
中国科学院微生物研究所,中国微生物学会,中国菌物学会
文章信息
- 康燕菲, 田平芳, 谭天伟. 2015
- Yanfei Kang, Pingfang Tian, Tianwei Tan. 2015
- 肺炎克雷伯氏菌毒力因子的研究进展
- Research advances in the virulence factors of Klebsiella pneumoniae- A review
- 微生物学报, 2015, 55(10): 1245-1252
- Acta Microbiologica Sinica, 2015, 55(10): 1245-1252
-
文章历史
- 收稿日期:2014-12-25
- 修回日期:2015-02-06
化石资源枯竭和环境恶化催生生物炼制。微生物发酵生产化学品是石油替代战略之一[1]。肺炎克雷伯氏菌(Klebsiella pneumoniae)可天然产生1,3-丙二醇、2,3-丁二醇和3-羟基丙酸等大宗化学品,现已成为工业微生物领域的研究热点[2, 3]。该菌虽能利用不同碳源在简单培养基上快速生长,但其致病性制约了实际应用。1882年Friedlander首次从大叶性肺炎患者痰液中分离出肺炎克雷伯氏菌[4]。该菌致病性强,可感染人体全身尤其是呼吸和泌尿系统,引发肺炎、脑膜炎、肝脓肿和败血症等疾病。感染过程受宿主和细菌双方因素(例如受体、菌毛、荚膜组分及内毒素)的影响。本文综述了该菌的致病因子及致病机制,提出并讨论了消除或弱化其毒性的策略。
1 菌毛与受体细菌能否突破宿主防御系统首先取决于对宿主黏膜的粘附能力。菌毛或纤毛具有粘附作用,由菌毛素亚单位构成,具有良好的抗原性。菌毛分为普通菌毛和性菌毛两类。性菌毛由质粒上的致育因子(F因子)编码,与细菌的接合有关。普通菌毛中的Ⅰ型菌毛能穿过荚膜基质向外延伸,并且调节细菌对宿主上皮细胞的D-甘露糖-敏感性粘附[5];Ⅲ型菌毛使细菌牢固粘附于动物消化道、呼吸道和泌尿生殖道的黏膜上皮细胞,并促使细菌在宿主表面形成生物被膜(biofilm)[6]。基因fimH-1和mrkD分别编码Ⅰ型和Ⅲ型菌毛的粘附素(adhesin,这里意指菌毛,而不是革兰氏阳性菌中的非菌毛粘附物质)。Struve等[7]从临床肺炎克雷伯氏菌中克隆和鉴定了Ⅰ型菌毛的基因簇,其总体结构与大肠杆菌(Escherichia coli)的Ⅰ型菌毛高度相似,其fim基因簇中特有的fimK基因可编码一个控制菌毛表达的EAL结构域。通过评估Ⅰ型菌毛在不同感染模型中的作用,发现它并不影响肺炎克雷伯氏菌在宿主肠和肺部的增殖能力,但却是引发尿路感染的重要因子。
细菌对宿主细胞的粘附受到宿主的免疫抑制,因此细菌需借助其他优势来克服免疫抑制。肺炎克雷伯氏菌的甘露糖-抑制粘附素-T7受体(MIAT)可调节它对上皮细胞的附着力,并使菌体免受吞噬以及多形核细胞(中性粒细胞)的胞内杀伤[8]。Pruzzo[9]研究发现,向小鼠腹膜内注射MIAT阳性菌株比注射阴性菌株的致死中量(LD50)相差60倍。MIAT-阳性受体可使细菌粘附于宿主细胞表面,而当MIAT阳性菌株由于自发突变或溶原性转换失去其受体时,随即失去在上皮细胞中的增殖能力,且易被中性粒细胞吞噬。由此可见,细菌借助其表面受体附着于宿主细胞,并通过干扰宿主的吞噬功能而保护细菌自身。Ⅰ型菌毛和MIAT不同。Ⅰ型菌毛由染色体上5.5 kb的菌毛基因编码[10],而MIAT受体是外膜蛋白。外膜蛋白的差异决定了MIAT阳性和阴性菌株的致病性差异。受体是关键毒力因子,能使细菌附着于宿主细胞表面并免于被吞噬。在基因组水平改造受体有望消除或降低其毒性。
2 荚膜荚膜是包围细胞壁的松散粘液物质。荚膜至少参与两个致病机制:(1)保护细菌免受吞噬;(2)直接抑制宿主的免疫反应。肺炎克雷伯氏菌通过产生大量荚膜多糖(Capsular polysaccharide,CPS)来逃避吞噬细胞的血清杀伤作用,这显然提高其存活率并保证其致病能力[11]。Turton等分析了77株不同K抗原的荚膜,认定K1、K2和K5荚膜表型具有高毒性并与动物的多数感染有关[12]。荚膜的大小和荚膜多糖的产生速率极大影响其致病性。Cortes[11]等分离了一株荚膜肥厚的高毒菌株,将该菌株注射小鼠气管,可引起肺炎并在死亡前患菌血症(bacteremia)。病理组织检查观测到肺感染、胸膜炎、血管炎以及多形核白细胞浸润;而相同基因型的插入突变株(缺乏CPS)却相对无毒,将其注射小鼠气管,没有导致肺炎或菌血症,病理组织检查也未发现肺部感染,并且该实验组无死亡个体。通过分析宿主的防御机制发现,无荚膜突变菌株表面的C3沉淀物水平是野生菌的3倍。相比于野生菌,无荚膜突变株更易被巨噬细胞吞噬小泡(AM)吞噬。此外,Struve等[13]发现肺炎克雷伯氏菌对小鼠的致病和致死能力与荚膜大小有关,荚膜的保护作用为其增殖和入侵宿主提供时间。Lau等[14]用小鼠呼吸模型来检测肺部和全身疾病的病程,发现野生肺炎克雷伯氏菌在小鼠气管和肺部大量增殖,嗜中性粒细胞引发免疫反应,产生平稳的致死过程;与此相反,感染无荚膜菌株的小鼠则无肺部和全身系统疾病。
