微生物学报 Acta Microbiologica Sinica 48(1): 8~14; 4 January 2008 ISSN 0001-6209; CN11-1995/O http://journals.im.ac.cn

晋南牛瘤胃中古菌分子多样性的研究

裴彩霞 毛胜勇 朱伟云

(南京农业大学消化道微生物研究室, 南京 210095)

摘要: 采用 3 对古菌特异性引物扩增瘤胃古菌 16S rRNA 基因分别建立克隆库来研究晋南牛瘤胃 古菌的多样性。每个克隆库随机挑选 100 个克隆。引物 Arch f364/1386 建立的克隆库中、克隆分 为四类,分别与四种甲烷短杆菌 1Y (61%)、SM9 (23%)、NT7 (14%)和 AK-87(2%)相似。引物 1Af/1100Ar 建立的克隆库中, 克隆分为两类, 分别与 Methanobacterium aarhusense(72%) 和 Methanosphaera stadtmanae DSM 3091 (28%)相似。引物 Met86F/Met1340R 建立的克隆库反映的古 菌种类较为全面, 除以上 4 种甲烷短杆菌(所占比例分别为 47%、26%、41%和 3%)外, 还有 Methanomicrobium mobile(2%)、以及类似 Methanobacterium aarhusense(1%)和 Methanosphaera stadtmanae(3%)的序列,还有 7%的未匹配序列。系统进化分析表明,这些克隆属于 Methanobrevibacter、Methanobacterium、Methanosphaera、Methanomicrobium,和未知广域古菌等 5 个分支。有 25 类属于广域古菌的未知序列, 提示瘤胃中存在大量的未知产甲烷菌。 关键词: 晋南牛; 产甲烷菌; 16S rRNA 基因克隆库; 分子多样性

文献标识码: A 文章编号: 0001-6209(2008)01-0008-07 中图分类号: Q93

反刍动物瘤胃可产生大量甲烷、甲烷作为瘤胃 微生物代谢的终产物、是饲料能量的损失、也是温 室气体之一,因此瘤胃产甲烷菌的研究日益受到重 视。但迄今、反刍动物瘤胃中只有极少数产甲烷菌 得到分离而被认识^[1]。据估计, 瘤胃中绝大多数微生 物还未被认识^[2]、其中包括很多古菌。无需培养的分 子生物学技术能反映出各种微生物(包括不能培养 的)分子特性、因此比传统的微生物技术能更灵敏、 更准确地反映瘤胃微生物菌群的多样性,并且可通 过 16S rRNA 基因序列分析技术发现瘤胃中可能存 在的未知产甲烷菌^[3~5]。

产甲烷菌属于古菌(Archaea)。近年来、关于瘤 胃产甲烷菌分子多样性的研究,主要用古菌特异性 引物通过克隆的方法进行研究^[3~10]。用于克隆瘤胃 产甲烷菌古菌的引物有 Ar1000f/Ar1500、1Af/ 1100Ar, D30/D33, 0025e/1429, Met86F/Met 1340R, F/r、Arch f364/r1386 和 21f/958r 等 8 对^[6]、研究对

象主要集中于绵羊和奶牛。Yanagita 等^[7]利用古菌 引物 Ar1000f/Ar1500 克隆测序后发现、绵羊瘤胃中 有 Methanobrevibacter 和 Methanomicrobium 两个属 的产甲烷菌; Wright 等^[8]以引物 Met86F/Met1340R 克隆到西澳大利亚绵羊瘤胃中有 Methanobrevibacter、Methanotorris 和 Methanosphaera 3 个属的产 甲烷菌。用 D30/D33 和 0025e/1429 两对引物探测到 荷斯坦奶牛瘤胃中存在 Methanobrevibacter 和 Methanomicrobium 两个属的产甲烷菌^[3], 而以 1Af/ 1100Ar 为引物发现还有 Methanosphaera 和 Methanosarina 等属的产甲烷菌^[9]。因此,在研究瘤胃产甲 烷菌的多样性时,引物的选择非常重要。Skillman 等比对了 8 对扩增古菌和产甲烷菌的引物、发现引 物 Arch f364/Arch r1386 的通用性最好、能扩增试验 中使用的 Methanomicrobium, Methanosphaera, Methanobacterium, Methanoculeus, Metha nosarina, Methanococcus 等属的所有产甲烷菌^[10]、并且其错

