浙麦冬HMA基因家族鉴定及镉胁迫响应分析
作者:
基金项目:

浙江省高层次人才特殊支持计划(2022R52024);浙江省“领雁”计划(2020C02024)


Identification of HMA gene family and response to cadmium stress in Ophiopogon japonicas
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • | | | |
  • 文章评论
    摘要:

    土壤镉污染是当前全球面临的重要环境问题之一。浙麦冬(Ophiopogon japonicus)作为一种多功能植物,不仅在传统医学中广泛应用,其在环境修复领域中的应用潜力也逐渐受到关注。本文旨在探讨浙麦冬在不同浓度镉胁迫下的镉富集规律,鉴定和分析浙麦冬重金属ATP酶(heavy metal ATPase,HMA)家族成员。研究发现浙麦冬富集系数高达2.75,在土壤镉污染修复中显示出良好的镉富集潜力。基于前期转录组数据鉴定出9个浙麦冬P1B型重金属ATP酶(P1B-ATPases)家族成员,其中OjHMA1–OjHMA6属于锌/钴/镉/铅ATP酶(Zn/Co/Cd/Pb-ATPases),OjHMA7–OjHMA9则属于铜/银ATP酶(Cu/Ag-ATPases)。在镉胁迫下,OjHMA1OjHMA2OjHMA3OjHMA7等基因表达显著上调,表明其在镉离子的吸收和转运过程中发挥核心作用。拓扑结构分析揭示了HMA蛋白具有该家族典型的跨膜(transmembrane,TM)片段以及调节离子吸收与释放的A、P和N功能域,跨膜片段上存在着金属离子结合位点(M4、M5、M6)。根据跨膜域数目及金属结合位点上氨基酸的不同,可将植物的HMA家族蛋白分为3个亚组:P1B-1 ATPases、P1B-2 ATPases和P1B-4 ATPases。P1B-1 ATPases亚组包含的TM4(CPC)、TM5(YN[X]4P)和TM6(M[XX]SS)基序,P1B-2 ATPases亚组的TM4(CPC)、TM5(K)以及TM6(DKTGT)基序,P1B-4 ATPases亚组的TM4中的SPC和TM6中的HE[X]GT基序,都是其蛋白发挥功能的关键。在此基础上,利用分子对接对金属离子结合位点进行了详细解析,揭示了CPC/SPC、DKTGT和HE[X]GT等关键保守序列在金属离子配位和稳定中的重要作用。本研究结果不仅提供了通过基因工程提高浙麦冬对镉吸附和耐受性的分子靶点,也为培育具有高镉吸附能力的新品种提供了理论基础。

    Abstract:

    Soil cadmium (Cd) pollution is one of the major environmental problems globally. Ophiopogon japonicus, a multifunctional plant extensively used in traditional Chinese medicine, has demonstrated potential in environmental remediation. This study investigated the Cd accumulation pattern of O. japonicus under cadmium stress and identified the heavy metal ATPase (HMA) family members in this plant. Our results demonstrated that O. japonicus exhibited a Cd enrichment factor (EF) of 2.75, demonstrating strong potential for soil Cd pollution remediation. Nine heavy metal ATPase (HMA) members of P1B-ATPases were successfully identified from the transcriptome data of O. japonicus, with OjHMA1–OjHMA6 classified as the Zn/Co/Cd/Pb-ATPases and OjHMA7–OjHMA9 as the Cu/Ag-ATPases. The expression levels of OjHMA1, OjHMA2, OjHMA3, and OjHMA7 were significantly up-regulated under Cd stress, highlighting their crucial roles in cadmium ion absorption and transport. The topological analysis revealed that these proteins possessed characteristic transmembrane (TM) segments of the family, along with functional A, P, and N domains involved in regulating ion absorption and release. Metal ion-binding sites (M4, M5, and M6) existed on the TM segments. Based on the number of transmembrane domains and the residues at metal ion-binding sites, the plant HMA family members were categorized into three subgroups: P1B-1 ATPases, P1B-2 ATPases, and P1B-4 ATPases. Specifically, the P1B-1 ATPase subgroup included the motifs TM4(CPC), TM5(YN[X]4P), and TM6(M[XX]SS); the P1B-2 ATPase subgroup featured the motifs TM4(CPC), TM5(K), and TM6(DKTGT); the P1B-4 ATPase subgroup contained the motifs TM4(SPC) and TM6(HE[X]GT), all of which were critical for protein functions. Molecular docking results revealed the importance of conserved sequences such as CPC/SPC, DKTGT, and HE[X]GT in metal ion coordination and stabilization. These findings provide potential molecular targets for enhancing Cd uptake and tolerance of O. japonicus by genetic engineering and lay a theoretical foundation for developing new cultivars with high Cd accumulation capacity.

