中国科学院微生物研究所,中国微生物学会,中国菌物学会
文章信息
- 张鹏飞, 寇明莹, 张强, 张萌, 徐旭, 张钰嘉, 王婷, 杨雪微, 吴聪明, 王新. 2021
- Pengfei Zhang, Mingying Kou, Qiang Zhang, Meng Zhang, Xu Xu, Yujia Zhang, Ting Wang, Xuewei Yang, Congming Wu, Xin Wang. 2021
- 苯唑西林敏感、mecA基因阳性的猪源金黄色葡萄球菌的流行、分子分型及耐药性研究
- Molecular typing and antimicrobial susceptibility of oxacillin-susceptible, mecA-positive Staphylococcus aureus from pigs
- 微生物学报, 61(11): 3607-3618
- Acta Microbiologica Sinica, 61(11): 3607-3618
-
文章历史
- 收稿日期:2021-02-05
- 修回日期:2021-04-06
- 网络出版日期:2021-04-14
2. 中国农业大学动物医学院, 北京 100193
2. College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
金黄色葡萄球菌作为一种重要的人畜共患病原菌,极易通过动物传播给人类[1-2],也可通过动物源性食品传播给人类[3-4]。甲氧西林耐药金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus, MRSA)被定义为携带mecA基因或苯唑西林MIC值≥4 μg/mL,是一类严重威胁人类健康的多重耐药病原菌[5-6]。然而,苯唑西林作为耐甲氧西林金黄色葡萄球菌检测的指示药物,已出现MRSA菌株对苯唑西林抗生素敏感的报道[7-9]。近些年,苯唑西林敏感-mecA基因阳性的金黄色葡萄球菌(Oxacillin-susceptible,mecA-positive Staphylococcus aureus,OS-MRSA)在医院、动物及食物中频繁被报道,已经引起人们的关注[7-8]。因此,菌株通过苯唑西林耐药表型定义MRSA,很容易造成MRSA菌株的漏检[9-10]。由于mecA基因的存在,在抗生素的压力下易引发超耐药MRSA变异菌株的出现[9]。而猪作为金黄色葡萄球菌的重要储库,在养殖过程中很容易传播给人类[4, 11]。目前,在我国猪源OS-MRSA的流行及其分子特性还鲜有报道。为提高对我国猪源OS-MRSA分离株的认识,本研究对我国中西部4个省份(甘肃、陕西、河南和广西)的9个规模化养猪场进行猪源金黄色葡萄球菌的分离,进一步了解当前我国猪源OS-MRSA的流行情况。进而对OS-MRSA分离株进行毒素编码基因、分子分型和耐药性检测,来了解OS-MRSA分离株的特性,为我国生猪卫生安全提供数据支持。
1 材料和方法 1.1 材料 1.1.1 样本来源:本研究对我国甘肃、陕西、河南和广西4个省份9个规模化养猪场进行猪鼻腔拭子样本收集,共收集鼻腔拭子样本884份(表 1)。
Provinces | Pig farm | Sampling time (Years. Months. Day) | Sites | No. of the nasal swabs |
Shaanxi | Z-1 | 2019.11.15 | Xianyang | 72 |
Z-3 | 2019.12.29 | Fufeng | 60 | |
Z-6 | 2020.09.03 | Tongchuang | 97 | |
Z-8 | 2020.09.11 | Yulin | 89 | |
Henan | Z-2 | 2019.12.15 | Zhoukou | 106 |
Z-4 | 2019.12.30 | Zhoukou | 174 | |
Guangxi | Z-5 | 2020.01.15 | Nanning | 200 |
Gansu | Z-7 | 2020.09.11 | Lanzhou | 43 |
Z-9 | 2020.09.12 | Lanzhou | 43 | |
Total | 884 |
1.1.2 主要试剂:
