微生物学报 Acta Microbiologica Sinica 48(1):15~20;4 January 2008 ISSN 0001-6209; CN11-1995/Q http://journals.im.ac.cn

苏云金芽胞杆菌大质粒 pBMB165 的克隆与分析

王莉**, 郭素霞**, 黄军艳, 喻子牛, 孙明*

(华中农业大学生命科学技术学院,农业微生物学国家重点实验室,武汉 430070)

摘要:以 pBeloBAC11 为载体,成功构建了苏云金芽胞杆菌 YBT-1765 的基因组人工染色体(BAC) 文库和质粒 BAC 文库。根据已克隆的包含复制子 *ori165* 在内的 3.6kb 片段中编码复制蛋白 Rep165 的核苷酸序列设计探针,通过染色体步移方式,对质粒文库和基因组文库进行筛选,得到 13 个覆 盖 YBT-1765 菌株中质粒 pBMB165 不同区域的克隆子。通过 *Hind* 和 *Bam*H 酶切分析,建立了 质粒 pBMB165 的物理图谱和线状重叠连锁图,并测算出该质粒的大小为 82kb。根据部分核苷酸 序列初步统计了 pBMB165 上转座因子的存在机率。YBT-1765 菌株基因组文库的构建和物理图谱 的绘制为克隆苏云金芽胞杆菌大质粒提供了一套可行的方案,成功解决了大质粒难克隆的问题。 关键词:苏云金芽胞杆菌;大质粒克隆;BAC 文库;物理图谱 中图分类号: Q93,Q78 文献标识码:A 文章编号:0001-6209(2008)01-0015-06

革兰氏阳性细菌苏云金芽胞杆菌(Bacillus thuringiensis)能够在胞内产生具有杀虫活性的伴胞晶 体^[1,2]。它含有丰富多样的质粒,数量可多达 12 种, 大小为 2~200kb, 不同亚种乃至同一亚种的不同菌 株中所包含的质粒数目、大小、拷贝数有很大的差 异。现已证明绝大多数编码杀虫晶体蛋白的 crv 基 因都位于质粒上、并且多分布在大于 30MD(大约 45kb)的质粒上^[3,4]。但是苏云金芽胞杆菌的大质粒除 了携带杀虫基因、接合转移因子和转座因子外、大 部分功能是未知的^[2]。克隆大质粒是分析其功能的 有效手段之一。然而由于其分子量较大、拷贝数较 低,一般难以克隆,也不易得到全序列。到目前为止, 在苏云金芽胞杆菌中成功克隆并完成全序列测序工 作的大质粒屈指可数,如 pAW63(71,777bp)^[5]和 pBtoxis (127,923bp)^[6]。在苏云金芽胞杆菌中,大质 粒的分离纯化一直以来都是大质粒研究中的难题, pAW63 和 pBtoxis 都是通过质粒消除办法去除其他 所有质粒后才得以纯化并测序的[5~7]。但是质粒消除 工作量大,且随机性强,加上某些质粒非常稳定, 因此用质粒消除来克隆特定的大质粒局限性太大。

本论文首次通过构建细菌人工染色体(Bacterial artificial chromosome, BAC)文库的方法, 成功地克隆到 了苏云金芽胞杆菌的大质粒。

本论文采用 BAC 载体,构建了苏云金芽胞杆菌 拟步行甲亚种(*B. thuringiensis* subsp. tenebrionis, H_{8ab})菌株 YBT-1765 的基因组 BAC 文库和质粒 BAC 文库,从而克隆了该大质粒,为苏云金芽胞杆 菌大质粒的克隆摸索出一条广泛、高效、可行的方 法,成功解决了大质粒难克隆的问题。大质粒的克 隆为研究其复制机制、在细胞中稳定遗传的机制、 功能以及在不同菌株(包括其它芽胞杆菌群菌株)的 分布、进化等提供了研究基础,也为构建稳定高效 的质粒载体提供了良好的材料。

1 材料和方法

1.1 材料

1.1.1 菌株和质粒:表1为本论文所用菌株和质粒。
1.1.2 主要试剂和仪器:各种限制性内切酶,T4DNA 连接酶,*Taq*DNA 聚合酶,碱性磷酸酶(CIAP)等酶制剂以及 DNA 分子量标准(如 DNA/*Hin*d

*通讯作者。Tel: +86-27-87283455; Fax: +86-27-87280670; E-mail: m98sun@mail.hzau.edu.cn