配几率最低的, 仅反向引物 Arch r1386 扩增 Methanobrevibacter 属的产甲烷菌可能出现错配^[6]。

我国是养牛大国,动物产甲烷被认为是世界第 二位。但是我国关于瘤胃产甲烷菌多样性的研究较 少,鲜有报道。晋南牛是我国优良的肉用地方品种, 主要分布于山西省的南部。本研究选择文献中克隆 产甲烷菌种类最多的引物 1Af/1100Ar^[9]和 Met86F/Met1340R^[8],以及通用性好、错配几率最低 的 Arch f364/Arch r1386^[10] 3 对引物进行克隆,研究 晋南牛瘤胃产甲烷菌的多样性,为探讨我国反刍动 物瘤胃产甲烷调控提供基础。

1 材料和方法

1.1 材料

1.1.1 样品的采集:试验采用 4 头晋南牛, 屠宰后 立即取其瘤胃内容物置于-20℃保存。

1.1.2 主要试剂和仪器:珠磨仪(BioSpec,美国);
Taq 酶、pGEM-T 载体(Promega,美国); 引物合成
(Invitrogen,上海); Qiaquick PCR 产物纯化试剂盒
(Westburg,荷兰); PCR 仪(T1, Biometra,德国); 限
制性内切酶(晶美生物,深圳)。

1.2 瘤胃内容物总 DNA 提取、产甲烷菌 DNA 的扩 增和克隆

参照 Zoetendal 等^[11]利用珠磨法提取瘤胃内容 物总 DNA。用 3 对古菌特异性引物 1Af/1100Ar^[9] Arch f364/r1386^[10],和 Met86F/Met1340R^[8], PCR 扩 增古菌 16S rRNA 基因, 扩增产物经 1.2%琼脂糖凝 胶电泳检测。

扩增产物经纯化后连接到载体 pGEM-T 上进行 克隆,每对引物中选 100 个阳性克隆用 *Hae* III、*Hpa* II、*Hha*I、*Taq*I、*Hin* dIII、*Hin* fI 等限制性内切酶对 所得克隆进行酶切。酶切图谱完全一样的作为一个 操作分类单位(operational taxonomic unit, OTU)。在 每个 OTU 中选择一个单克隆用引物 SP6、T7 进行 测序(Invitrogen,上海)。

1.3 序列分析及进化树建立

用 Blast 软件在 GenBank 数据库中获取同源性 较高的相关菌株和已知瘤胃产甲烷菌的 16S rDNA 序列,用 ClustalX 程序进行比对排序,采用 MEGA3(Molecular Evolutionary Genetics Analysis, MEGA)软件建立进化树。本研究所得序列在 GenBank 数据库里的登录号为:EF0555490, EF0 55493,EF055495,EF055500,EF055507,EF055509, EF055513,EF055517,EF055522,EF055526,EF0 55530,EF055543,EF157685-EF157727。

2 结果

2.1 3对引物克隆的产甲烷菌 16S rRNA 基因的序列 分析

2.1.1 以 Arch f364/r1386 为引物克隆的瘤胃古菌: 引物 Arch f364/r1386 克隆经酶切后共获得 16 个 OTU, 其 16S rRNA 基因序列分析见表 1。100 个克 隆中, 61 个克隆属于 *Methanobrevibacter* sp. 1Y(相似

表 1 以引物 Arch f364/r1386 克隆的瘤胃古菌测序结果 Table 1 The rumen Archaea clones obtained with primers Arch f364/r1386