除了干扰宿主的吞噬作用,荚膜也可直接抑制宿主的免疫反应。Kato等将肺炎克雷伯氏菌的荚膜多糖注射小鼠腹膜,发现小鼠存活时间缩短且死亡增多[15]。Nakashima等发现大剂量CPS通过干扰抗体而产生免疫麻痹(immunological paralysis)[16]。该局部或全身免疫限制增强了宿主细胞的易感性。由于CPS和粘液的化学成分相同,故可将粘液视为CPS的代谢物。荚膜及其分泌物均可干扰免疫系统。CPS的合成机制尚不太明确。Lin等[17]发现其生物合成涉及蛋白酪氨酸激酶和磷酸酶。通过分析K. pneumoniae NTUH-K2044的磷酸化反应,确定了117个独特的磷酸肽和93个磷酸化位点,并确定了3个酪氨酸磷酸化蛋白,分别命名为蛋白酪氨酸激酶 (Wzc)、磷酸甘露糖变位酶(ManB)和十一异戊磷酸糖基转移酶(WcaJ)。它们参与荚膜合成中的信号转导。通过分析WcaJ突变株,发现其CPS明显少于野生型;小鼠腹膜炎模型显示其LD50增长了200倍。该研究表明WcaJ酪氨酸磷酸化可调节CPS的生物合成。肺炎克雷伯氏菌的荚膜外粘多糖(mucopolysaccharides)也与其致病性有关,它帮助该菌在人体未免疫血清中快速增殖并对抗吞噬作用。Fang等[18]发现一个与粘多糖相关的基因magA,该基因是导致小鼠肝脏微脓疡和脑膜炎的关键因子。Victor等[19]报道了rmpA基因,它编码荚膜外粘多糖表达的正调节子,致使产生高粘性表型。在K1和K2型菌株引起的肝脓肿疾病中 rmpA发挥了主导作用。荚膜不仅有毒性而且消耗大量碳源,在不影响菌株生长的前提下,通过基因工程降低荚膜的形成可望提高1,3-丙二醇等目标产物的转化率。
3 内毒素内毒素又叫脂多糖(Lipopolysaccharides,LPS),是糖-蛋白质-磷脂复合物,属于革兰氏阴性菌的细胞壁组分。LPS由3部分组成:脂质A(lipid A)、核心寡糖和O-抗原多糖。尽管LPS的结构与毒力有关,但其致病机理尚不明确。由于脂质结构的细微差别可大幅影响LPS的活性,故可激发不同的代谢及免疫途径。LPS是一种T细胞依赖性抗原,可促进淋巴细胞有丝分裂,并激活众多机制的免疫反应[20]。LPS是B淋巴细胞的多克隆活化因子(脂多糖在免疫学中是常用的B细胞促分裂因子,即多克隆活化因子),然而不同于大多数抗原的免疫应答,它并不需要T淋巴细胞的参与。LPS作为体外肺泡巨噬细胞的毒素,能显著抑制吞噬作用。因此,LPS可改变宿主免疫系统,导致致病和生理变化,并干扰其它抗原的免疫应答[21]。
Izquierdo等[22]确定了肺炎克雷伯氏菌waa基因簇在LPS合成中的作用。wabG基因编码半乳糖基转移酶,该酶在LPS合成中发挥重要作用。wabG突变株缺乏CPS,但仍能产生CPS。waaC和waaF突变株虽亦如此,但产生更短的 LPS分子。与野生型相比,waaC、waaF和wabG突变株在不同动物模型中均表现无毒,对一些疏水性化合物也更敏感。Jung等[23]对wabG基因的功能研究也得到类似结果。Fresno等[24] 分析了肺炎克雷伯氏菌LPS的第二个半乳糖醛酸(GalA) 残基转移酶 (WabO),发现wabO突变株中β-GalA残基连接到L,D-Hep III时出现了缺失,导致荚膜含量减少。在小鼠肺炎模型中,wabO突变株由于缺乏内部核心的β-GalA残基而毒性下降。该研究表明,WabO酶参与LPS的生物合成并决定荚膜的含量。Regue等[25]从肺炎克雷伯氏菌中筛选了一种与LPS(Ⅰ型)核心多糖GlcN取代基不同的(Ⅱ型)核心多糖。在小鼠感染模型中,将两株不同类型的核心多糖特殊区域互换,发现将typeⅡ替换typeⅠ区域会使肺炎克雷伯氏菌的毒性降低。
革兰氏阴性菌如肺炎克雷伯氏菌也可通过O-抗原多糖来改变免疫应答。O-抗原多糖结构的细微变化(例如改变分子侧链的糖序列)可导致细菌毒性的显著变化。与一般细菌不同,革兰氏阴性菌的表面具有凸出的多糖链。O-型抗原位于宿主抗原与补体相互作用链的末端。如果反应发生在多糖链的末端,补体不具有其正常的细胞溶解效果。革兰氏阴性菌的毒性源于它对宿主体液免疫系统的阻力作用。相反,当凸出的多糖链被截短或移除时,抗体与细菌表面的O-抗原发生反应,可使补体裂解细菌。Regue等[26]对编码UDP半乳糖醛酸酯4-差向异构酶(uge)的基因进行突变,获得一株O-/K-突变株(无荚膜、LPS缺少O抗原分子和外核寡糖)。在小鼠实验中,uge突变株不能引起尿路感染,而且在其他两个动物模型(败血病和肺炎)中呈现完全无毒。然而将uge野生型基因再次引入相应突变株中,野生菌的表型(荚膜和光滑的LPS)则完全恢复,而小鼠患尿路感染、败血病和肺炎。
内毒素还可激活凝血和补体系统。内毒素通过旁路途径引起平滑肌收缩、毛细管渗透性增加、血小板脱粒、血液凝结并释放趋化性因子[27]。内毒素激活以上不同补体成分有助于细菌对宿主的感染。内毒素的产生表现明显的种间差异。单一内毒素虽非致病性的最终决定因素,但在免疫系统方面直接或间接影响致病性。考虑到内毒素是细胞壁的主要成分,敲除其合成基因可能会降低生长,因此在发酵育种上不应彻底敲除其基因。
4 铁载体铁载体(siderophores)是细菌分泌的高亲和力胞外铁离子螯合剂,它结合由宿主铁结合蛋白(iron-binding proteins)释放的Fe3+。肺炎克雷伯氏菌不能在宿主体内直接获得铁元素,它通过分泌铁载体来克服铁元素的限制。该菌分泌的铁载体包括肠杆菌素(enterobactin)、气杆菌素(aerobactin)、耶尔森杆菌素(yersiniabactin)和儿茶酚受体(catechols receptor)。已报道的肺炎克雷伯氏菌临床分离株均产生肠杆菌素,虽然其毒理尚不太明确,但肠杆菌素的合成基因entB的表达能促进生物被膜的生长和成熟[28],并在细菌感染过程中激活了铁离子-肠杆菌素外膜受体基因fepA的表达[29]。气杆菌素是一个氧肟酸盐型铁载体,也是肺炎克雷伯氏菌的重要毒力因子,但克雷伯氏菌属中只有3%-6%的菌株含有这种铁载体[30]。耶尔森杆菌素是耶尔森氏菌属高致病性菌分泌的酚类铁载体。在呼吸道中,粘膜分泌的脂质运载蛋白2(lipocalin2,Lcn2)能螯合肠杆菌素并使其失效,但耶尔森杆菌素可规避Lcn2而造成呼吸道感染[31]。此外,耶尔森杆菌素在贫铁条件下通过激活外膜蛋白FyuA来促进生物被膜的形成[32]。Paauw等[33]也报道了耶尔森杆菌素和气杆菌素通过阻断活性氧的产生,来间接降低宿主先天免疫细胞的杀菌能力。儿茶酚受体基因iroN属于iroBCDEN基因簇,它和编码气杆菌素的基因簇(iucABCDiutA)均位于肺炎克雷伯氏菌的毒性质粒pLVPK上。儿茶酚受体可阻断Lnc2的结合[34]。