**作者简介: 同等贡献作者。王莉(1981-), 女, 硕士研究生, 主要从事芽胞杆菌分子生物学研究。E-mail: lwang111@webmail.hzau.edu.cn 收稿日期: 2007-05-08: 修回日期: 2007-06-27

基金项目: 国家 "863 计划"(2006AA02Z174, 20006AA10A212); 国家 "973 项目"(2003CB114201)

Stains and plasmids	Properties	Source
Strains Bacillus thuringiensis YBT-1765	B.thuringiensis subsp.tenebrionis, H8ab	Stored in this lab ^[8]
<i>Escherichia coli</i> DH10B	SupE44 △lacU169(φ80lacZ△M15)hsdR17 recA1 endA1 gyrA96 thi ^{°1} relA	Stored in this lab
Plasmids pBeloBAC11 pBMB165	7.5kb, ori <i>E.coil</i> , Amp ^r Cm ^r 82kb,containing plasmid <i>ori</i> 165 from strain YBT-1765	Stored in this lab This work
pBMB165A1	23.5kb,pBeloBAC11 with 16kb <i>Bam</i> HI fragment containing <i>ori</i> 165 of pBMB165 from strain YBT-1765	This work
pBMB165A2	27.5kb,pBeloBAC11 with 20kb <i>Bam</i> HI fragment containing <i>ori</i> 165 of pBMB165 from strain YBT-1765	This work
pBMB165A3	55.5kb,pBeloBAC11 with 48kb <i>Bam</i> HI fragment containing <i>ori</i> 165 of pBMB165 from strain YBT-1765	This work
pBMB165A4	59.5kb,pBeloBAC11 with 52kb <i>Bam</i> HI fragment containing <i>ori</i> 165 of pBMB165 from strain YBT-1765	This work
pBMB165A5	65.5kb,pBeloBAC11 with 58kb <i>Bam</i> HI fragment containing <i>ori</i> 165 of pBMB165 from strain YBT-1765	This work
pBMB165B1	76.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain VBT-1765	This work
pBMB165B2	31kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain YBT-1765	This work
pBMB165B3	47.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain YBT-1765	This work
pBMB165B4	65.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genome total DNA from strain YBT-1765	This work
pBMB165B5	62.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain YBT-1765	This work
pBMB165B6	34.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain YBT-1765	This work
pBMB165B7	42.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain YBT-1765	This work
pBMB165B8	22.5kb, pBeloBAC11 with <i>Hin</i> dIII fragment containing genomic DNA from strain YBT-1765	This work

	表 1	菌株和质粒	
Fable 1	The bacteria	and plasmids u	sed in this work

Marker, DL2000)均为 TaKaRa 公司产品; 抗生素、 十二烷基硫酸钠(SDS)、溶菌酶及 RNA 酶为进口分 装(Biolabs); 主要生化试剂购自武汉亚法、武汉天 元、上海生工和北京原平皓公司, 其余普通试剂均 为国产试剂; DNA 凝胶回收使用 OMEGA 公司的 DNA Gel Extraction Kit。离心机型号为 5415D 和 5415R, 购自 Eppendof 公司; 恒温摇床型号为 HQL150C, 购自中国科学院武汉科学仪器厂; 生化 培养箱型号为 LRH。250A, 购自广东省医学器械厂。

1.2 培养基和培养条件

大肠杆菌(*Escherichia coli*)使用 LB 培养基,于 37℃培养。苏云金芽胞杆菌(*B. thuringiensis*)使用 LB 培养基,于 28℃培养。抗生素的终浓度分别为:氨 苄青霉素(Amp)100 µg/L,氯霉素(Cm)12.5 µg/mL。 1.3 质粒和基因组 DNA 的分离和纯化

大肠杆菌质粒和基因组 DNA 的分离参照文献 [9]进行。苏云金芽胞杆菌质粒的分离参照文献[9] 的方法进行。苏云金芽胞杆菌大质粒的抽提一般采 用方法[10]。酶切后的 DNA 使用 DNA Gel Extraction Kit 回收纯化。

1.4 重组质粒的构建和转化

重组质粒的构建参照文献^[9]的方法。大肠杆菌 的常规转化采用氯化钙法^[9],苏云金芽胞杆菌采用 电转化法^[11]。

1.5 BAC 文库的构建

参照 Luo 等^[12], 以 pBeloBAC11 为载体构建菌 株 YBT-1765 质粒的 BamHI BAC 文库和基因组的 HindIII BAC 文库。

