微生物学报  2016, Vol. 56 Issue (2): 301-308
http://dx.doi.org/10.13343/j.cnki.wsxb.20150276
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

李剑芳, 董运海, 胡蝶, 王春娟, 唐诗涵, 邬敏辰
Jianfang Li, Yunhai Dong, Die Hu, Chunjuan Wang, Shihan Tang, Minchen Wu
β-甘露聚糖酶AuMan5A/Af酶学性质的改善与其Asp320的相关性分析
Correlation between superior enzymatic properties of β-mannanase AuMan5A/Af and its residue Asp320
微生物学报, 2016, 56(2): 301-308
Acta Microbiologica Sinica, 2016, 56(2): 301-308

文章历史

收稿日期:2015-06-19
修回日期:2015-09-11
网络出版日期:2015-09-15
β-甘露聚糖酶AuMan5A/Af酶学性质的改善与其Asp320的相关性分析
李剑芳1, 董运海1, 胡蝶2, 王春娟1, 唐诗涵1, 邬敏辰3     
1. 江南大学, 食品学院, 江苏 无锡 214122;
2. 江南大学, 生物工程学院, 江苏 无锡 214122;
3. 江南大学, 无锡医学院, 江苏 无锡 214122
摘要: [目的] 为改善宇佐美曲霉5家族β-甘露聚糖酶 (AuMan5A) 的酶学性质,本实验室前期将AuMan5A底物结合凹槽内一个7肽 (316KSPDGGN322) 组成的loop替换为烟曲霉5家族β-甘露聚糖酶对应的氨基酸片段 (PSPNDHF),得到loop替换突变酶AuMan5A/Af。为揭示AuMan5A/Af酶学性质显著改善与其Asp320的相关性,定点突变构建突变体AuMan5A/Af D320G[方法] 采用大引物PCR技术将AuMan5A/Af 基因 (Auman5A/Af) 中编码Asp320的密码子GAC突变为Gly320的GGT,构建出突变体基因Auman5A/AfD320G,并在毕赤酵母GS115中进行表达,分析表达产物AuMan5A/Af D320G的酶学性质。[结果] AuMan5A/Af D320G的最适温度Topt为70.0 ℃,变性温度Tm为71.5 ℃,介于AuMan5A (Topt=65.0 ℃,Tm=64.5 ℃) 和AuMan5A/Af (Topt=75.0 ℃,Tm= 76.6 ℃) 之间;在70.0 ℃的半衰期为40 min,高于AuMan5A的10 min,但较AuMan5A/Af的480 min显著缩短;比活性分别是AuMan5A和AuMan5A/Af的2.7和0.3倍;催化效率 (kcat/Km) 分别是AuMan5A和AuMan5A/Af的3.9和0.3倍。[结论] 将Asp320突变为Gly320显著影响了AuMan5A/Af的酶学性质,证明了Asp320对AuMan5A/Af温度特性改善、比活性和催化效率显著提高的重要作用。
关键词: β-甘露聚糖酶    loop替换    定点突变    酶学性质    
Correlation between superior enzymatic properties of β-mannanase AuMan5A/Af and its residue Asp320
Jianfang Li1, Yunhai Dong1, Die Hu2, Chunjuan Wang1, Shihan Tang1, Minchen Wu3     
1. School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China;
2. School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu Province, China;
3. Wuxi Medical School, Jiangnan University, Wuxi 214122, Jiangsu Province, China
Supported by the National Natural Science Foundation of China (31271811)
Corresponding author. inchen Wu, Tel/Fax: +86-510-85329042; E-mail: biowmc@126.com
Received: 19 June 2015; Revised: 11 September 2015; Published online: 15 September 2015
Abstract:[Objective] AuMan5A is a glycoside hydrolase (GH) family 5 β-mannanase from Aspergillus usamii. To improve its enzymatic properties, we have previously constructed a mutant with loop substitution, AuMan5A/Af, by substituting a loop of seven residues (316KSPDGGN322) in its substrate binding groove with the corresponding region (PSPNDHF) of A. fumigatus GH family 5 β-mannanase. To reveal the correlation between the superior enzymatic properties of AuMan5A/Af and its residue Asp320, site-directed mutagenesis was used to obtain a new mutant enzyme AuMan5A/Af D320G. [Methods] Using megaprimer PCR method, we constructed a new mutant-encoding gene, Auman5A/Af D320G by mutating an Asp320-encoding codon GAC of Auman5A/Af into a Gly320-encoding GGT. Then, Auman5A/Af D320G was extracellularly expressed in Pichia pastoris GS115, and the enzymatic properties of the expressed product were analyzed. [Results] Analytical results indicated that the optimal and melting temperature of AuMan5A/Af D320G was 70.0 ℃ and 71.5 ℃, repectively, higher than those of AuMan5A (Topt=65.0 ℃, Tm=64.5 ℃) and lower than those of AuMan5A/Af (Topt=75.0 ℃, Tm=76.6 ℃); its half-life at 70.0 ℃ was 40 min, 10 min longer than that of AuMan5A but greatly shorter than 480 min of AuMan5A/Af. Besides, its specific activity was 2.7 fold and 0.3 fold that of AuMan5A and AuMan5A/Af, respectively, and its catalytic efficiency (kcat/Km) was 3.9 fold and 0.3 fold that of AuMan5A and AuMan5A/Af. [Conclusion] The mutation of Asp320 into Gly320 greatly affected the temperature characteristics and catalytic activity of AuMan5A/Af, demonstrating that Asp320 plays an improtant role in temperature characteristics, specific activity and catalytic efficiency improving of AuMan5A after loop substitution.
Key words: β-mannanase    loop substitution    site-directed mutagenesis    enzymatic properties    