OTU	Size of clone	No. of clones	Nearest relative, Similarity/%	Nearest known species, Similarity/%
JNA1	1029	24	Uncultured Methanobrevibacter sp. CSIRO1.07, 99.5	Methanobrevibacter sp. 1Y, 99.4
JNA2	1029	23	Uncultured Methanobrevibacter sp. CSIRO1.07, 99.8	Methanobrevibacter sp. 1Y, 99.7
JNA3	1029	1	Uncultured Methanobrevibacter sp. CSIRO1.07, 99.3	Methanobrevibacter sp. 1Y, 99.2
JNA4	1028	1	Uncultured Methanobrevibacter sp. CSIRO3.10, 99.5	Methanobrevibacter sp. SM9, 99.2
JNA5	1027	1	Uncultured Methanobrevibacter sp. CSIRO3.10, 99.2	Methanobrevibacter sp. SM9, 99.1
JNA6	1027	4	Uncultured Methanobrevibacter sp. CSIRO1.23, 97.7	Methanobrevibacter sp. SM9, 97.2
JNA7	1029	10	Uncultured Methanobrevibacter sp. CSIRO2.07, 99.8	Methanobrevibacter sp. 1Y, 99.4
JNA8	1029	9	Uncultured Methanobrevibacter sp. CSIRO3.10, 98.3	Methanobrevibacter sp. SM9, 98.3
JNA9	1086	1	Uncultured Methanobrevibacter sp. CSIRO1.07, 97.8	Methanobrevibacter sp. 1Y, 97.7
JNA10	1086	1	Uncultured Methanobrevibacter sp. CSIRO1.07, 97.8	Methanobrevibacter sp. 1Y, 97.7
JNA11	1027	1	Uncultured Methanobrevibacter sp. CSIRO1.23, 97.7	Methanobrevibacter sp. AK-87, 97.1
JNA12	1027	1	Methanobrevibacter sp. AK-87, 96.9	Methanobrevibacter sp. AK-87, 96.9
JNA13	1029	1	Uncultured Methanobrevibacter sp. CSIRO2.07, 98.2	Methanobrevibacter sp. 1Y, 97.8
JNA14	1027	8	Uncultured Methanobrevibacter sp. CSIRO3.10, 95.7	Methanobrevibacter sp. SM9, 95.6
JNA15	1027	1	Uncultured Methanobrevibacter sp. CSIRO2.14, 98.3	Methanobrevibacter sp. NT7, 98.2
JNA16	1027	13	Methanobrevibacter sp. NT7, 99.6	Methanobrevibacter sp. NT7, 99.6

性 97 %); 15 个克隆属于 Methanobrevibacter sp. SM9(相似性 97%); 14 个克隆属于 Methanobrevibacter sp. NT7(相似性 98%); 1 个克隆属于 Methanobrevibacter sp. AK-87(相似性 97%); 序列 JNA12 和 JNA14(共9个克隆)与已知菌序列的相似 性小于 97%。

2.1.2 以 1Af/1100Ar 为引物克隆的瘤胃古菌:引物 1 Af/1100Ar 克隆获得的 100 个克隆子经酶切归为 16 个 OTU, 其 16S rRNA 基因序列分析见表 2。所有这 16 个 OTU 与 GenBank 最相似序列的相似性 97 %。 但与已知古菌相比,只有 JNB8(6 个克隆)可以确定 为 Methanosphaera stadtmanae DSM 3091(相似性 97%),其他序列虽然与产甲烷菌 Methanobacterium aarhusense 或 Methanosphaera stadtmanae 最相似, 但相似性都小于 97%。

2.1.3 以 Met86F/Met1340R 为引物克隆的瘤胃古 菌:引物 Met86F/Met1340R 克隆获得的 100 个克隆 子经酶切归为 21 个 OTU, 其 16S rRNA 基因序列分 析见表 3。其中, 共 47 个克隆属于 *Methanobrevibacter* sp. 1Y(相似性 98%); 26 个克隆属于 *Methanobrevibacter* sp. SM9(相似性 99%); 3 个克隆 属于 *Methanobrevibacter* sp. AK-87(相似性 99%); 3 个克隆属于 Methanobrevibacter sp. NT7(相似性 99%); 2 个克隆属于 Methanomicrobium mobile(相似 性 100%); 序列 LGMJN28 、LGMJN33、LGMJN37、 JNC8 和 JNC9(共 12 个克隆), 虽然与产甲烷菌 Methanobrevibacter sp. AK-87 或 Methanosphaera stadtmanae 或 Methanobacterium aarhusense 最相似, 但相似 性都小于 97%; 序列 LGMJN54、JNC10、JNC11(共 7 个克隆), 在 Blast 结果中匹配的已培养菌。 2.2 瘤胃古菌的菌群结构分析

以克隆序列的最相似已培养菌序列分析(见表 4), 引物 1Af/1100Ar 只克隆到类似 Methanobacterium aarhusense 和 Methanosphaera stadtmanae 的瘤 胃古菌, 分别占克隆的 72%和 28%; 引物 Arch f364/r1386 仅克隆出 1Y、SM9、AK-87 和 NT7 四种 不同的 Methanobrevibacter, 其比例分别为 61%、 23%、2%和 14%; 而引物 Met86F/Met1340R 反映的 古菌种类较为全面, 除以上四种 Methanobrevibacter(所占比例分别为 47%、26%、11%和 3%, 共 计 87%)外, 还有 Methanomicrobium mobile(2%)、以 及类似 Methanobacterium aarhusense(1%)和 Methanosphaera stadtmanae(3%)的序列, 还有 8%的未匹 配序列。