    参考文献
    [1] 曾思燕, 于昊辰, 马静, 刘俊娜, 陈浮. 中国耕地表层土壤重金属污染状况评判及休耕空间权衡[J]. 土壤学报, 2022, 59(4): 1036-1047. ZENG SY, YU HC, MA J, LIU JN, CHEN F. Identifying the status of heavy metal pollution of cultivated land for tradeoff spatial fallow in China[J]. Soil Journal, 2022, 59(4): 1036-1047(in Chinese).
    [2] 李静, 岳小琳, 程月红, 鲍连艳, 于艳艳, 任雪梅. 土壤重金属污染现状及其对蔬菜重金属残留影响的研究进展[J]. 食品安全质量检测学报, 2019, 10(16): 5299-5305. LI J, YUE XL, CHENG YH, BAO LY, YU YY, REN XM. Research progress on heavy metal pollution in soil and the effect on heavy metal residues in vegetables[J]. Journal of Food Safety & Quality, 2019, 10(16): 5299-5305(in Chinese).
    [3] 樊霆, 叶文玲, 陈海燕, 鲁洪娟, 张颖慧, 李定心, 唐子阳, 马友华. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736. FAN T, YE WL, CHEN HY, LU HJ, ZHANG YH, LI DX, TANG ZY, MA YH. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10): 1727-1736(in Chinese).
    [4] WEI SH, ZHOU QX, KOVAL PV. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1/2/3): 441-446.
    [5] DENG DM, DENG JC, LI JT, ZHANG J, HU M, LIN Z, LIAO B. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils[J]. Journal of Integrative Plant Biology, 2008, 50(6): 691-698.
    [6] LI JT, DENG DM, PENG GT, DENG JC, ZHANG J, LIAO B. Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae)[J]. International Journal of Phytoremediation, 2010, 12(8): 761-771.
    [7] CHEN MH, CHEN XJ, WANG M, LIN LG, WANG YT. Ophiopogon japonicas: a phytochemical, ethnomedicinal and pharmacological review[J]. Journal of Ethnopharmacology, 2016, 181: 193-213.
    [8] 唐丽清. 北京城区道路绿地不同绿化模式植物重金属富集效能研究[D]. 北京: 中国林业科学研究院, 2014. TANG LQ. Study on the enrichment efficiency of heavy metals in plants under different greening patterns in Beijing urban road green space[D]. Beijing: Chinese Academy of Forestry, 2014(in Chinese).
    [9] 陈雪, 郑志鑫, 石青, 张风娟. AMF和植物富集土壤中铅和镉的效应[J]. 菌物研究, 2017, 15(1): 33-38, 52. CHEN X, ZHENG ZX, SHI Q, ZHANG FJ. Effect of AMF and plants on accumulation of Pb and Cd in soil[J]. Journal of Fungal Research, 2017, 15(1): 33-38, 52(in Chinese).