胰蛋白胨大豆琼脂(tryptic soy agar,TSA)、胰蛋白胨大豆肉汤(tryptic soy broth,TSB)、甘露醇氯化钠琼脂、Baird-Parker基础培养基、亚碲酸盐卵黄增菌液、缓冲蛋白胨水(buffered peptone water,BPW)、7.5%氯化钠肉汤和Mueller- Hinton琼脂(Mueller-Hinton agar,MHA)等购自青岛高科园海博科技生物技术有限公司;氯化钠购自广东光华科技股份有限公司;Biospin细菌基因组DNA提取试剂盒购自杭州博日科技有限公司,PCR所用试剂购自南京诺唯赞生物科技有限公司(Vazyme);药敏试验中16种待测抗生素标准品均购自北京索莱宝科技有限公司;引物均由北京奥科鼎盛生物科技有限公司合成。
1.1.3 仪器与设备:恒温振荡培养摇床购自上海智成分析仪器制造有限公司,隔水式恒温培养箱购自上海精宏实验设备有限公司,PCR仪和凝胶成像购自美国伯乐(Bio-Rad)公司,超纯水机购自四川优普超纯科技术有限公司,高压灭菌锅购自上海申安高压仪器设备有限公司。
1.2 样本采集和处理用浸润无菌生理盐水的无菌棉签在猪鼻腔处进行样本收集。接着,去除棉签人体接触部位,保存于10 mL无菌离心管中,记录样品相关信息,低温运送至实验室。
1.3 OS-MRSA菌株的分离鉴定参照Wang等描述的方法[12]对样本中金黄色葡萄球菌进行分离鉴定。接着对筛选的菌株,进行nuc和mecA基因扩增。nuc和mecA扩增均为阳性的菌株,继续进行苯唑西林敏感性检测。其中苯唑西林敏感的菌株为OS-MRSA菌株,苯唑西林耐受的菌株本研究定义为OR-MRSA (Oxacillin-resistant mecA-positive,OR-MRSA)。最后将所有菌株保存于–80 ℃冰箱待用。
1.4 DNA提取将分离株接种至无菌TSB培养液于恒温振荡摇床220 r/min、37 ℃振荡培养16 h,取1 mL细菌培养液于无菌EP管内,12000 r/min离心2 min,弃上清液,余下操作严格按Biospin细菌基因组DNA提取试剂盒说明书进行。最后将提取的DNA模板于–20 ℃冰箱保存。
1.5 毒素编码基因及耐药基因检测运用PCR技术对所有菌株进行26种毒素编码基因扩增,包括21种肠毒素编码基因(sea、seb、sec、sed、see、seg、seh、sei、sej、sek、sel、sem、sen、seo、sep、seq、ser、ses、set、seu和sev)、4种溶血素编码基因(hla、hlb、hld和hlg)和杀白细胞素编码基因(pvl)。
1.6 耐药性检测参照美国临床实验室标准化委员会(Clinical and Laboratory Standards Institute,CLSI)推荐的琼脂稀释法对67株分离菌株进行16种常用抗生素耐药性试验。具体使用药物及用药浓度见表 2。此外,药敏试验质控菌株为金黄色葡萄球菌ATCC 29213和大肠杆菌ATCC 25922。
Antibiotic | Abbreviation | Minimum inhibitory concentration/(μg/mL) |
Erythromycin | ERY | 8 |
Cefoxitin | FOX | 8 |
Amoxicillin/clavulanic acid | A/C | 8/4 |
Vancomycin | VAN | 16 |
Tetracyclines | TET | 16 |
Chloramphenicol | CHL | 32 |
Penicillin | PEN | 0.25 |
Oxacillin | OXA | 4 |
Gentamicin | GEN | 16 |
Trimethoprim/sulfamethoxazole | T/S | 4/76 |
Linezolid | LZD | 8 |
Ampicillin | AMP | 0.5 |
Cefoperazone | FOP | 64 |
Amikacin | AMK | 64 |
Rifampin | RIF | 4 |
Ciprofloxacin | CIP | 4 |
1.7 分子分型