5 其他毒力因子血清杀菌是宿主抵御微生物入侵的重要防线。肺炎克雷伯氏菌抵抗血清的机制尚不完全清楚,但其高致病性与荚膜组分、高粘性以及质粒上的基因traT有关。traT编码的外膜蛋白参与细菌接合中的表面排斥,并通过阻断补体调节过程在抗血清免疫上起作用[35]。Cortes等[36]为了阐明该菌毒性基因htrA的功能,构建了htrA突变株。与亲代菌株相比,该突变株在人体的未免疫血清中存活力较低,对温度 (50 ℃) 及氧化性压力(H2O2)更为敏感,产生的荚膜较少并结合更多的补体C3。小鼠毒性模型实验发现敲除htrA基因导致毒性降低,表明htrA为毒力因子。DNA腺嘌呤甲基化酶(Dam)在毒性基因控制、甲基化错配修复以及复制起始调节方面均有重要作用。Mehling等[37]研究发现Dam功能丧失可降低肺炎克雷伯氏菌的毒性。Sun等[38]研究发现,当肺炎克雷伯氏菌在营养限制下培养时,SITA,一个毛皮调节二价阳离子转运蛋白的含量会显著增加。为了鉴定SITA是否与致病性有关,构建了SITA缺失株,与野生型相比,sitA缺失株对H2O2更敏感,受感染小鼠的存活率明显提高,表明SITA的缺失消弱了其毒性。
抗菌肽(Antimicrobial peptides,Aps)是宿主受诱导后产生的具有抗菌活性的碱性多肽。多粘菌素(Polymyxin)是多粘杆菌(Bacillus polymyxa)产生的抗菌肽,其抗菌谱广,对多重抗药性的革兰氏阴性菌作用颇强。多粘菌素的阳离子游离氨基能与含有阴离子的脂多糖发生作用,使细菌细胞膜面积增大,通透性增强,造成胞内核苷酸等成分外漏后死亡。Llobet等[39] 系统分析了肺炎克雷伯氏菌如何应对抗菌肽,发现添加多粘菌素可上调荚膜多糖操纵子的表达,该靶点通过氨基阿拉伯糖和棕榈酸盐的调节修饰lipid A,使荚膜和lipid A种类共同增加。细菌外层物质的变化增强了它对Aps的抗性,同时也增强了多粘菌素诱导下细菌对Aps的抗力转移。在小鼠鼻内感染模型中,lipid A突变株感染肺部和气管的能力低于野生菌株。研究证明肺炎克雷伯氏菌通过激活PhoPQ、PmrAB和Rcs三个信号系统来对Aps产生抗性。因此,抑制其激活过程可望有效清除呼吸道中的病原体。
OmpK35和OmpK36是肺炎克雷伯氏菌的外膜孔道蛋白。Tsai等[40]研究了这两种孔道蛋白与毒性的关系。发现单独敲除ompK36可改变该菌对唑啉头孢菌素、头孢菌素、头孢西丁的最小抑菌浓度(minimum inhibitory concentration,MIC),并增加对抗生素的抗性;单独敲除ompK35没有显著影响;同时敲除这两个基因(ΔompK35/36)可增加抗菌剂的MIC,米洛佩能和头孢吡肟的MIC增长8倍和16倍。毒性试验发现,ΔompK35/36突变株在生长上有明显缺陷。在嗜中性粒细胞的易感性方面,ΔompK36和ΔompK35/36的突变株都有显著增长。在小鼠腹膜炎模型中,ΔompK35突变株在毒性上没有变化,ΔompK36突变株的毒性明显降低,而ompK35/36突变株的致死量在这些菌株中最高。该研究表明,肺炎克雷伯氏菌的外膜孔道蛋白缺失增加其对抗生素的抗性,但同时也降低了其毒性。在发酵育种方面,改造膜蛋白既能降低菌种的毒性,又能促进胞内代谢物向胞外的运输。
6 消除毒力的策略虽然克雷伯氏属细菌可代谢不同碳源来生产1,3-丙二醇等大宗化学品,但其致病性制约了实际应用。例如K. pneumoniae和Klebsiella oxytoca均是生物安全等级2级微生物,可引发肺炎和尿路感染。虽然健康人一般不被感染,但一旦感染便会患多种疾病。其致病性取决于:(1)细菌对宿主的粘附力,(2)细菌抵抗宿主吞噬的能力,(3)直接或间接作用于宿主免疫系统以提高致病性的能力,(4)各因素的相互作用。肺炎克雷伯氏菌在进化中形成了附着、渗透和破坏宿主细胞的能力。菌毛、荚膜、内毒素、铁载体、抗血清免疫因子和生物被膜是肺炎克雷伯氏菌毒性的分子基础。鉴于毒力涉及上述多个因素,敲除单一或少数基因未必有效,可采用近年兴起的基因组编辑和信号重排技术来消除或弱化其毒力因子。例如MAGE技术可同时敲除多个基因[41],而信号途径工程可通过重塑代谢行为而弱化其毒性[42]。此外,细胞膜工程和群体感应的研究进展也为消除和弱化毒性提供了思路。细胞膜蛋白的改造可降低对宿主细胞的黏附,并消除其抵抗血清的能力;群体感应可用于菌体密度控制以及发酵后期的细胞自杀[43]。借助这些手段和分子育种思路,在不影响生物量的前提下,可望构建无毒或低毒的工程菌。本实验室从事肺炎克雷伯氏菌的代谢工程研究,旨在提高3-羟基丙酸的产量[44, 45]。目前发酵产量较高(文章待发表),但面临菌种毒性问题。合成生物学技术与毒理实验相结合可望解决该问题。
Virulence factors | Genes | Functions | References |
receptor | fimH-1 | Encoding adhesin of typeⅠfimbriae | [7] |
mrkD | Encoding adhesin of type Ⅲ fimbriae | [6] | |
fimK | Regulation of fimbriae expression | [7] | |