    [10] ZHAO Q, LI Q, LIN ST, HOU RJ, LIU JY, TAO YC, LI Y, ZHOU YF, YE ZH, YU XP, HUANG J. De novo transcriptome combined with physiological analyses revealed key genes for cadmium accumulation in Zhe-Maidong (Ophiopogon japonicus)[J]. Frontiers in Plant Science, 2022, 13: 1078330.
    [11] 安鹏虎, 张多民, 周子方, 韩丹, 许自成, 黄五星. 植物重金属转运蛋白P1B-ATPases研究进展[J]. 生物工程学报, 2021, 37(9): 3020-3030. AN PH, ZHANG DM, ZHOU ZF, HAN D, XU ZC, HUANG WX. Advances in plant heavy metal transporter P1B-ATPases[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3020-3030(in Chinese).
    [12] ARGÜELLO JM, EREN E, GONZÁLEZ-GUERRERO M. The structure and function of heavy metal transport P1B-ATPases[J]. Biometals, 2007, 20(3/4): 233-248.
    [13] WILLIAMS LE, MILLS RF. P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science, 2005, 10(10): 491-502.
    [14] LI DD, XU XM, HU XQ, LIU QG, WANG ZC, ZHANG HZ, WANG H, WEI M, WANG HZ, LIU HM, LI CH. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa[J]. Frontiers in Plant Science, 2015, 6: 1149.
    [15] SMITH AT, SMITH KP, ROSENZWEIG AC. Diversity of the metal-transporting P1B-type ATPases[J]. Journal of Biological Inorganic Chemistry, 2014, 19(6): 947-960.
    [16] ØSTERBERG JT, PALMGREN M. Heavy metal pumps in plants: structure, function and origin[M]// Advances in Botanical Research. Amsterdam: Elsevier, 2018: 57-89.
    [17] SUN CJ, YANG M, LI Y, TIAN JJ, ZHANG YY, LIANG LM, LIU ZH, CHEN K, LI YT, LV K, LIAN XM. Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3[J]. Journal of Experimental Botany, 2019, 70(21): 6389-6400.
    [18] TAKAHASHI R, BASHIR K, ISHIMARU Y, NISHIZAWA NK, NAKANISHI H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice[J]. Plant Signaling & Behavior, 2012, 7(12): 1605-1607.
    [19] YAMAJI N, XIA JX, MITANI-UENO N, YOKOSHO K, MA JF. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939.
    [20] LEE S, KIM YY, LEE Y, AN G. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein[J]. Plant Physiology, 2007, 145(3): 831-842.
    [21] PAN JY, GUAN MY, XU P, CHEN MX, CAO ZZ. Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling[J]. The Science of the Total Environment, 2021, 797: 149202.
    [22] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
    [23] NEWMAN L, DUFFUS ALJ, LEE C. Using the free program MEGA to build phylogenetic trees from molecular data[J]. The American Biology Teacher, 2016, 78(7): 608-612.
    [24] MASAND VH, RASTIJA V. PyDescriptor: a new PyMOL plugin for calculating thousands of easily understandable molecular descriptors[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 169: 12-18.
    [25] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
    [26] HUANG GY, HU YN, LI FX, ZUO XR, WANG XY, LI FY, LI RM. Genome-wide characterization of heavy metal-associated isoprenylated plant protein gene family from Citrus sinensis in response to huanglongbing[J]. Frontiers in Plant Science, 2024, 15: 1369883.
    [27] 吴博慧, 黎建辉, 卢泳全. 杉木ClHA2基因的克隆及表达分析[J]. 农业生物技术学报, 2018, 26(12): 2057-2065. WU BH, LI JH, LU YQ. Cloning of ClHA2 gene and its expression analysis in Chinese fir (Cunninghamia lanceolata)[J]. Journal of Agricultural Biotechnology, 2018, 26(12): 2057-2065(in Chinese).