所有金黄色葡萄球菌分离株均进行葡萄球菌A蛋白(Staphylococal protein A,spa)和多位点序列分型(multilocus sequence typing,MLST)。MLST分型:通过对7个管家基因(arcC、aroE、glpF、gmk、pta、tpi和yqiL)进行扩增、测序,对测序结果通过金黄色葡萄球菌MLST数据库(http://saureus.mlst.net/)比对获得ST型。Spa分型:通过扩增spa基因并对扩增产物进行测序,将序列通过金黄色葡萄球菌spa数据库(https://www.spaserver.ridom.de/)比对分析,获得spa分型。此外,参照Zhang等介绍的方法[13],采用多重PCR法对MRSA分离株进行葡萄球菌盒染色体分型(Staphylococcal chromosome cassette mec,SCCmec)。
1.8 数据统计与分析采用GraphPad Prism 7.0进行图形绘制;采用Minitab 15软件对试验数据进行卡方(χ2)检验(P < 0.05,差异显著)。
2 结果和分析 2.1 OS-MRSA菌株流行情况如表 3所示,对4省份生猪养殖场收集到的884份样本进行选择培养和nuc基因鉴定,发现67份(7.6%,67/884)样本检出金黄色葡萄球菌,其中陕西省样本检出率最高为16.7% (53/318),其次为广西壮族自治区4.5% (9/200)、河南省1.8% (5/280)和甘肃省0.0% (0/86)。
Provinces | Number (%) of MSSA, OR-MRSA and OS-MRSA positive samples in different provinces | Total | |||
No. of samples | MSSA | OR-MRSA | OS-MRSA | ||
Shanaxi | 318 | 45(14.2) | 6(1.9) | 2(0.6) | 53(16.7) |
Henan | 280 | 4(1.4) | 1(0.4) | 0(0.0) | 5(1.8) |
Guangxi | 200 | 1(0.5) | 1(0.5) | 7(3.5) | 9(4.5) |
Gansu | 86 | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) |
Total | 884 | 50(5.7) | 8(0.9) | 9(1.0) | 67(7.6) |
对67株nuc阳性金黄色葡萄球菌进行mecA基因鉴定,17株菌株检测为mecA基因阳性。此外,对17株mecA阳性菌株进行苯唑西林耐药性检测,发现9株分离株对苯唑西林敏感,即本次试验52.9% (9/17) mecA基因阳性菌株为OS-MRSA菌株。其中陕西省分离到2株OS-MRSA菌株,占样本的0.6% (2/318)和本省金黄色葡萄球菌分离株的3.8% (2/53),广西壮族自治区分离到7株,占样本的3.5% (7/200)和本省金黄色葡萄球菌分离株的77.8% (7/9),河南和甘肃省未有OS-MRSA菌株检出。
2.2 毒素编码基因检出情况如图 1所示,26种被检毒素编码基因中仅有9种毒素编码基因被检出(seg、sei、sem、sen、seo、hla、hlb、hld和hlg)。其中,hla基因检出率最高(98.5%,66/67),其次为hld (95.5%,64/67)、hlb (68.7%,46/67)、hlg (37.3%,25/67)、sei (23.9%,16/67)、sem (23.9%,16/67)、seg (10.4%,7/67)、sen (10.4%,7/67)和seo (6.0%,4/67)。MRSA分离株肠毒素编码基因的携带率明显高于MSSA分离株。其中携带肠毒素编码基因的菌株中,6株为OR-MRSA,8株为OS-MRSA菌株和2株为MSSA菌株。
2.3 菌株耐药情况
如表 4所示,所有分离株至少对1种抗生素耐药。其中,甲氧苄啶/磺胺甲恶唑的耐药最为普遍,耐药率达98.5% (66/67),其次为四环素、环丙沙星和青霉素89.6% (60/67)、氨苄西林83.6% (56/67)、红霉素77.6% (52/67)、庆大霉素58.2% (39/67)、阿莫西林/克拉维酸35.8% (24/67)、头孢哌酮26.9% (18/67)、头孢西丁25.4% (17/67)、苯唑西林11.9% (8/67)和氯霉素9.0% (6/67)。所有分离株均对利福平、万古霉素、阿米卡星和利奈唑胺敏感。如图 2所示,OR-MRSA分离株的耐药性强于OS-MRSA和MSSA分离株,分别对10–12、7–11和1–8种所测抗生素耐药。此外,MRSA分离株对苯唑西林、头孢西丁、头孢哌酮、氯霉素、阿莫西林/克拉维酸和庆大霉素抗生素耐药率显著高于MSSA分离株(P < 0.05)。