capsule | wzc | Encoding protein-tyrosine kinase involved in the signal transduction of capsular polysaccharide (CPS) biosynthesis | [18] |
manB | Encoding phosphomannomutase which participates in signal transduction of CPS biosynthesis | [18] | |
wcaJ | Encoding undecaprenyl-phosphate glycosyltransferas related to signal transduction of capsule biosynthesis | [18] | |
magA | Involving in mucopolysaccharide synthesis | [19] | |
rmpA | Regulator of mucoid phenotype | [20] | |
endotoxin | wabG | Encoding galactosyltransferase required for lipopolysaccharides (LPS) biosynthesis | [23] |
wabO | Encoding galacturonic acid transferase crucial for core LPS biosynthesis and the level of cell-bound capsule | [25] | |
uge | Encoding UDP galacturonate 4-epimerase related to O-antigen biosynthesis of LPS | [27] | |
siderophores | entB | The enterobactin biosynthesis gene which promotes the development and maturation of biofilm | [29] |
fepA | Iron-enterobactin outer membrane receptor | [30] | |
iutA | Aerobactin receptor gene | [31] | |
irp-1, irp-2, ybtS | Yersiniabactin synthetic genes | [32] | |
fyuA | Yersiniabactin receptor gene | [33] | |
iroN | Catechol receptor gene | [35] | |
serum resistance factor | traT | Serum resistance-associated outer membrane lipoprotein, involved in the surface exclusion in bacterial conjugation | [36] |
others virulencefactors | htrA | Involving in capsule biosynthesis and complement component regulation | [37] |
dam | Encoding DNA adenine methylase, important regulator of virulence gene, methyl-directed mismatch repair, and replication initiation | [38] | |
ompK35, ompK36 | Major outer membrane porins related to virulence | [41] |
[1] | Steen EJ, Kang YS, Bokinsky G, Hu ZH, Shirmer A, McClure A, del Cardayre SB, Keasling JD. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463(7280): 559-562. |
[2] | Li Y, Su MY, Ge XZ, Tian PF. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways. Biotechnology Letters, 2013, 35(10): 1609-1615. |
[3] | Celińska E. Debottlenecking the 1, 3-propanediol pathway by metabolic engineering. Biotechnology Advances, 2010, 28(4): 519-530. |
[4] | Bubeck SS, Cantwell AM, Dube PH. Delayed inflammatory response to primary pneumonic plague occurs in both outbred and inbred mice. Infection and Immunity, 2007, 75(2): 697-705. |
[5] | Schembri MA, Blom J, Krogfelt KA, Klemm P. Capsule and fimbria interaction in Klebsiella pneumoniae. Infection and Immunity, 2005, 73(8): 4626-4633. |
