{46}=0$
	41	BiomassAcCoA	$1*J_{41}-241.5974*J_{46}=0$
	42	Biomassoaa	$1*J_{42}-51.0348*J_{46}=0$
	43	BiomassATP	$1*J_{43}-16.3263*J_{46}=0$
	44	Biomass _{NADPH}	$1*J_{44}-57.0092*J_{46}=0$
	45	Biomass _{NH3}	$1*J_{45}-9.8080*J_{46}=0$
	46	Biomass	$1*J_{46} = \triangle(Biomass)$
	47	[H]	$1*J_{5}-1*J_{10}-1*J_{12}+1*J_{13}-1*J_{21}-1*J_{22}-1*J_{25}+2$
			*J ₂₆ -1*J ₄₄ =0
	48	Glc/La	$1*I_{47} = \wedge (G c)$

表 6 关键节点分析

Table 6 The analysis of key node

Flux	adding inte	rmediate or cor	ntrolling other factors
change/%	Pyr	CO_2	H electron donor
Node of PEP	2	21	3
Node of Pyr	42	25	65

2.4 诱变选育

2.4.1 诱变筛选:将出发菌株制备菌悬液,采用同步辐射软 X 射线 NK 边对菌体进行辐照,进行丙烯醇平板筛选获得7株突变株,其中 S.JSTA 菌株的初步发酵显示丁二酸代谢浓度明显增加,副产物乙醇代谢浓度明显降低。 2.4.2 突变株的代谢及酶活分析:对突变株的进一步代谢流量分析表明,在整体代谢框架不变的情况下, 终端产物产率显示丁二酸产量由 32.3 g/L 增至非曲直 44.0 g/L,产物产量结果见图2-A,丁二酸代谢流量速率由 1.63 mmol/(g·h)升为 2.19 mmol/(g·h),增加超过 34%, 副产物乙醇的累积明显下降,流量结果见图 1,Adh 酶活大幅降低,与出发株的酶活比较结果见图 2-B。 2.4.3 突变株的 adh 基因克隆分析:对出发株 adh 基因分析表明(Accession No.EU256479),该基因有 1044 个碱基序列,属于锌离子激活型乙醇脱氢酶。对突变株的 adh 基因分析结果表明(bankit:1037883):突变株 adh 基因序列第 122 位的 G 被突变为 A,相应编码氨基酸第 41 位的甘氨酸被突变为天冬氨酸,生接最关键的活性位 点之一,该处编码氨基酸的突变直物信息学分析表明该 位置是 adh 基因中与 NADH 连接导致了 Adh 酶活力 的减弱。

3 讨论

丁二酸产生菌多是从瘤胃中分离出来的,鉴于瘤 胃中微生态环境比较复杂,所以目前大多研究者的分 离方法都是基于最大可能的模拟与瘤胃相似的分离 环境而达到对目标瘤胃菌的分离。Actinobacillus succinogenes 就是一种从瘤胃中分离、耐渗透压的兼 性厌氧细菌,它可以在厌氧或兼性厌氧环境中利用和 同化很多糖类,同时伴随有乙醇、乙酸和甲酸等副产 物产生;包括其他产丁二酸的微生物在内,由于大部 分丁二酸产生菌的产酸量很低。所以丁二酸的发酵在 很长的一段时间内都不为人们所重视。

本文主体内容包括对前期试验筛得的菌株鉴定 为产丁二酸放线杆菌,在代谢途径分析基础上构建了 代谢通量方程并计算了细胞的代谢流量分布,并针对 所分析的柔性节点就主要副产物的降低实施了诱变 选育研究,最终丁二酸代谢流量获得大幅提高。

在对筛得菌株的形态特征观察基础上进行 API 的生理生化谱鉴定,结果表明该菌株可能为巴斯德科 属放线杆菌属下的某个种,普通形态学及生理生化试 验难以准确确定目的菌的种,根据放线杆菌属的 16S rRNA 基因鉴定保守序列设计了相应的 PCR 引 物,对 PCR 产物测序结果进行分析,高度的同源性 表明该菌株为产丁二酸放线杆菌。

在该菌株的代谢途径分析中考虑到丁二酸代谢最 可能的累积前体为富马酸或酮戊二酸,利用丙二酸盐对 丁二酸脱氢酶的竞争性抑制检验发现,随着丙二酸盐的 浓度升高,丁二酸的累积明显降低;利用氟乙酸盐对柠 檬酸、异柠檬酸合成的致死效应,发现氟乙酸盐的添加 并没有降低丁二酸的流量;酶活分析表明 Pepck、Mdh、 Adh 的酶活均较高,Pc 也具有一定活力;综合这些因素 建立了菌株的代谢途径网络,利用酶活与代谢中间体联 合分析代谢途径是本方法的特点。

就代谢主要途径列出相应代谢方程后,利用拟稳 态条件下的矩阵计算了各代谢中间体的流量分布,通 过添加代谢中间体及敏感条件调控分析了主要节点, 表明 Pep 为弱刚性节点, Pyr 为柔性节点,综合代谢 途径及节点发现电子供体不足是丁二酸流量低的主 要因素,在不破坏代谢平衡的条件下,围绕柔性节点 实施 Adh 酶活降低的诱变选育是有效手段,在降低的 乙醇副产物的同时,将部分 H 电子供体转移到草酰乙 酸至丁二酸的途径,将有利于最终增加丁二酸的流 量,H 供体平衡指导代谢选育是本文的主要创新点。