Abbreviation | MSSA (n=50) | MRSA | Total (n=67) | P-value | |
OR-MRSA (n=8) | OS-MRSA (n=9) | ||||
AMP | 42(84.0) | 8(100.0) | 6(66.7) | 56(83.6) | >0.05 |
ERY | 36(72.0) | 8(100.0) | 8(88.9) | 52(77.6) | >0.05 |
TET | 43(86.0) | 8(100.0) | 9(100.0) | 60(89.6) | >0.05 |
OXA | 0(0.0) | 8(100.0) | 0(0.0) | 8(11.9) | 0.000 |
FOX | 0(0.0) | 8(100.0) | 9(100.0) | 17(25.4) | 0.000 |
FOP | 1(2.0) | 8(100.0) | 9(100.0) | 18(26.9) | 0.000 |
CHL | 0(0.0) | 1(12.5) | 5(55.6) | 6(9.0) | 0.000 |
CIP | 45(90.0) | 7(87.5) | 8(88.9) | 60(89.6) | >0.05 |
RIF | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | |
VAN | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | |
T/S | 49(98.0) | 8(100.0) | 9(100.0) | 66(98.5) | >0.05 |
A/C | 9(18.0) | 7(87.5) | 8(88.9) | 24(35.8) | 0.000 |
PEN | 45(90.0) | 8(100.0) | 7(77.8) | 60(89.6) | >0.05 |
GEN | 23(46.0) | 8(100.0) | 8(88.9) | 39(58.2) | 0.001 |
AMK | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | |
LZD | 0(0.0) | 0(0.0) | 0(0.0) | 0(0.0) | |
AMP: ampicillin; ERY: erythromycin; TET: tetracyclines; OXA: oxacillin; FOX: cefoxitin; FOP: cefoperazone; CHL: chloramphenicol; CIP: ciprofloxacin; RIF: rifampin; VAN: vancomycin; T/S: trimethoprim/sulfamethoxazole; A/C: amoxicillin/ clavulanic acid; PEN: penicillin; GEN: gentamicin; AMK: amikacin; LZD: linezolid. |
2.4 分子分型
对4省份67株分离株进行spa和MLST分型,结果如图 3-A所示。所有分离株共有4种克隆型,其中ST398-t571 (62.7%,42/67)为优势克隆型,其次为ST9-t899 (28.4%,19/67)、ST398-t034 (7.5%,5/67)和t11241 (1.5%,1/67)。MSSA和MRSA分离株克隆型存在明显差异,MRSA菌株仅有1种克隆型ST9-t899,且占ST9-t899分子型菌株的89.5% (17/19),MSSA菌株共有4种克隆型,ST398-t571为优势克隆型(84.0%,42/50),且ST398-t571/t034克隆型菌株均为MSSA菌株。50株MSSA分离株中,陕西省分离株共有3种克隆型:ST398-t571 39株、ST398-t034 5株和ST9-t899 1株,河南省ST398-t571 3株和ST9-t899 1株,广西省t11241 1株。对17株MRSA分离株进行SCCmec分型,除4株分离株分型未检出外,其余菌株分型均为Ⅳb型(76.5%,13/17)(图 3-B)。此外,克隆型与菌株毒素编码基因的携带情况有显著相关性,携带毒素编码基因的菌株克隆型均为ST9-t899 (图 4),包括陕西省7株、河南省1株和广西省8株。