[6] | Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiology, 2012, 7(8): 991-1002. |
[7] | Struve C, Bojer M, Krogfelt KA. Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infection and Immunity, 2008, 76(9): 4055-4065. |
[8] | Pruzzo C, Guzmán CA, Calegari L, Satta G. Impairment of phagocytosis by the Klebsiella pneumoniae mannose-inhibitable adhesin-T7 receptor. Infection and Immunity, 1989, 57(3): 975-982. |
[9] | Pruzzo C, Debbia E, Satta G. Mannose-inhibitable adhesins and T3-T7 receptors of Klebsiella pneumoniae inhibit phagocytosis and intracellular killing by human polymorphonuclear leukocytes. Infection and Immunity, 1982, 36(3): 949-957. |
[10] | Struve C, Bojer M, Krogfelt KA. Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infection and Immunity, 2009, 77(11): 5016-5024. |
[11] | Cortés G, Borrell N, de Astorza B, Gómez C, Sauleda J, Albertí S. Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infection and Immunity, 2002, 70(5): 2583-2590. |
[12] | Turton JF, Baklan H, Siu LK, Kaufmann ME, Pitt TL. Evaluation of a multiplex PCR for detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within these serotypes. FEMS Microbiology Letters, 2008, 284(2): 247-252. |
[13] | Struve C, Krogfelt KA. Role of capsule in Klebsiella pneumoniae virulence: lack of correlation between in vitro and in vivo studies. FEMS Microbiology Letters, 2003, 218(1): 149-154. |
[14] | Lau HY, Clegg S, Moore TA. Identification of Klebsiella pneumoniae genes uniquely expressed in a strain virulent using a murine model of bacterial pneumonia. Microbial Pathogenesis, 2007, 42(4): 148-155. |
[15] | Kato N, Kato O, Nakashima I. Effect of capsular polysaccharide of Klebsiella pneumoniae on host resistance to bacterial infections. Japanese Journal of Microbiology, 1976, 20(3): 163-172. |
[16] | Nakashima I, Kobayashi T, Kato N. Alterations in the antibody response to bovine serum albumin by capsular polysaccharide of Klebsiella pneumoniae. Journal of Immunology, 1971, 107(4): 1112-1121. |
[17] | Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, Wang JT, Khoo KH, Wu SH. Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Molecular and Cellular Proteomics, 2009, 8(12): 2613-2623. |
[18] | Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. The Journal of Experimental Medicine, 2004, 199(5): 697-705. |