经过软 X 同步辐射诱变后,于丙烯醇平板上成 功筛出相应阳性突变株,其中 S.JSTA 菌株的 Adh 酶 活大幅降低,副产物乙醇代谢通量降低,丁二酸代谢 通量提高,进一步的 adh 基因克隆对比分析发现突变 株的 41 位编码的甘氨酸(GGC)被突变为天冬氨酸 (GAC),生物信息学分析表明 41 位的甘氨酸是 Adh 酶蛋白中与 NADH 结合最活跃的位点之一,可能该 位点的突变直接导致酶活的降低,这种定向诱变选育 方法为其他菌株的改造提供了借鉴。

该菌株的获得及代谢选育研究为工业规模的丁 二酸发酵提供一定理论意义和应用价值。

参考文献

- Chotani G, Dodge T, Hsu A, *et al*. The commercial production of chemicals using pathway engineering. *Biochimica et Biophysica Acta*, 2000, 1543: 434–455.
- [2] Lee SY, Hong SH, Lee SH, et al. Fermentative production of chemicals that can be used for polymer synthesis. Macromol Biosci, 2004, 4: 157–164.
- [3] Hong SH, Jin SK, Lee SY. The genome sequence of the capnophilic rumen bacterium *Mannheimia succiniciproducens*. *Nature Biotechnology*, 2004, 22: 1275–1281.
- [4] Lata A, Jasmine I, Rajendra K. Rapid screening procedures for identification of succinic acid producers. J Biochem Biophys Methods, 2005, 63: 24–32.
- [5] Lee PC, Lee SY, Hong SH. Isolation and characterization of a new succinic acid-producing bacterium, *Mannheimia succiniciproducens* MBEL55E, from bovine rumen. *Appl Microbiol Biotechnol*, 2004, 58: 663–668.
- [6] Mariet J, Guettler MV, Mahendra KJ, et al. Environmental and physiological factors affecting the succinate product ratio during

carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol, 1997, 167: 332-342.

- [7] Guettler MV, Denise R, Mahendra KJ. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen.International. Journal of Systematic Bacteriology, 1999, 49: 207–216.
- [8] Varma A, Palsson BO. Metabolic flux balancing basic concepts, scientific and practical use. *Bio Technology*, 1994, 12: 994–998.
- [9] Lee DY, Yun H, Park S, *et al.* MetaFluxNet:the management of metabolic reaction information and quantitative metabolic flux analysis. *Bioinformatics*, 2003, 19: 2144–2146.
- [10] Kholodenko BN, Westerhoff HV. Metabolic Engineering in the Post Genomic Era. Publisher:Horizon Bioscience, 2004.
- [11] 钱存柔, 黄仪秀. 微生物学实验教程. 第一版. 北京: 北京大 学出版社, 1999.
- [12] 林加涵,魏文铃,彭宣宪.现代生物学实验.北京:高等教育 出版社,2001,pp65-71.
- [13] McKinlay JB, Shachar HY, Zeikus JG, et al. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of C-13-labeled metabolic product isotopomers. *Metabolic Engineering*, 2007, 9(2): 177–192.
- [14] Cox SJ, Levanon SS, Sanchez A, et al. Development of a Metabolic Network Design and Optimization Framework Incorporating Implementation Constraints: A Succinate Production Case Study. Metabolic Engineering, 2006, 8: 46–57.
- [15] Vemuri GN, Eiteman MA, Altman E. Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of *Escherichia coli*. Appl Environ Microbiol, 2002, 68: 1715–1727.
- [16] Ailen M, Sanchez, George N, et al.Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metabolic Engineering, 2005, 7: 229–239.

Screening, breeding and metabolic analysis of a succinic-acid-producing strain

Shaotong Jiang^{*}, Xingjiang Li, Lijun Pan, Zhaojun Wei, Xiaohui Chen, Jianguo Zhang, Xueying Tang, Jianchun Xiong, Yuan Yuan, Yuanyuan Zhang

(School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: [objective] In order to obtain high yield mutant strains for the industrial bioconversion of succinic acid, we analyzed the metabolic networks of the strain *Actinobacillus succinogenes* S.JST in the course of screening and breeding. **[methods]** We previously identified the wild-type strain by API biochemical reactions and 16S r RNA sequence analysis. Following the discussion of the metabolic pathway, we calculated the flux by matrix and disturbed the node by intermediate. **[results]** A succinic-acid-producing strain S.JST isolated from bovine rumen was identified as *Actinobacillus succinogenes*. Enzyme determination showed that the activities of phosphoenolpyruvate carboxykinase and malate dehydrogenase were very high. Metabolic flux from parent strain indicated that the flux of by-product ethanol was $1.51 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$ in the second place of those end products. After being mutated, the alcohol dehydrogenase activity of the mutant-strain S.JSTA decreased markedly, furthermore the flux of succinic acid increased by 34% and the flux of ethanol decreased by 93%. By analyzing the *Adh* gene, we found a mutated site. Bioinformatics showed that the corresponding amino acid sequence acted as the key active site binding with NADH. **[conclusion]** In succinic acid synthesis, directed breeding method was effective for improving the whole cell metabolism of *Actinobacillus succinogenes*, and succinic acid yield was increased.

Keywords: succinic acid; identification; metabolic flux; breeding

Supported by the Key Project of Chinese National Program for Fundamental Research and Development(2007BAD34B01), the Natural Science Foundation of Anhui Province(070411024) and the Foundation of hefei university of technology(073002F)

^{*}Corresponding author. Tel/Fax: +86-551-2901507; E-mail: jiangshaotong1954@163.com

Received: 14 January 2008/ Revised: 2 April 2008