3 讨论
食源性动物猪是众所周知的金黄色葡萄球菌的重要储库,人通过接触动物而感染金黄色葡萄球菌的报道屡见不鲜[4, 11]。近些年,随着抗生素使用的变化,细菌对部分药物敏感性也发生了改变。作为耐甲氧西林金黄色葡萄球菌检测的指示药物苯唑西林,已有部分MRSA菌株对苯唑西林敏感[7, 9, 14]。由于其mecA基因的存在,在抗生素选择中易引发超耐药MRSA变异菌株的出现[9]。因此,对于OS-MRSA的出现,需引起关注。
在本研究中,对我国中西部4个省份9个规模化养猪场MRSA的流行和分子特征进行调查,共收集样本884份,陕西、河南、广西和甘肃省MRSA检出率分别为2.5%、0.4%、4.0%和0.0%,接近于日本(0.9%)[15]、马来西亚(1.4%)[16]和韩国(3.2%)[17]的报道。然而,这一结果远低于樊润(10.8%)和许思遥(18.3%)等分别对河南、四川省猪鼻腔中MRSA检出率的报道[18-19]。Li等报道,生猪饲养过程中密度、抗菌药物使用和管理制度等方面都会影响菌株的定殖[20]。造成样本MRSA较低检出率也可能是不同省份样本数量及饲养场不均一和河南、广西和甘肃样本均通过邮寄方式运输到实验室,运输过程中造成目标菌株的死亡。此外,本次9株mecA基因阳性菌株对苯唑西林敏感,为OS-MRSA菌株。据我们所知,这是首次进行我国生猪鼻腔样本中OS-MRSA菌株的监测。前期研究中,实验室已经在猪肉及其制品中检测到OS-MRSA分离株[7, 21]。Luo等也报道了在进口肉制品中也检测到了OS-MRSA菌株[22]。目前,关于食源性动物和动物食品中OS-MRSA的报道还比较少,但不能忽视通过食物链进行传播的可能。
对分离株进行毒素编码基因检测,发现分离株毒素编码基因的携带率较低,仅仅携带seg、sei、sem、sen、seo、hla、hlb、hld和hlg基因。值得注意的是,携带肠毒素编码基因的菌株均为ST9-t899克隆型菌株。这一结果与此前报道的ST9-t899克隆型菌株主要携带egc基因簇基因(seg、sei、sem、sen和seo)[4, 23]相一致。此外,本研究中ST398-t571/t034克隆型菌株不携带任何肠毒素编码基因,这与Mama等的报道[24]相似。但不同于Li等[25]和Li等[26]报道的ST398菌株也携带seb和seg肠毒素编码基因等。比较OR-MRSA和OS-MRSA菌株毒素编码基因的检出结果发现,OR-MRSA较OS-MRSA分离株毒素编码基因的携带率高,其中62.5%的OR-MRSA菌株同时携带seg-sei-sem-sen基因,而OS-MRSA菌株seg和sen基因携带率仅为11.1%。据报道,SE/SEl基因可以在移动遗传元件(mobile genetic elements, MGEs)传播[27]。是否由于调节菌株苯唑西林耐药性元件bla系统(blaI-blaR1-blaZ)的缺失造成部分毒素编码基因缺失,需进一步考证。此外,在本研究中,3株菌株携带完整egc基因簇基因(seg-sei-sem-sen-seo)和13株携带不完整egc基因簇基因(seg-sei-sem-sen、sei-sem和sei-sem-seo)。近些年,关于金黄色葡萄球菌分离株携带较多新型肠毒素编码基因的报道在增多[4, 28, 29]。虽然新型肠毒素不是引发食物中毒的主要原因,但这种潜在引发食物中毒的风险不容忽视。