OTU	Size of clone	No. of clones	Nearest relative, Similarity/%	Nearest known species , Similarity/%	
JNB1	1051	65	Uncultured Methanobacteriaceae archaeon clone 6, 99.7	Methanobacterium aarhusense, 94.5	
JNB2	1051	2	Uncultured Methanobacteriaceae archaeon clone 6, 99.6	Methanobacterium aarhusense, 94.4	
JNB3	1051	1	Uncultured Methanobacteriaceae archaeon clone 6, 99.7	Methanobacterium aarhusense, 94.7	
JNB4	1051	2	Uncultured Methanobacteriaceae archaeon clone 6, 99.6	Methanobacterium aarhusense, 94.6	
JNB5	1051	1	Uncultured Methanobacteriaceae archaeon clone 6, 98.7	Methanobacterium aarhusense, 94.2	
JNB6	1054	1	Uncultured Methanosphaera sp. clone 3, 96.2	Methanobacterium aarhusense, 94.1	
JNB7	1055	4	Uncultured Methanobrevibacter sp. clone 17, 97.1	Methanosphaera stadtmanae DSM 3091, 94.4	
JNB8	1050	6	Uncultured Methanosphaera sp, 99.3	Methanosphaera stadtmanae DSM 3091, 97.0	
JNB9	1054	1	Uncultured Methanosphaera sp. clone 3, 99.5	Methanosphaera stadtmanae DSM 3091, 96.6	
JNB10	1051	1	Uncultured Methanosphaera sp. clone 24, 99.3	Methanosphaera stadtmanae DSM 3091, 96.6	
JNB11	1054	5	Uncultured Methanobrevibacter sp. clone 26, 98.7	Methanosphaera stadtmanae DSM 3091, 96.3	
JNB12	1049	1	Uncultured Methanosphaera sp. clone 3, 98.7	Methanosphaera stadtmanae DSM 3091, 96.4	
JNB13	1055	7	Unidentified methanogen ARC62, 99.2	Methanosphaera stadtmanae DSM 3091, 96.2	
JNB14	1055	1	Unidentified methanogen ARC62, 99.0	Methanosphaera stadtmanae DSM 3091, 96.2	
JNB15	1055	1	Unidentified methanogen ARC62, 99.1	Methanosphaera stadtmanae DSM 3091, 96.3	
JNB16	1055	1	Unidentified methanogen ARC62, 99.0	Methanosphaera stadtmanae DSM 3091, 96.2	

表 2 以引物 1Af/1100Ar 克隆的瘤胃古菌测序结果 Table 2 The rumen Archaea clones obtained with primers 1Af/1100Ar