β-甘露聚糖酶是内切β-1,4-甘露聚糖甘露糖苷水解酶的简称,能够随机催化甘露聚糖分子主链中β-1,4-D-甘露糖苷键的水解,是甘露聚糖降解酶系中最重要的组分[1]。它广泛存在于多种生物体内,尤其是微生物中,并且在食品、医药、饲料、纺织、纸浆漂白及能源开发等众多领域具有巨大的应用潜力[2, 3]。基于一级结构同源性比对和疏水簇分析,绝大多数β-甘露聚糖酶属于糖苷水解酶 (GH) 第5、26和113家族,具有相似的 (β/α)8-TIM桶状折叠结构,同归于糖苷水解酶A簇 (GH clan-A)[4]。其中,GH 5作为最大的家族包含了细菌和真核来源的β-甘露聚糖酶,而另外两个家族主要以原核来源为主。迄今为止,已有许多丝状真菌的GH 5家族β-甘露聚糖酶编码基因被克隆和表达,并分析了它们的酶学性质[5],然而关于β-甘露聚糖酶结构与功能的研究却鲜有报道[6]。最近,Huang等[5]基于黑曲霉Aspergillus niger β-甘露聚糖酶的晶体结构分析,对酶蛋白分子进行定点突变,提高了β-甘露聚糖酶的比活性。

近年来,已有研究发现改造位于糖苷水解酶活性中心附近的loop能提高其催化活性和 (或) 热稳定性[7, 8, 9]。本实验室前期克隆了宇佐美曲霉A. usamii GH 5家族β-甘露聚糖酶基因Auman5A,并在毕赤酵母GS115中实现了表达[10];其后,为改善AuMan5A的酶学性质,我们对GH 5家族β-甘露聚糖酶一级、三维结构的比对和分析,设计将AuMan5A的底物结合凹槽侧壁上一个loop替换为来源于烟曲霉A. fumigatus GH 5家族β-甘露聚糖酶的对应氨基酸片段,通过构建突变基因并在毕赤酵母GS115中表达,得到loop替换突变酶AuMan 5A/Af。酶学性质分析表明,AuMan5A/Af的温度特性和催化活性都有显著改善。为鉴定AuMan5A/ Af替换的loop中Gly320突变为Asp320与其酶学性质改善的相关性,借助定点突变构建突变体基因Auman5A/Af D320G,将该基因在毕赤酵母GS115中表达,分析比较AuMan5A、AuMan5A/Af和AuM an5A/Af D320G的温度特性、比活性和催化效率。

1 材料和方法 1.1 材料 1.1.1    菌株、质粒和培养基:大肠杆菌Escherichia coli JM109和DH5α菌株、毕赤酵母Pichia pastoris GS115菌株和表达质粒pPICZαA,重组毕赤酵母GS115-Auman5A、GS115-Auman5A/Af以及GS115-pPICZαA (空白对照) 由作者所在实验室保藏;克隆质粒pUCm-T,购自上海Sangon公司;重组质粒pUCm-T-Auman5A/Af,由本实验室构建和保藏;LB、LLB、YPD、YPDS-Zeocin、BMGY和BMMY培养基的配制,参照EasySelectTM Pichia Expression Kit (Invitrogen) 操作手册。