据世界卫生组织统计,每年约有12000 t和900 t抗生素分别作为饲料添加剂和食源性动物治疗药物[30]。随着抗生素在动物养殖中的大量使用,分离自动物源金黄色葡萄球菌耐药性也逐年增强,尤其是耐甲氧西林金黄色葡萄球菌[31]。在本研究中,测试的分离株除对利福平、阿米卡星、万古霉素和利奈唑胺敏感外,对其余12种抗生素均表现为不同程度的耐受,其耐药率在11.9%–98.5%。且超过50.0%的分离株不仅对β-内酰胺类抗生素耐药,对大环内酯类、喹诺酮类、磺胺类和氨基糖苷类非β-内酰胺类抗生素也有较强耐药性。这与国内外的报道[20, 31-32]相似。猪作为我国主要的食源性动物,其超耐药菌株的出现和传播,对人类健康存在较大威胁。此外,在本研究中发现mecA阳性菌株对苯唑西林敏感而对头孢西丁耐受,该结果与此前报道的MRSA分离株对苯唑西林和头孢西丁均耐受[12, 23]不一致。值得注意的是,OS-MRSA暴露于苯唑西林抗生素环境中可迅速产生高水平的苯唑西林耐药亚克隆[33]。迄今为止,OS-MRSA对苯唑西林的低耐药性还没有一个确定的结论。Quijada等报道,bla系统(blaI-blaR1-blaZ)的缺失或者突变会下调mecA基因的表达,进而影响MRSA菌株对苯唑西林的耐药性[9]。然而,Chen等发现OS-MRSA对苯唑西林的低耐药可能与mecA启动子内的核苷酸取代有关,第7位置的鸟嘌呤被胸腺嘧啶取代和第33位置胞嘧啶被胸腺嘧啶取代均可下调mecA基因的转录水平[34]。除mecA外的其他因素,如缺乏青霉素结合蛋白4 (PBP4)和Fem酶活性,也对苯唑西林的敏感性发挥重要作用[35-36]。目前,头孢西丁被认为是比苯唑西林更好的mecA存在的预测因子[37],Liu等试验也证实了这一结果[38]。但也存在头孢西丁敏感、mecA阳性菌株。因此,对于OS-MRSA的检测,应将基因和耐药表型协同检测。由于mecA基因的存在,不能忽视在抗生素选择中易引发超耐药MRSA变异菌株的出现[9]。
对50株MSSA和17株MRSA进行spa、ST和SCCmec分型,发现猪源金黄色葡萄球菌克隆型比较单一,共有4种克隆型ST398-t571/034、ST9-t899和t11241。众所周知,ST9-Ⅳb-t899为我国猪源MRSA的主导克隆型[4, 31],本次检测到的OS-MRSA菌株克隆型也均为ST9-t899。此外,CC398 LA-MRSA作为欧洲牲畜流行的主要克隆型菌株[39],尤其是在猪和猪源食品中,在我国猪源样本中也有报道[4]。不同的是,我国猪源CC398主要为mecA阴性菌株,与本次研究结果一致,CC398克隆型菌株均为甲氧西林敏感菌株。欧洲CC398克隆型菌株spa型主要为t034和t011[11, 40],而本次研究spa型主要为t571 (89.4%,42/47)。这与国内CC398克隆型菌株spa型主要为t571[25]相一致。与ST9-t899型菌株相比,CC398型菌株感染性更强,由CC398型菌株造成人类感染的报道逐年增多[24, 41]。值得注意的是,已有ST9-t899和ST398-t571/034克隆型菌株在食物中检出的报道[25, 42-43]。虽然分离株的真实致病性尚不清楚,但其通过食物链传播的风险不能被忽视,尤其是通过未煮熟的食物。
对50株MSSA和17株MRSA进行spa、ST和SCCmec分型,发现猪源金黄色葡萄球菌克隆型比较单一,共有4种克隆型ST398-t571/034、ST9-t899和t11241。众所周知,ST9-Ⅳb-t899为我国猪源MRSA的主导克隆型[4, 31],本次检测到的OS-MRSA菌株克隆型也均为ST9-t899。此外,CC398 LA-MRSA作为欧洲牲畜流行的主要克隆型菌株[39],尤其是在猪和猪源食品中,在我国猪源样本中也有报道[4]。不同的是,我国猪源CC398主要为mecA阴性菌株,与本次研究结果一致,CC398克隆型菌株均为甲氧西林敏感菌株。欧洲CC398克隆型菌株spa型主要为t034和t011[11, 40],而本次研究spa型主要为t571 (89.4%,42/47)。这与国内CC398克隆型菌株spa型主要为t571[25]相一致。与ST9-t899型菌株相比,CC398型菌株感染性更强,由CC398型菌株造成人类感染的报道逐年增多[24, 41]。值得注意的是,已有ST9-t899和ST398-t571/034克隆型菌株在食物中检出的报道[25, 42-43]。虽然分离株的真实致病性尚不清楚,但其通过食物链传播的风险不能被忽视,尤其是通过未煮熟的食物。