OUT	Size of clone	No. of clones	Nearest relative, Similarity/%	Nearest known species, Similarity/%
LGMJN1	1262	28	Uncultured Methanobrevibacter sp. CSIRO2.05, 99.4	Methanobrevibacter sp. 1Y, 99.1
LGMJN4	1262	8	Uncultured Methanobrevibacter sp. CSIRO2.07, 99.5	Methanobrevibacter sp. 1Y, 99.1
LGMJN6	1262	6	Uncultured Methanobrevibacter sp. CSIRO1.09, 99.3	Methanobrevibacter sp. 1Y, 99.2
LGMJN24	1262	1	Methanobrevibacter sp. 1Y, 98.4	Methanobrevibacter sp. 1Y, 98.4
LGMJN11	1262	1	Uncultured archaeon clone CSIRO-Qld10, 99.5	Methanobrevibacter sp. 1Y, 99.2
JNC1	1262	2	Methanobrevibacter sp. 1Y, 98.3	Methanobrevibacter sp. 1Y, 98.5
LGMJN18	1260	1	Uncultured euryarchaeote clone PE-CAN.11, 99.7	Methanobrevibacter sp. SM9, 99.4
LGMJN20	1260	22	Uncultured euryarchaeote clone ON-CAN.11, 99.7	Methanobrevibacter sp. SM9, 99.5
JNC2	1260	1	Uncultured euryarchaeote clone PE-CAN.11, 99.6	Methanobrevibacter sp. SM9, 99.3
JNC3	1260	2	Uncultured euryarchaeote clone ON-CAN.11, 99.7	Methanobrevibacter sp. SM9, 99.3
JNC4	1262	1	Uncultured euryarchaeote clone LGMJN11, 98.5	Methanobrevibacter sp. 1Y, 98.5
LGMJN28	1264	8	Methanobrevibacter sp. AK-87, 96.5	Methanobrevibacter sp. AK-87, 96.5
JNC5	1260	1	Methanobrevibacter sp. AK-87, 99.2	Methanobrevibacter sp. AK-87, 99.2
JNC7	1260	2	Methanobrevibacter sp. AK-87, 99.8	Methanobrevibacter sp. AK-87, 99.8
JNC6	1260	3	Methanobrevibacter sp. NT7, 99.8	Methanobrevibacter sp. NT7, 99.8
LGMJN41	1255	2	Uncultured archaeon clone CSIRO-Qld23, 100	Methanomicrobium mobile, 100
LGMJN37	1264	1	Uncultured Methanobrevibacter sp. clone 4, 98.7	Methanosphaera stadtmanae, 96.7
JNC8	1264	1	Uncultured Methanobrevibacter sp. clone 4, 99.5	Methanosphaera stadtmanae, 96.8
JNC9	1258	1	Uncultured methanogenic archaeon clone 16, 98.2	Methanosphaera stadtmanae, 96.9
LGMJN33	1259	1	Uncultured Methanobacteriaceae archaeon clone 6, 99.5	Methanobacterium aarhusense, 94.8
LGMJN54	1288	4	Uncultured Methanobacteriales archaeon, 99.6	_
JNC10	1257	2	Uncultured euryarchaeote clone ON-CAN.18, 99.6	_
JNC11	1256	1	Uncultured euryarchaeote clone LGMJN50, 98.5	_

表 3 以引物 Met86F/Met1340R 克隆的瘤胃古菌测序结果 Table 3 The rumen Archaea clones obtained with primers Met86F/Met1340R

表 4 三对引物的克隆对比

Table 4 The compare of nearest known species of clone with three pairs of primers

Norrest known species	Primers			
ivearest known species	Arch f364/r1386	1Af/1100Ar	Met86F/Met1340R	
Methanobrevibacter sp. 1Y	61	_	47	
Methanobrevibacter sp. SM9	23	-	26	
Methanobrevibacter sp. AK-87	2	_	11	
Methanobrevibacter sp. NT7	14	-	3	
Methanomicrobium mobile	-	-	2	
Methanobacterium aarhusense	-	72	1	
Methanosphaera stadtmanae	-	28	3	
No matched known species	-	-	7	

2.3 瘤胃古菌系统进化分析

产甲烷古菌都属于广域古菌界(Euryarchaeota)^[12],因此选择属于嗜泉古菌界(Crenarchaeota) 的 *Sulfolobus acidocaldarius*(登陆号 U05018)和 *Thermoproteus tenax*(登陆号 M35966)作为外类群 (outgroup),用邻接法构建系统发育树(图1),拓扑分 析为 1000 次重复取样的结果。由图 1 可见,这些克 隆处于广域古菌的 3 大分支上,各分支上的置信值均 为 99%。其中, LGMJN41 单独处于 Methanomicrobia 的分支上,并与 *Methanomicrobium mobile* 的进化 距离很近; LGMJN54、JNC10 和 JNC11 处于一个分 支上,此分支上没有已知菌;其他序列处于一个分 支上,属于 Methanobacteria。

Methanobacteria 内有两个分支。JNA1-JNA16、

图 1 晋南牛瘤胃产甲烷菌 16S rDNA 片段系统进化树 Fig.1 Phylogenetic tree of rumen methanogensis 16S rDNA clones from Jinnan cattle.