1.1.2    主要试剂 各种限制性内切酶、rTaq DNA聚合酶、T4 DNA连接酶、250 bp DNA Ladder Mar-ker和低相对分子质量蛋白质Marker,均购自大连TaKaRa公司;Zeocin和EZ-10柱式DNA胶回收试剂盒,购自上海Sangon公司;角豆胶和标准甘露糖为Sigma公司产品;Protein Thermal Shift (PTS) Kit购自美国Applied Biosystems公司;其它试剂均为国产或进口分析纯。

1.2 β-甘露聚糖酶loop替换突变酶的分析

在PDB数据库 (http://www.rcsb.org/) 寻找与AuMan5A序列 (GenBank: ADZ99027) 同源性高的GH 5家族β-甘露聚糖酶晶体结构,选择A. niger β-甘露聚糖酶晶体结构 (PDB: 3WH9) 和糙刺篮状菌Talaromyces trachyspermus β-甘露聚糖酶 (PDB: 3WFL) 作为AuMan5A和AuMan5A/Af同源建模的模板;运用MODELLER 9.11程序 (http://salilab. org/modeller/) 进行三维结构同源建模。针对酶蛋白分子的三维结构,使用PyMol软件 (http://pymol. org) 分析各位点的空间信息。

1.3 重组表达质粒的构建

基于对AuMan5A/Af一级和三维结构的分析,拟将AuMan5A/Af所替换loop结构中的Asp320 突变为AuMan5A对应的Gly320,即将Auman5A/Af 中编码Asp320的密码子GAC突变为编码Gly320的GGT。根据Auman5A/AfAuman5A核苷酸序列 (GenBank: HQ839639) 设计PCR引物,由上海Sangon公司合成。

D320G-F:5′-GGCCATCCCCAAAT CAC TTCACTATCTAC-3′(加框部分为突变密码子);Man5A-F:5′-下划线 GAATTCTCCTTCGCCAGCAC CTC-3′(下划线部分为EcoRⅠ酶切位点);Man5A-R:5′-GCGGCCGCTTAGGCACTATCAATAGC AG-3′(下划线部分为NotⅠ酶切位点)。

以pUCm-T-Auman5A/Af为模板、D320G-F和Man5A-R为引物,PCR扩增基因片段DM;再利用同一模板、Man5A-F和DM为引物,采用大引物PCR技术[11]扩增突变体基因Auman5A/Af D320G。将目的PCR产物与pUCm-T连接,获重组质粒pUCm-T-Auman5A/Af D320G,转化E. coli JM109,阳性转化子的测序结果与预期一致。将pUCm-T-Auman 5A/Af D320G分别经EcoRⅠ和NotⅠ双酶切,回收目的条带,与经同样双酶切的pPICZαA连接,获重组表达质粒pPICZαA-Auman5A/Af D320G,转化E. coli DH5α,DNA测序验证。

1.4 β-甘露聚糖酶的表达和纯化

将测序正确的pPICZαA-Auman5A/Af D320G分别用SacⅠ线性化,电转化P. pastoris GS115。重组毕赤酵母的鉴定和多拷贝筛选参照EasySelectTM Pichia Expression Kit操作手册,诱导表达参见文献[12]。β-甘露聚糖酶的纯化参见文献[10]。

1.5 β-甘露聚糖酶活性和蛋白的分析

β-甘露聚糖酶活性测定参见文献[12],并略作修改。在2.4 mL的5 mg/mL角豆胶溶液 (pH 3.6、50 mmol/L柠檬酸–Na2HPO4缓冲液配制) 中加入0.1 mL适当稀释的酶液,65℃准确反应10 min,加入2.5 mL DNS试剂,在沸水浴中显色7 min,测定OD540值。在上述反应条件下,每分钟产生1 μmol还原糖 (以甘露糖计) 所需的酶量定义为1个β-甘露聚糖酶活性单位 (U)。采用SDS-PAGE分析重组表达产物;Bradford法测定蛋白质含量。

1.6 温度对β-甘露聚糖酶活性及稳定性的影响

在不同温度 (50–75℃) 下,按1.6方法测定酶活性。最适温度Topt定义为最高酶活性 (以相对酶活性100%计) 所对应的温度。将酶液置于70℃下处理不同时间,按1.6方法测定残余酶活性,未经处理酶液的酶活性以100%计。酶的半衰期t1/270定义为经70℃处理残余酶活性为50%时所对应的时间。