4 结论本研究通过对我国中西部省份(甘肃、陕西、河南和广西)9个猪养殖厂进行MSSA和MRSA的流行及分子特征检测,发现猪鼻腔普遍存在金黄色葡萄球菌的定植。此外,MRSA分离株毒素编码基因携带数和耐受抗菌药物数要高于MSSA分离株。相同的是MRSA主导克隆型仍为ST9-t899,而MSSA优势克隆型为ST398-t571。研究还发现,克隆型与肠毒素编码基因携带情况有显著相关性,携带肠毒素编码基因的菌株克隆型均为ST9-t899。随着抗生素使用的改变,菌株耐药性也发生了变化,出现对苯唑西林抗菌药物敏感的OS-MRSA菌株。猪作为我国主要食用动物之一,对猪源金黄色葡萄球菌进行监测不应间断,以防止病原体通过接触或食物链传播给人类。
[1] | Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler VG. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 2019, 17(4): 203-218. DOI:10.1038/s41579-018-0147-4 |
[2] | Hennekinne JA, De Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 2012, 36(4): 815-836. DOI:10.1111/j.1574-6976.2011.00311.x |
[3] | Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerging Infectious Diseases, 2005, 11(12): 1965-1966. DOI:10.3201/eid1112.050428 |
[4] | Sun CT, Chen BL, Hulth A, Schwarz S, Ji X, Nilsson LE, Ma SZ, Sun Q, Bi ZW, Wang Y, Bi ZQ, Wu CM, Börjesson S. Genomic analysis of Staphylococcus aureus along a pork production chain and in the community, Shandong Province, China. International Journal of Antimicrobial Agents, 2019, 54(1): 8-15. DOI:10.1016/j.ijantimicag.2019.03.022 |
[5] | Carfora V, Giacinti G, Sagrafoli D, Marri N, Giangolini G, Alba P, Feltrin F, Sorbara L, Amoruso R, Caprioli A, Amatiste S, Battisti A. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in dairy sheep and in-contact humans: An intra-farm study. Journal of Dairy Science, 2016, 99(6): 4251-4258. DOI:10.3168/jds.2016-10912 |
[6] | Raji MA, Garaween G, Ehricht R, Monecke S, Shibl AM, Senok A. Genetic characterization of Staphylococcus aureus isolated from retail meat in Riyadh, Saudi Arab. Frontiers in Microbiology, 2016, 7: 911. |
[7] |
Zhang PF, Zhang J, Liu XY, Fu XT, Zhang M, Xu XB, Wu CM, Ji H, Wang X. Molecular characteristics and antimicrobial susceptibility of foodborne methicillin-resistant Staphylococcus aureus in Shanghai, China. Food Science, 2020, 41(20): 285-291.