JNC1-JNC7、 LGMJN1、 LGMJN4、 LGMJN6、 LGMJN11、LGMJN18、LGMJN20和 LGMJN24 (30 个序列)处于一个分支,还包括 Methanobrevibacter smithii和 Methanobrevibacter ruminantium 以及 1Y、 SM9和 AK-87等3种 Methanobrevibacter 属产甲烷 菌。JNB1-JNB16、JNC8、JNC9、 LGMJN33和 LGMJN37(20 个序列)处于另一分支。其中 JNB1-JNB5 和 LGMJN33 归为一类,与 *Methanobacterium* 属的 *M. alcaliphilum*、*M. aarhusense*、*M. formicicum*、*M. bryantii* 等产甲烷菌的进化距离较近; 其他序列处于一个分支,包括 *Methanosphaera* 属 的 *M. stadtmanii* 和 M. stadtmanae。序列 LGMJN28 处于这两个分支的基部。

3 讨论

已有报道用不同引物进行克隆测序发现了不同 的瘤胃严甲烷菌^[3]。本研究使用的 3 对引物中, 引物 1Af/1100Ar 克隆出类似 Methanobacterium aarhusense和 Methanosphaera stadtmanae 的序列; 引物 Arch f364/r1386 克隆出 4 种不同的 Methanobrevibacter 的序列; 而引物 Met86F/Met 1340R 除克隆 出以上 6 种序列外, 还克隆出 Methanomicrobium mobile 和未知的广域古菌, 这些序列的分子遗传距 离跨度较大, 分布于 Methanobrevibacter、Methanobacterium、Methanosphaera、Methanomicrobium 和 未知古菌等 5 个分支, 因此能较全面地反映晋南牛 瘤胃产甲烷菌古菌菌群结构。

本研究以 Met86F/Met1340R 为引物的克隆, 反 映晋南牛瘤胃产甲烷菌的优势菌为 Methanobrevibacter 属的产甲烷菌(占 79%), Methanomicrobium mobile 的数量较少只占 2%, 而其余的 19%为未知 菌。Wright 等使用该对引物发现, 澳大利亚西部绵 羊瘤胃中产甲烷菌的优势菌也是 Methanobrevibacter, 在放牧时 SM9、M6 和 NT7 等 3 种 Methanobrevibacter 占总克隆的 85.6%、以燕麦-干草 为基础日粮时占 99.2%^[8], 而以盖氏虎尾草(Rhodes grass)干草为主要日粮的昆士兰州^[5]绵羊瘤胃产甲 烷菌中约 85%的是未知菌的,在已知菌中 Methanobrevibacter 也只占 50%。以紫花苜蓿-提磨 西干草(alfalfa-timothy hay)为粗饲料,精粗比 4:1 的 干奶期荷斯坦奶牛瘤胃中的产甲烷菌主要是 Methanomicrobium mobile (56%), 其次是 Methanobrevibacter^[3]。因此,不同反刍动物瘤胃产甲烷菌菌群 的差异、可能与动物种类、日粮以及所处的环境等 因素有关。

迄今,瘤胃内已知的古菌仅有 Methanobacterium formicicum、M. bryantii、Methanobrevibacter ruminantium、M. smithii、Methanomicrobium mobile、 Methanosarcina barkeri、Methanoculleus olentangyi 等7种^[1],均为产甲烷菌。本研究除了获得与已知菌 序列相似性较高的克隆外,同时还发现了一些与已 知菌相似性较低或没有已知菌匹配的广域古菌序 列。JNA12、JNA14、JNB1-7、JNB9-16、LGMJN28、 LGMJN33、LGMJN37、JNC8和JNC9等22个序列, 与已知产甲烷菌的相似性小于 97%,属于未知菌, 但相似性都大于 94%,很可能是未知的产甲烷菌。 另外,还有 LGMJN54、JNC10 和 JNC11 3 个克隆在 GenBank 中未发现相似的已知菌。同样,Tajima 等^[3] 用 D30/D33 和 0025e/14292 对引物克隆荷斯坦奶牛 瘤胃古菌,也发现了一些特殊的序列,其中一个序 列在 GenBank 中的最相似序列为未确定的古菌,相 似性为 85%,通过特殊位点的碱基、二级结构和系 统进化分析证明它们属于广域古菌。Wright 等^[5,8] 在绵羊瘤胃中也发现有很多的未知广域古菌存在。 从现在的古菌分类学来看,广域古菌除产甲烷菌以 外的还有 Halobacteria、Thermoplasmata、Thermococci、Archaeoglobi 等纲,但这些菌往往嗜高温或嗜 盐,在瘤胃中没有适合它们生长的环境。因此,这些 在瘤胃中发现的未知广域古菌序列都有可能是未知 的产甲烷菌,有待我们进一步去研究和发现。