Primers	Sequences(5 3)	$T_{\rm m}/^{\circ}{\rm C}$	Product size/bp
B14-28FP1	ACACCCACGACCTTCTCTTC	56	589
B14-28FP2	GATTTTTACTCCTTCCCGCT		
B14-28RP1	GCGCTGCCTTATCTAAATCC	57	492
B14-28RP2	GGCTAGTATCAACGGTTCGTG		
D59-23P1	ATAATCTTAGTTGTTCAGGTG	52	527
D59-23P2	TCCACGTGTTGGCTTAAATAC		
1765-42P1	GCGATAATCACCAAATACAT	52	534
1765-42P2	GAGAGAACCAGGGGAAGGAA		
1765-42RP1	TTTTTGCGAGGTCGTTAGTC	55	514
1765-42RP2	GAGCGTTCTTTTCCGATAGG		
orf6-1	AGCAGTTACGTAAATGGAATACAAGATG	60	501
orf6-2	CGAGAGCTCTACACATTTACACATTTACAC		
14/BP1	AAGCGGAAATCGGACAAG	54	460
14/BP2	ACTCGGGATCAAGGTTGG		
GSX-12RP1	TTCACCCTGGTAAGAAGACG	57	567
GSX-12RP2	ACATATTGCATTAACCAGGTG		
orf2-1	AGGTGAGCAGTTATATCACTGCTCACCTTA	52	860
orf2-2	CATATCTCTACTTTTTCACGTGTAGGCAAT		

表 2 PCR 引物及其扩增产物大小 Table 2 Primers and PCR product size

1.6 脉冲场电泳

采用 Bio-Rad 公司的脉冲电泳仪(CHEF Mapper) 参见文献^[13]进行分析,电泳条件为:1.0% TBE 琼脂 糖凝胶,1×TBE,14℃,5.5 V/ cm,120°,脉冲交变时 间 5.0~15.0min,线形递增,脉冲时间为 18 h。

1.7 聚合酶链式反应(PCR)

PCR 扩增用的引物序列见表 2。PCR 反应条件: 95℃ 5min; 95℃ 1min, 52℃ 1min, 72℃ 3min, 30个 循环; 72℃ 10min。在 1%琼脂糖凝胶进行 PCR 产物 的分析。

1.8 酶切片段大小的估算

用软件 Kodak 1D 3.6 对酶切片段大小做定量 分析。

1.9 序列测定和分析

DNA 序列测定由商业服务机构完成, 序列数 据采用 ORF-finder 软件(http://www.ncbi.nlm.nih. gov/gorf/gorf.htm1)分析。

1.10 文库筛选

首先进行扩增筛选,根据已知探针筛选文库阳 性克隆子,进行末端测序分析;然后进行染色体步 移法筛选文库,即根据末端序列设计的引物,筛选 有重叠连锁关系的克隆子,得到能覆盖更多质粒区 域的克隆子。最终筛选得到完整覆盖质粒的克隆子。

2 结果和分析

2.1 菌株 YBT-1765 BAC 文库的构建和鉴定

通过对 YBT-1765 总质粒和全基因组 DNA 分别 进行 BamH 和 Hind 不完全酶切,以 pBeloBAC11 为载体,成功构建了 YBT-1765 菌株的基因组 BAC 文库和质粒 BAC 文库。为了鉴定质粒和基因组 BAC 文库的插入片段,分别随机挑取 96 个克隆,经 Not 酶切,通过脉冲场电泳进行检测。结果表明在质 粒 BAC 文库中,95%的克隆子含有插入片段,插入 片段大小主要集中在14~80kb之间,平均值为30kb, 共保存1000个克隆子。在基因组 BAC 文库中,外 源 DNA 插入片段大小分布于15~70kb之间,平均值为 60kb,空载率小于2%,共保存1000个克隆子。参照 蜡状芽胞杆菌群基因组大小为5.23-5.85Mb,因此该 基因组 BAC 文库覆盖率相当于10.2~11.5倍基因组。