    [28] RAHIMI MJ, URBAN N, WEGLER M, STICHT H, SCHAEFER M, POPP B, GAUNITZ F, MORLEO M, NIGRO V, MAITZ S, MANCINI GMS, RUIVENKAMP C, SUK EK, BARTOLOMAEUS T, MERKENSCHLAGER A, KOBOLDT D, BARTHOLOMEW D, STEGMANN APA, SINNEMA M, DUYNISVELD I, et al. De novo variants in ATP2B1 lead to neurodevelopmental delay[J]. American Journal of Human Genetics, 2022, 109(5): 944-952.
    [29] LIU WZ, LI HL. COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells[J]. Immunologic Research, 2021, 69(6): 496-519.
    [30] YANG YJ, MA KF, ZHANG TX, LI LL, WANG J, CHENG TR, ZHANG QX. Characteristics and expression analyses of trehalose-6-phosphate synthase family in Prunus mume reveal genes involved in trehalose biosynthesis and drought response[J]. Biomolecules, 2020, 10(10): 1358.
    [31] SITSEL O, GRØNBERG C, AUTZEN HE, WANG KT, MELONI G, NISSEN P, GOURDON P. Structure and function of Cu(I)- and Zn(II)-ATPases[J]. Biochemistry, 2015, 54(37): 5673-5683.
    [32] 陈亚慧, 刘晓宇, 王明新, 王静, 严新美. 蓖麻对镉的耐性、积累及与镉亚细胞分布的关系[J]. 环境科学学报, 2014, 34(9): 2440-2446. CHEN YH, LIU XY, WANG MX, WANG J, YAN XM. Cadmium tolerance, accumulation and relationship with Cd subcellular distribution in Ricinus communis L.[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2440-2446(in Chinese).
    [33] 王峰, 单睿阳, 陈玉真, 林栋良, 臧春荣, 陈常颂, 尤志明, 余文权. 闽中某县茶园土壤-茶树-茶汤中镉含量及健康风险评价研究[J]. 茶叶科学, 2018, 38(5): 537-546. WANG F, SHAN RY, CHEN YZ, LIN DL, ZANG CR, CHEN CS, YOU ZM, YU WQ. A case study of cadmium distribution in soil-tea plant-tea soup system in central Fujian Province and relative health risk assessment[J]. Journal of Tea Science, 2018, 38(5): 537-546(in Chinese).
    [34] 南帅帅, 王亚, 刘强, 刘祺, 李朋朋, 刘智峰. 油菜对铅镉污染土壤的修复效果研究[J]. 环境研究与监测, 2018, 31(1): 5-8. NAN SS, WANG Y, LIU Q, LIU Q, LI PP, LIU ZF. Study on remediation effect of rape on lead and cadmium contaminated soil[J]. Environmental Study and Monitoring, 2018, 31(1): 5-8(in Chinese).
    [35] YANG J, GUO JM, YANG JX. Cadmium accumulation and subcellular distribution in populations of Hylotelephium spectabile (Boreau) H. Ohba[J]. Environmental Science and Pollution Research, 2018, 25(31): 30917-30927.
    [36] ZHOU C, XIAO XY, GUO ZH, PENG C, ZENG P, FOSUA BRIDGET A. Physiological responses, tolerance efficiency, and phytoextraction potential of Hylotelephium spectabile (Boreau) H. Ohba under Cd stress in hydroponic condition[J]. International Journal of Phytoremediation, 2021, 23(1): 80-88.
    [37] LI K, YANG BS, WANG H, XU XH, GAO YC, ZHU YD. Dual effects of biochar and hyperaccumulator Solanum nigrum L. on the remediation of Cd-contaminated soil[J]. PeerJ, 2019, 7: e6631.
    [38] 吴彬艳, 邵冰洁, 赵惠恩, 万小铭, 雷梅. 11种广义景天属植物对Cd的耐性和积累特性[J]. 环境科学学报, 2017, 37(5): 1947-1956. WU BY, SHAO BJ, ZHAO HE, WAN XM, LEI M. Cd accumulation and tolerance characteristics of 11 species in Sedum sensu lato[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1947-1956(in Chinese).