采用PTS方法测定AuMan5A、AuMan5A/ Af和AuMan5A/AfD320G的变性温度 (melting tempe-rature,Tm)。具体方法参见文献[13],并略作修改。按照PTS Kit操作手册将蛋白质样品和荧光染料混合,利用罗氏LightCycler 480 II实时定量PCR系统,在50–95℃温度范围内,以1℃/min的升温速率,在激发和发射波长分别为533 nm和640 nm下检测荧光信号,绘制溶解曲线;利用“Tm calling”分析方法获得衍生熔解曲线,其峰值对应的温度即为Tm值。

1.7 β-甘露聚糖酶动力学常数的测定

以不同浓度 (1.0–10.0 mg/mL) 的角豆胶溶液 (用pH 3.6、50 mmol/L柠檬酸–Na2HPO4缓冲液配制) 为底物,在酶各自的最适温度下按1.6方法测定其活性,采用Origin 8.0软件进行非线性拟合,计算β-甘露聚糖酶的Kmkcat值。

2 结果和分析 2.1 AuMan5A/Af关键位点的确定

将AuMan5A一级结构中位于C末端316至322位氨基酸残基 (KSPDGGN) 组成的loop替换为A. fumigatus GH 5家族β-甘露聚糖酶[14]对应的片段 (PSPNDHF) (图 1,外框显示),得到loop替换突变酶AuMan5A/Af。经初步分析,该突变酶相对于原酶表现出最适温度、热稳定性、比活性和催化效率都有显著提高,pH特性并未明显改变。该loop接近C末端,连接最后一个α螺旋,由7个残基组成 (图 1)。AuMan5A/Af与原酶的loop共有5个残基不同,考虑到氨基酸的性质差异,G320D和G321H是loop替换中最显著的突变。另外,AuMa n5A/Af的三维结构显示320位残基更可能接近于酶与底物结合时的底物,该点对酶与底物的相互作用的影响可能更大。因此,拟借助定点突变将AuMan5A/Af 320位Asp突变为原酶对应的Gly (图 1,内框显示),构建突变体AuMan5A/Af D320G

图 1. AuMan5A与其突变体C末端的多序列比对及二级结构分析 Figure 1. Multiple sequence alignment and secondary structure analysis of C-termini among AuMan5A and its two mutants. The legends of secondary structure are as follows: curve-α helix; arrow-β strand; beeline-loop.
2.2 β-甘露聚糖酶的表达和纯化

将利用大引物PCR方法构建成功的突变基因Auman5A/Af D320G克隆至pPICZαA,获得重组表达质粒pPICZαA-Auman5A/Af D320G。电转化P. pastoris GS115,挑选若干在YPDS-Zeocin (400 mg/mL) 平板上生长良好的单菌落,与GS115/Auman5A、GS115/Auman5A/Af和GS115/pPICZαA菌株一样,经1.0% (V/V) 甲醇诱导96 h,筛选到产AuMan5A/ Af D320G活性最高的转化子,命名为GS115/Auman 5A/Af D320G,酶活性为156.2 U/mL。将表达上清液分别经 (NH4)2SO4盐析、阴离子交换层析和凝胶层析分离纯化。SDS-PAGE分析显示,纯化的AuMan5A/Af D320G与AuMan5A和AuMan5A/Af相似,在约49.5 kDa (表观相对分子质量) 处呈现单一条带 (图 2)。按1.6方法测得纯化酶的比活性为1080.8 U/mg,分别是AuMan5A (405.9 U/mg) 和AuMan5A/Af (3631.1 U/mg) 的2.7和0.3倍。

图 2 诱导表达上清液和纯化酶的SDS-PAGE分析 Figure 2 SDS-PAGE analysis of the expression supernatants and purified enzymes. M, protein marker; 1, The cultured supernatant of GS115/Auman5A/ AfD320G; 2–4, The purified AuMan5A, AuMan5A/Af and AuMan5A/AfD320G.
2.3 β-甘露聚糖酶温度特性的分析

按1.7方法分析了温度对AuMan5A/Af D320G活性和稳定性的影响,与AuMan5A和AuMan5A/ Af一起,如图 3所示。由图 3-A可见,AuMan5A/ Af D320G的最适温度Topt为70℃,低于AuMan5A/ Af的75℃,高于AuMan5A的65℃。由图 3-B可见,AuMan5A/Af D320G在70℃的半衰期t1/270为40 min,是AuMan5A (t1/270=10 min) 的4倍。而Au Man5A/Af在70℃非常稳定,经测量其t1/270为480 min。AuMan5A/Af D320G的半衰期仅是AuMan 5A/Af的8%。

图 3. AuMan5A及其突变体温度(A)及稳定性(B)的分析 Figure 3. Analysis of temperature optima (A) and stabilities (B) of AuMan5A and its mutants at 70 °C.