参考文献

- Joblin KN. Methanogenic archaea. In: Harinder PS, *et al.* Methods in Gut Microbial Ecology for Ruminants. The Netherlands: Kluwer Academic, 2005.
- Yu ZT, Forster RJ. Nucleic acid extraction, oligonucleotide probes and PCR methods. In: Harinder PS, *et al.* Methods in Gut Microbial Ecology for Ruminants. The Netherlands: Kluwer Academic, 2005.
- [3] Tajima K, Nagamine T, Matsui H, et al. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiology Letters, 2001, 200: 67–72.
- [4] Tokura M, Chagan I, Ushida K, et al. Phylogenetic study of methanogens associated with rumen ciliates. Current Microbiology, 1999, 39: 123–128.
- [5] Wright AD, Toovey AF, Pimm CL. Molecular identification of methanogenic archaea from sheep in Queensland, Australia reveal more uncultured novel archaea. *Anaer*obe, 2006, 12: 134–139.
- [6] Skillman LC, Evans PN, Strömp C, et al. 16S rDNA directed PCR primers and detection of methanogens in the bovine rumen. *Letters in Applied Microbiology*, 2006, 42: 222–228.
- [7] Yanagita K, Kamagata Y, Kawaharasaki M, et al. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of *Methanomicrobium mobile* by fluorescence in situ hybridization. *Bioscience Biotech*nology and Biochemistry, 2000, 64: 1737–1742.
- [8] Wright ADG, Williams AJ, Winder B, et al. Molecular diversity of rumen methanogens from sheep in Western Australia. Applied and Environmental Microbiology, 2004, 70: 1263–1270.
- [9] Whitford MF, Teather RM, Forster RJ. Phylogenetic analysis of methanogens from the bovine rumen. *BMC*

Microbiology, 2001, (1): 1-5.

- [10] Skillman LC, Evans PN, Naylor GE, et al. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe, 2004, 10: 277–285.
- [11] Zoetendal EG, Akkermans ADL. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active

bacteria. *Applied and Environmental Microbiology*, 1998, 64: 3854–3859.

- [12] 东秀珠. 原核生物到真核生物的过渡. 微生物学通报 (*Microbiology*), 1999, 26(6): 426-430.
- [13] Dehority BA, Orpin CG. Development of, and natural fluctuations in, rumen microbial populations. In: Hobson PN, Stewart CS editors. The rumen microbial ecosystem. London: Chapman & Hall, 1997.

Molecular diversity of rumen Archaea from Jinnan cattle

Caixia Pei, Shengyong Mao, Weiyun Zhu*

(Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)

Abstract: Molecular diversities of rumen archaea of Jinnan (South Shanxi Province, China) cattle was analyzed and compared by 16S rRNA gene sequencing from three clone libraries generated using three different archaea-specific primer sets, respectively. DNA from rumen of 4 Jinnan cattle was extracted, and methanogen 16S rRNA gene was amplified using archaea-specific primer sets. Three clone libraries were generated by using vector pGEM-T and cloning into E.coli JM109. One hundred clones were randomly picked up for each library and RFLP was analyzed for each clone to obtain OTUs. Sequences from each OTU were analyzed and compared with available sequences in GenBank. The first library, generated with primers Arch f364/1386, produced four groups of sequences, affiliated with 4 Methanobrevibacter strains, 1Y (61% of clones), SM9 (23% of clones), NT7 (14% of clones), and AK-87(2% of clones). The second library, generated with primers 1 Af/1100Ar, two groups of sequences, one affiliated with Methanobacterium aarhusense(72% of clones) and the other with Methanosphaera stadtmanae DSM 3091 (28% of clones). The third library, generated with primers Met86F/Met1340R, produced a high degree of diversity. It included the sequence groups found in the first and the second libraries, as well as sequences affiliated with the Methanomicrobium mobile (2% of clones) and uncultured euryarchaeote sequences (7% of clones). The phylogenetic analysis indicated that archaea found in the three libraries were clustered in Methanobrevibacter, Methanobacterium, Methanosphaera, Methanomicrobium, and unidentified euryarchaeote of the Euryarcharota. There were 25 unidentified sequences belonged to Euryarchaeota. This suggests the existence of novel methanogens in the rumen of Jinnan cattle.

Keywords: Jinan Cattle; methanogens; clone; molecular diversity

Supported by the Natural Science Foundation of China (30530560) and the IAEA project (12665/RO) *Corresponding author. Tel: +86-25-84395523; Fax: +86-25-84395314; E-mail: zhuweiyunnjau@hotmail.com Received: 10 April 2007 /Revised: 13 July 2007