    [39] HUANG QY, QIU WM, YU M, LI SC, LU ZC, ZHU Y, KAN XZ, ZHUO RY. Genome-wide characterization of Sedum plumbizincicola HMA gene family provides functional implications in cadmium response[J]. Plants, 2022, 11(2): 215.
    [40] MA YT, WEI N, WANG QX, LIU ZP, LIU WX. Genome-wide identification and characterization of the heavy metal ATPase (HMA) gene family in Medicago truncatula under copper stress[J]. International Journal of Biological Macromolecules, 2021, 193: 893-902.
    [41] FANG XL, WANG L, DENG XJ, WANG P, MA QB, NIAN H, WANG YX, YANG CY. Genome-wide characterization of soybean P1B-ATPases gene family provides functional implications in cadmium responses[J]. BMC Genomics, 2016, 17: 376.
    [42] ZHANG CR, YANG QH, ZHANG XQ, ZHANG X, YU TY, WU YH, FANG YX, XUE DW. Genome-wide identification of the HMA gene family and expression analysis under Cd stress in barley[J]. Plants, 2021, 10(9): 1849.
    [43] MORENO I, NORAMBUENA L, MATURANA D, TORO M, VERGARA C, ORELLANA A, ZURITA-SILVA A, ORDENES VR. AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump[J]. Journal of Biological Chemistry, 2008, 283(15): 9633-9641.
    [44] CONG WX, MIAO YL, XU L, ZHANG YH, YUAN CL, WANG JM, ZHUANG TT, LIN XY, JIANG LL, WANG NN, MA J, SANGUINET KA, LIU B, RUSTGI S, OU XF. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2019, 19(1): 282.
    [45] MATTLE D, ZHANG LM, SITSEL O, PEDERSEN LT, MONCELLI MR, TADINI-BUONINSEGNI F, GOURDON P, REES DC, NISSEN P, MELONI G. A sulfur-based transport pathway in Cu+-ATPases[J]. EMBO Reports, 2015, 16(6): 728-740.
    [46] VERRET F, GRAVOT A, AUROY P, PREVERAL S, FORESTIER C, VAVASSEUR A, RICHAUD P. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch[J]. FEBS Letters, 2005, 579(6): 1515-1522.
    [47] CUBILLAS C, MIRANDA-SÁNCHEZ F, GONZÁLEZ-SÁNCHEZ A, ELIZALDE JP, VINUESA P, BROM SUSANA, GARCÍA-DE LOS SANTOS A. A comprehensive phylogenetic analysis of copper transporting P1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes[J]. MicrobiologyOpen, 2017, 6(4): e00452.
    [48] SAZINSKY MH, MANDAL AK, ARGÜELLO JM, ROSENZWEIG AC. Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase[J]. Journal of Biological Chemistry, 2006, 281(16): 11161-11166.
    [49] 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. ZHAO Y, WEN L, LUO SD, LI ZX, LIU CC. Identification of HMA gene family and cadmium transport function of SlHMA1in tomato[J]. Biotechnology Bulletin, 2024, 40(2): 212-222(in Chinese).
    [50] WANG L, DING YY, ZHANG XX, LI YF, WANG R, LUO XH, LI YN, LI J, CHEN ZX. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination[J]. Food Chemistry, 2018, 239: 416-426.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王智慧,牛二利,高远亮,朱倩,叶子弘,俞晓平,赵倩,黄俊. 浙麦冬HMA基因家族鉴定及镉胁迫响应分析[J]. 生物工程学报, 2025, 41(2): 771-790

复制
分享
文章指标
  • 点击次数:188
  • 下载次数: 286
  • HTML阅读次数: 171
  • 引用次数: 0
历史
  • 收稿日期:2024-06-07
  • 最后修改日期:2024-10-08
  • 在线发布日期: 2025-02-11
  • 出版日期: 2025-02-25
文章二维码
您是第6506138位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司