2.2 菌株 YBT-1765 BAC 文库的筛选

根据已克隆的包含复制子 ori165^[14]在内的 3.6kb 片段中编码复制蛋白 Rep165 的核苷酸序列^[8]设 计引物 orf2-1 和 orf2-2(表 2),通过 PCR 扩增对质粒 BAC 文库进行筛选,获得了两个阳性克隆子 pBMB 165A1 和 pBMB165A2。根据克隆子 pBMB165A1 和 pBMB165A2 的末端序列设计引物 orf6-1 和 orf6-2 以及 14/BP1 和 14/BP2(表 2),再从质粒 BAC 文库中 通过染色体步移进行筛选,筛选到 3 个阳性克隆子 pBMB165A3,pBMB165A4 和 pBMB165A5。对这 5 个克隆子进行酶切和末端序列分析发现它们之间存 在着重叠连锁关系(图 1)。

根据这 5 个阳性克隆子的末端序列设计 8 对引 物, B14-28FP1/B14-28FP2、B14-28RP1/B14-28RP2、 D59-23P1/D59-23P2、1765-42P1/1765-42P2、orf6-1/ orf6-2、1765-42RP1/1765-42RP2、14/BP1 和 14/BP2、 GSX-12RP1 和 GSX-12RP2(表 2),通过染色体步移 对质粒 BAC 文库进行筛选。但是经过多轮筛选却无 法克隆到覆盖完整质粒的连锁群。于是运用上述 8 对引物,通过染色体步移对 YBT-1765 基因组 BAC 文库进行筛选,获得 8 个阳性克隆子 :pBMB165B1, pBMB165B2, pBMB165B3, pBMB165B4, pBMB 165B5, pBMB165B6, pBMB165B7, pBMB165B8。经

BamH I (42kb) Hind III (43kb) Hind III (33kb) *Hind* **II** (45kb) BamH I (32kb) *Hind* **II** (56.9kb) BamH I (57kb) HindIII III (31kb) BamHI (62kb) BamH I (66kb) Hind III (66.5kb)Hind III (30kb) BamH I (Obp) BamH I (82kb) pBMB165B4[58kb] pBMB165B5[55kb] pBMB165B1[69kb] pBMB165B2[23.5kb] pBMB165B8[15kb] pBMB165B7[35kb] pBMB165B6[27kb] pBMB165B3[40kb] pBMB165A1[16kb] pBMB165A2[20kb] pBMB165A3[48kb] pBMB165A4[52kb] pBMB165A5[58kb]

图 1 质粒 pBMB165 的线状重叠连锁图

酶切和末端序列分析发现它们能够覆盖整个质粒 pBMB165(图 1)。

2.3 质粒 pBMB165 的拼接

2.3.1 质粒 pBMB165 的限制性酶切图谱:利用 26 种常用的限制性内切酶对 pBMB165B1和 Pbmb165B2 进行酶切,确定了这两个克隆上各种酶的酶切位点 个数。选用限制性内切酶 BamHI、NotI和 SphI 对两 个克隆子进行单酶切和双酶切消化,然后进行脉冲 电泳分析(图 2)。

图 2 重组质粒 pBMB165B1; pBMB165B2 酶切图

Fig. 2 Agarose electrophoresis of digested plasmid pBMB165B1 and pBMB165B2. M: PFGmarker; 1,7,13: λ DNA +λ DNA/ Hind Marker; 2: pBMB165B1/Sph ; 3: pBMB165B1/Sph +BamH ; 4: pBMB165B1/BamH ; 5: pBMB165B1/Not +BamH ; 6: pBMB 165B1/Not ; 8: pBMB165B2/Not ; 9: pBMB165B2/Not +BamH ; 10: pBMB165B2/BamH ; 11: pBMB165B2/ Sph +BamH ; 12: pBMB165B2/Sph .

经过多次电泳分离,以 PFGmarker 和 λDNA/ Hind 作为分子量标准,用软件 Kodak 1D 3.6 对各 限制性内切酶片段做定量分析,估算出各限制性内 切酶片段的分子量平均值。对各限制性内切酶片段 的大小和从基因组的 BAC 文库及质粒的 BAC 文库 中筛选出的阳性克隆子的外源片段大小进行分析, 估算出 pBMB165 大小约为 82 kb。绘制出 pBMB165 部分限制性酶切图谱,见图 3。

图 3 pBMB165 的限制性图谱

Fig. 3 The restriction map of pBMB165. arrow area: the replication region; circular area: transposable elements in close proximity to and within the replicon control region; trigonal area: potential transposable elements on the basis of terminal sequence of BamHI fragment. 2.3.2 质粒 pBMB165 的线状重叠连锁图:根据从 基因组文库和质粒文库中筛选出来的阳性克隆子各 外源片段的重叠关系及其分子量大小,质粒 pBMB165的BamH 和Hind 切点的位置及其酶切 片段的排列顺序(图 3),从而构建了质粒 pBMB165 的线状重叠连锁图(图 1)。