变性温度Tm表示在温度上升过程中酶蛋白三维结构发生解折叠到一半时对应的温度,酶蛋白热稳定性越高,Tm值越高[15]。因此Tm值是评价酶热稳定性的重要参数。PTS是一种新兴的基于荧光技术分析蛋白质稳定性的方法,当酶蛋白随着温度升高而解折叠的过程中,其内部的疏水性氨基酸不断暴露出来,与染料结合,产生荧光信号[16]。由图 4衍生熔解曲线上可知,AuMan5A和AuMan 5A/Af的Tm值分别为64.5℃和76.6℃,而AuMan 5A/Af D320GTm值为71.5℃,介于两者之间。此研究结果与上述分析结果一致,证明D320G突变明显降低了AuMan5A/Af的热稳定性,将Gly320突变为Asp是AuMan5A的loop替换后热稳定性显著提高的重要原因。

图 4. AuMan5A及其突变体的衍生熔解曲线 Figure 4. Derivative melting curves of AuMan5A and its mutants.

按1.3方法模拟了AuMan5A/Af的三维结构。利用PyMol软件分析表明,Asp320的侧链与Trp306,Gln307以及Phe322形成了3个氢键 (图 5-A),而AuM an5A中Gly320并无此作用 (图 5-B)。因此,Asp320与周围氨基酸残基的氢键作用使得该点所在的 loop更加稳固,从而提高了酶蛋白分子的刚性[17]

图 5. AuMan5A(A)和AnMan5A/Af(B)局部结构的分析 Figure 5. Analysis of the local structures between AuMan5A (A) and AnMan5A/Af (B).
2.4 酶动力学常数的测定

在AuMan5A/Af D320G的最适温度下,按1.8方法测定突变体对角豆胶的Kmkcat值,与AuMan 5A和AuMan5A/Af的动力学常数比较如表 1所示。AuMan5A/Af的Km值是原酶的78%,而kcat值是原酶的9.9倍,使得AuMan5A/Af的催化效率 (kcat/Km) 是原酶的12.6倍。AuMan5A/Af D320GKm值较AuMan5A/Af下降了25%,而kcat值仅为AuMan5A/ Af的23%,使得催化效率大幅降低,是原酶的3.9倍。测定结果显示,D320G突变明显降低了AuMan5A/Af的催化效率,将Gly320突变为Asp是AuMan5A/Af催化效率显著提高的重要原因。

表 1. AuMan5A及其突变体的动力学常数 Table 1. Kinetic parameters of AuMan5A and its mutants
EnzymesKm/(mg/mL)kcat/skcat/Km/[mL/(mg?s)]Fold
AuMan5A1.80±0.07409.0±8.8227.21.0
AuMan5A/Af1.41±0.034051.7±83.32873.512.6
AuMan5A/AfD320G1.06±0.04928.6±24.2876.03.9
3 讨论

AuMan5A/Af所替换的loop位于β-甘露聚糖酶底物结合凹槽的一端,不直接参与构成凹槽中部的活性中心。AuMan5A/Af酶学特性的改善表明该loop不仅影响了β-甘露聚糖酶的催化特性,而且还与其热稳定性相关。为鉴定Gly320突变为Asp320与AuMan5A/Af酶学性质显著改善的相关性,本研究借助定点突变构建突变体编码基因Auman5A/Af D320G并在毕赤酵母中表达,分析表达产物的酶学性质。结果表明将Asp320突变为Gly320 后,酶的最适温度、热稳定性、比活性和催化效率都出现了明显下降。分析其它GH 5家族β-甘露聚糖酶的loop氨基酸序列发现,对应AuMan 5A 316至322位的氨基酸大都不保守,唯独320位Asp的出现频率非常高,说明该位点的Asp在GH 5家族β-甘露聚糖酶中保守。Dilokpimol等[18]认为对应于AuMan5A 318、319和320位处的氨基酸残基参与了底物结合位点 (subsite) 的形成。其中320位氨基酸残基 (通常为Asp) 能与底物糖环形成氢键,参与形成subsite-2。本研究证明Asp320是AuMan5A/Af催化活性提高的关键因素。另外,Asp320与周围氨基酸残基形成的3个氢键能更好地稳定loop,所以Asp320对AuMan5A/Af的耐热性有重要作用。