[19] | Yu VL, Hansen DS, Ko WC, Sagnimeni A, Klugman KP, Goossens H, Wagener MM, Benedi VJ. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerging Infectious Diseases, 2007, 13(7): 986-993. |
[20] | Izquierdo L, Merino S, Regué M, Rodriguez F, Tomás JM. Synthesis of a Klebsiella pneumoniae O-antigen heteropolysaccharide (O12) requires an ABC 2 transporter. Journal of Bacteriology, 2003, 185(5): 1634-1641. |
[21] | Guan S, Clarke AJ, Whitfield C. Functional analysis of the galactosyltransferases required for biosynthesis of D-galactan I, a component of the lipopolysaccharide O1 antigen of Klebsiella pneumoniae. Journal of Bacteriology, 2001, 183(11): 3318-3327. |
[22] | Izquierdo L, Coderch N, Piqué N, Bedini E, Corsaro MM, Merino S, Fresno S, Tomás JM, Regué M. The Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide and virulence. Journal of Bacteriology, 2003, 185(24): 7213-7221. |
[23] | Jung SG, Jang JH, Kim AY, Lim MC, Kim B, Lee J, Kim YR. Removal of pathogenic factors from 2, 3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Applied Microbiology and Biotechnology, 2013, 97(5): 1997-2007. |
[24] | Fresno S, Jiménez N, Canals R, Merino S, Corsaro MM, Lanzetta R, Parrilli M, Pieretti G, Regué M, Tomás JM. A second galacturonic acid transferase is required for core lipopolysaccharide biosynthesis and complete capsule association with the cell surface in Klebsiella pneumoniae. Journal of Bacteriology, 2007, 189(3): 1128-1137. |
[25] | Regué M, Izquierdo L, Fresno S, Piqué N, Corsaro MM, Naldi T, De Castro C, Waidelich D, Merino S, Tomás JM. A second outer-core region in Klebsiella pneumoniae lipopolysaccharide. Journal of Bacteriology, 2005, 187(12): 4198-4206. |
[26] | Regué M, Hita B, Piqué N, Izquierdo L, Merino S, Fresno S, Benedí VJ, Tomás JM. A gene, uge, is essential for Klebsiella pneumoniae virulence. Infection and Immunity, 2004, 72(1): 54-61. |
[27] | Lawlor MS, Hsu J, Rick PD, Miller VL. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Molecular Microbiology, 2005, 58(4): 1054-1073. |
[28] | May T, Okabe S. Enterobactin is required for biofilm development in reduced-genome Escherichia coli. Environmental Microbiology, 2011, 13(12): 3149-3162. |
[29] | Lai YC, Peng HL, Chang HY. Identification of genes induced in vivo during Klebsiella pneumoniae CG43 infection. Infection and Immunity, 2001, 69(11): 7140-7145. |
[30] | Nassif X, Sansonetti PJ. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infection and Immunity, 1986, 54(3): 603-608. |