2.4 转座因子存在机率

前述研究已完成了质粒 pBMB165 包含复制子 ori165 在内的 20kb 的 DNA 片段(pBMB165A2 的外源 片段)的测序工作^[8], 测序结果显示质粒 pBMB165 复 制子相邻区域含有 5 个可能的转座因子 IS231U、 ISBth165、 ISBth166、 ISBth167 和不完整的 TnBMB165^[8]。按照插入因子大小为 1.6kb 计算, 这 5 个转座因子在 20kb 的 DNA 片段中存在的机率值 为 40.5%(图 3)。对 pBMB165A3、pBMB165A4 和 pBMB165A5 的末端序列进行分析, 同样发现在上 述 20kb 以外的 62kb 区域中也存在 4 个可能的转座 因子, 其存在的机率值约为 10.7% (图 3)。

3 讨论

通过构建 BAC 文库的方法,从拟步行甲亚种菌株 YBT-1765 中克隆到了一个大质粒 pBMB165。应用建立的 pBMB165 限制性内切酶 *Hind* 和 *Bam*H 的物理图谱和线状重叠连锁图,估算出质粒 pBMB165 大小为 82kb。对其中一个阳性克隆 pBMB165A2 作了序列测定^[8]。序列分析结果表明我们成功地从 YBT-1765 中克隆了大质粒 pBMB165。

在利用 YBT-1765 菌株的质粒 BAC 文库拼接质 粒 pBMB165 时,发现质粒文库对质粒 pBMB165 的 覆盖不完整。并且在制备外源片段时、不易控制质 粒的 BamH 不完全酶切程度,导致插入片段大小 分布不均匀,这与苏云金芽胞杆菌质粒上 BamH 位点偏少相一致。若改选质粒上较为丰富的 Hind 位点制备外源片段,因为不易得到高纯度的质粒, 无法控制对质粒的不完全酶切程度、导致插入片段 大小过小、无法得到目的大小的质粒文库。为了完 整拼接质粒 pBMB165, 进一步构建了 YBT-1765 菌 株的基因组 BAC 文库、其插入片段大小分布均匀、 利于将整个质粒完整拼接。同时选择不同的酶切位 点 Hind 来填补质粒文库中存在的间隙。基因组 BAC文库相对于质粒文库有覆盖率高和插入片段大 小均一的优点、于是克隆苏云金芽胞杆菌大质粒更 倾向于构建高质量的基因组 BAC 文库。

在限制性酶切图谱构建过程中,由于估算酶切 片段大小的存在偏差以及在脉冲电泳中小于 1kb 的 片段难以被检测到的问题,因此估算的质粒 pBMB165的大小可能存在约1kb的偏差。对于各阳 性克隆而言, Not 位点只在载体中存在, Sph 位点 太过零散,于是在 pBMB165 限制性酶切图谱中均 未标出 Not 和 Sph 位点。对 pBMB165 进一步测 序,可以解决质粒大小偏差问题,同时可以对 pBMB165上转座因子存在机率做精确统计,有关结 果将作进一步报道。

根据 pBMB165 上统计的转座因子的存在机率, 在 pBMB165A2 上转座因子存在的机率值为 40.5 %, 说明 pBMB165 中存在丰富的转座因子。进一步为 质粒上携带的转座因子参与并促进了 ICPs 基因在 不同菌株间的转移提供理论基础,有助于研究苏云 金芽胞杆菌杀虫晶体蛋白基因广泛分布的原因。

菌株 YBT-1765 基因文库和物理图谱的构建为 克隆大质粒提供了行而有效的方法,为进一步探索 苏云金芽胞杆菌质粒的特性、功能及进化关系等方 面的基础理论研究提供了研究的基础,也扩宽了质 粒克隆的方法。运用同样的方法我们在中华亚种 CT-43 中成功克隆到了一个大质粒,命名为 pBMB0547,预计大小为 120kb(未发表)。进一步表 明利用 BAC 文库的方法克隆分子量大、拷贝数低的 大质粒是有效的。