β-甘露聚糖酶是水解自然界第二大半纤维素资源的重要组分,然而其结构与功能的研究明显滞后于木聚糖酶。这一方面的原因是其底物的多样性,更主要原因是其均一的桶状结构为开展其研究带来困难。本研究在深入分析GH 5家族β-甘露聚糖酶三维结构信息和氨基酸位点保守性的过程中,发现了影响β-甘露聚糖酶酶学性质的关键loop和其中的关键氨基酸位点,为β-甘露聚糖酶结构与功能的研究开创了新的思路并提供了实验依据。

参考文献
[1] van Zyl WH, Rose SH, Trollope K, Görgens JF. Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochemistry, 2010, 45(8): 1203-1213.
[2] Chauhan PS, Puri N, Sharma P, Gupta N. Mannanases: microbial sources, production, properties and potential biotechnological applications. Applied Microbiology and Biotechnology, 2012, 93(5): 1817-1830.
[3] Dhawan S, Kaur J. Microbial mannanases: an overview of production and applications. Critical Reviews in Biotechnology, 2007, 27(4): 197-216.
[4] Zhang Y, Ju J, Peng H, Gao F, Zhou C, Zeng Y, Xue Y, Li Y, Henrissat B, Gao GF, Ma Y. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. Journal of Biological Chemistry, 2008, 283(46): 31551-31558.
[5] Huang JW, Chen CC, Huang CH, Huang TY, Wu TH, Cheng YS, Ko TP, Lin CY, Liu JR, Guo RT. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochimica et Biophysica Acta, 2014, 1844(3): 663-669.
[6] Couturier M, Feliu J, Bozonnet S, Roussel A, Berrin JG. Molecular engineering of fungal GH5 and GH26 beta-(1,4)-mannanases toward improvement of enzyme activity. PLoS One, 2013, 8(11): e79800.
[7] Chen K, Liu S, Ma J, Zhang D, Shi Z, Du G, Chen J. Deletion combined with saturation mutagenesis of N-terminal residues in transglutaminase from Taxus chinensis hygroscopicus results in enhanced activity and thermostability. Process Biochemistry, 2012, 47(12): 2329-2334.
[8] Duan X, Chen J, Wu J. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-sirected mutagenesis. Applied and Environmental Microbiology, 2013, 79(13): 4072-4077.
[9] Voutilainen SP, Murray PG, Tuohy MG, Koivula A. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Engineering, Design & Selection, 2010, 23(2): 69-79.
[10] Tang CD, Li JF, Wei XH, Min R, Gao SJ, Wang JQ, Yin X, Wu MC. Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PLoS One, 2013, 8(5): e64766.
[11] Xie ZH, Shi XJ. Fast and almost 100% efficiency site-directed mutagenesis by the megaprimer PCR method. Progress in Biochemistry and Biophysics, 2009, 36(11): 1490-1494.
[12] Zhao M, Wei X, Wang C, Dong Y, Li J, Wu M. Gene cloning and expression of a thermostable β-mannanase and its enzymatic properties. Journal of Food Science and Biotechnology, 2014, 33(6): 590-596. (in Chinese)赵梅,魏喜换,王春娟,董运海,李剑芳,邬敏晨. 耐热β-甘露聚糖酶基因的克隆与表达及酶学性质. 食品与生物技术学报,2014,33(6):590-596.
[13] Zhang H, Li J, Wang J, Yang Y, Wu M. Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods. Biotechnology for Biofuels, 2014, 7: 3.
[14] Puchart V, Vrsanska M, Svoboda P, Pohl J, Ogel ZB, Biely P. Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochimica et Biophysica Acta, 2004, 1674(3): 239-250.
[15] Jang MK, Lee SW, Lee DG, Kim NY, Yu KH, Jang HJ, Kim S, Kim A, Lee SH. Enhancement of the thermostability of a recombinant β-agarase, AgaB, from Zobellia galactanivorans by random mutagenesis. Biotechnology Letters, 2010, 32(7): 943-949.
[16] Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature Protocols, 2007, 2(9): 2212-2221.
[17] Fei B, Xu H, Cao Y, Ma S, Guo H, Song T, Qiao D, Cao Y. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. Journal of Industrial Microbiology and Biotechnology, 2013, 40(5): 457-464.
[18] Dilokpimol A, Nakai H, Gotfredsen CH, Baumann MJ, Nakai N, Hachem MA, Svensson B. Recombinant production and characterization of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. Biochimica et Biophysica Acta, 2011, 1814(12): 1720-1729.