[31] | Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F, Dozois CM, Weiser JN. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infection and Immunity, 2011, 79(8): 3309-3316. |
[32] | Hancock V, Ferrières L, Klemm P. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology, 2008, 154(1): 167-175. |
[33] | Paauw A, Leverstein-van Hall M A, van Kessel KPM, Verhoef J, Fluit AC. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS One, 2009, 4(12): e8240. |
[34] | Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene, 2004, 337: 189-198. |
[35] | Moll A, Manning PA, Timmis KN. Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Infection and Immunity, 1980, 28(2): 359-367. |
[36] | Cortés G, de Astorza B, Benedi VJ, Albertí S. Role of the htrA gene in Klebsiella pneumoniae virulence. Infection and Immunity, 2002, 70(9): 4772-4776. |
[37] | Mehling JS, Lavender H, Clegg S. A Dam methylation mutant of Klebsiella pneumoniae is partially attenuated. FEMS Microbiology Letters, 2007, 268(2): 187-193. |
[38] | Sun WSW, Syu WJ, Ho WL, Lin CN, Tsai SF, Wang SH. SitA contributes to the virulence of Klebsiella pneumoniae in a mouse infection model. Microbes and Infection, 2014, 16(2): 161-170. |
[39] | Llobet E, Campos MA, Giménez P, Moranta D, Bengoechea JA. Analysis of the networks controlling the antimicrobial-peptide-dependent induction of Klebsiella pneumoniae virulence factors. Infection and Immunity, 2011, 79(9): 3718-3732. |
[40] | Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL, Siu LK. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrobial Agents and Chemotherapy, 2011, 55(4): 1485-1493. |
[41] | Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898. |
[42] | Peisajovich SG, Garbarino JE, Wei P, Lim WA. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science, 2010, 328(5976): 368-372. |
[43] | You LC, Cox RS, Weiss R, Arnold FH. Programmed population control by cell-cell communication and regulated killing. Nature, 2004, 428(6985): 868-871. |
[44] | Wang X, Sa N, Wang FH, Tian PF. Engineered constitutive pathway in Klebsiella pneumoniae for 3-hydroxypropionic acid production and implications for decoupling glycerol dissimilation pathways. Current Microbiology, 2013, 66(3): 293-299. |
[45] | Li Y, Liu L, Tian PF. NAD+-independent aldehyde oxidase catalyzes cofactor balanced 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnology Letters, 2014, 36(11): 2215-2221. |