参考文献

- Schnepf E, Crickmore N, van Rie J, et al. Mode of replication, size and distribution of naturally occurring plasmids in *Bacillus thuringiensis*. Microbiol Mol Biol Rev, 1998, 62: 775–806.
- [2] 喻子牛. 苏云金芽胞杆菌制剂的生产和应用. 北京:农业 出版社, 1993.
- Baum JA, Coyle DM, Jany CS, et al. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol, 1990, 56: 3420–3428.
- [4] Baum JA, Gonzalez JM. Mode of replication, size and distribution of naturally occurring plasmids in *Bacillus thuringiensis. FEMS Microbiol Lett*, 1992, 96:143–148.
- [5] van der Auwera GA, Andrup L, Mahillon J. Conjugative plasmid pAW63 brings new insights into the genesis of the *Bacillus anthracis* virulence plasmid pXO2 and of the *Bacillus thuringiensis* plasmid pBT9727. *BMC Genomics*, 2005, 6: 103.
- [6] Berry C, O'Neil S, Ben-Dov E, et al. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp israelensis. Appl Environ Microbiol, 2002, 68: 5082–5095.
- Ziegler DR. *Bacillus* Genetic Stock Center Catalog of Strains. 7th ed. Columbus:Ohio State Univ. Press, 2000.
- [8] Huang JY, Guo SX, Sun M, et al. Molecular characterization of a DNA fragment harboring the replicon of pBMB165
 © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn

from *Bacillus thuringiensis* subsp. *tenebrionis*. BMC Genomics, 2006, 7: 270.

- [9] Sambrook J, Fritsch EF, Manniatis T. Molecular Cloning, A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989.
- [10] Kalman S, Kiehne KL, Libs JL, et al. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl Environ Microbiol, 1993, 59: 1131–1137.
- [11] Laura A, Silo-Suh, Benjamin J, et al. Biological activities of two fungistatic antibiotics produced by Bacillus cereus

UW85. Appl Environ Microbil, 1994, 60: 2023-2030.

- [12] Luo M, Wing RA. An improved method for plant BAC library construction. In: Grotewold, Erich ed. Plant functional genomic: methods and protocols. Totowa: Humana Press, 2003.
- [13] 齐义鹏.基因及其操作原理.武汉:武汉大学出版社, 1998.
- [14] 魏芳,孙明,喻子牛.苏云金芽胞杆菌拟步行甲亚种质粒
 复制子 ori165 的克隆.微生物学报(Acta Microbiologica Sinica), 2002, 42: 45-49.

Cloning and physical map construction of a large plasmid pBMB165 in Bacillus thuringiensis

Li Wang**, Suxia Guo**, Junyan Huang, Ziniu Yu, Ming Sun*

(College of Life Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China)

Abstract: The largest detected plasmid pBMB165 from *Bacillus thuringiensis* subsp. *tenebrionis* strain YBT-1765 (H_{8ab}) was cloned and its physical map was analyzed. For the cloning, two BAC libraries were constructed with their plasmid DNA and genomic DNA, respectively. The plasmid DNA BAC library was obtained by partially digesting plasmid DNA with *Bam*HI and then cloning to pBeloBAC11 vector, whereas the genomic DNA BAC library was done with *Hin*dIII partial digestion. With the chromosome walking strategy, the plasmid BAC library was initially screened by the primers designed according the sequence coding replication protein Rep165 on a previously identified 3.6kb DNA fragment (pBMB165-F4A). Finally, 5 clones covering the most of plasmid pBMB165 were obtained. When screening the genomic DNA BAC library, 8 clones covering whole plasmid pBMB165 were isolated. By restriction analysis of these 13 BAC clones, the physical map and the linear linkage map of plasmid pBMB165 were constructed and the size of pBMB165 was calculated to be 82kb. Based on the DNA sequence of the BAC insertion ends and a previously published 20kb fragment on recombinant plasmid pBMB165A2, there were redundant transposable elements appeared on this large plasmid. This study provided a novel way to clone large plasmid from *B. thuringiensis*, to draw the physical map by construction of BAC library, and to dissolve the problem in cloning large plasmid from *B. thuringiensis*.

Keywords: Bacillus thuringiensis; Large plasmid cloning; BAC library; Physical map

Supported by the Chinese National Program for High Technology Research and Development (2006AA02Z174, 20006AA10A212) and the Key Project of China National Programs for Fundamental Research and Development (2003CB114201)

^{*}Corresponding author. Tel: +86-27-87283455; Fax: +86-27-87280670; E-mail: m98sun@mail.hzau.edu.cn

^{**} contributed equally to this work.

Received: 8 May 2007/ Revised: 27 June 2007