(in Chinese) 张鹏飞, 张杰, 刘心雨, 付雪婷, 张萌, 许学斌, 吴聪明, 姬华, 王新. 上海市食源性耐甲氧西林金黄色葡萄球菌的分子特征及耐药性. 食品科学, 2020, 41(20): 285-291. DOI:10.7506/spkx1002-6630-20190714-184 |
[8] | Guimarães FF, Manzi MP, Joaquim SF, Richini-Pereira VB, Langoni H. Short communication: Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. Journal of Dairy Science, 2017, 100(1): 726-730. DOI:10.3168/jds.2016-11700 |
[9] | Quijada NM, Hernández M, Oniciuc EA, Eiros JM, Fernández-Natal I, Wagner M, Rodríguez-Lázaro D. Oxacillin-susceptible mecA-positive Staphylococcus aureus associated with processed food in Europe. Food Microbiology, 2019, 82: 107-110. DOI:10.1016/j.fm.2019.01.021 |
[10] | Pournaras S, Stathopoulos C, Tsakris A. Oxacillin-susceptible MRSA: Could it become a successful MRSA type. Future Microbiology, 2013, 8(11): 1365-1367. DOI:10.2217/fmb.13.118 |
[11] | Krziwanek K, Metz-Gercek S, Mittermayer H. Methicillin-resistant Staphylococcus aureus ST398 from human patients, upper Austria. Emerging Infectious Diseases, 2009, 15(5): 766-769. DOI:10.3201/eid1505.080326 |
[12] | Wang X, Li GH, Xia XD, Yang BW, Xi ML, Meng JH. Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathogens and Disease, 2014, 11(4): 281-286. DOI:10.1089/fpd.2013.1643 |
[13] | Zhang KY, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types Ⅰ to Ⅴ in methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2005, 43(10): 5026-5033. DOI:10.1128/JCM.43.10.5026-5033.2005 |
[14] | Conceição T, Coelho C, de Lencastre H, Aires-De-sousa M. Frequent occurrence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) strains in two African countries. Journal of Antimicrobial Chemotherapy, 2015, 70(12): 3200-3204. |
[15] | Baba K, Ishihara K, Ozawa M, Tamura Y, Asai T. Isolation of meticillin-resistant Staphylococcus aureus (MRSA) from swine in Japan. International Journal of Antimicrobial Agents, 2010, 36(4): 352-354. DOI:10.1016/j.ijantimicag.2010.06.040 |
[16] | Neela V, Zafrul AM, Mariana NS, Belkum AV, Liew YK, Rad EG. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. Journal of Clinical Microbiology, 2009, 47(12): 4138-4140. DOI:10.1128/JCM.01363-09 |
[17] | Lim SK, Nam HM, Jang GC, Lee HS, Jung SC, Kwak HS. The first detection of methicillin-resistant Staphylococcus aureus ST398 in pigs in Korea. Veterinary Microbiology, 2012, 155(1): 88-92. DOI:10.1016/j.vetmic.2011.08.011 |
[18] |
Fan R, Wu CM, Li DX, Wang Y, Zuo ZC. Antimicrobial resistance and molecular typing of methicillin-resistant Staphylococcus aureus from pigs in Henan Province. Chinese Veterinary Science, 2014, 44(12): 1223-1230.
(in Chinese) 樊润, 吴聪明, 李德喜, 汪洋, 左之才. 河南省猪源耐甲氧西林金黄色葡萄球菌的耐药性及分子分型研究. 中国兽医科学, 2014, 44(12): 1223-1230. |
[19] |
Xu SY, Huang P, Li P, Yang F, Jiang ZY, Lv WT, Xu ZW, Zhu L. Antimicrobial susceptibility and SCCmec typing of methicillin Staphylococcus aureus isolates from swine in Sichuan. Acta Agriculturae Boreali-Sinica, 2017, 32(S1): 23-29.
(in Chinese) 许思遥, 黄仆, 李萍, 杨凡, 姜子义, 吕雯婷, 徐志文, 朱玲. 四川地区猪场中耐甲氧西林金黄色葡萄球菌的SCCmec基因分型与耐药性分析. 华北农学报, 2017, 32(S1): 23-29. DOI:10.7668/hbnxb.2017.S1.005 |
[20] | Li J, Jiang NS, Ke YB, Feβler AT, Wang Y, Schwarz S, Wu CM. Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Veterinary Microbiology, 2017, 201: 183-187. DOI:10.1016/j.vetmic.2017.01.017 |
[21] | Zhang PF, Miao X, Zhou LH, Cui BZ, Zhang J, Xu XB, Wu CM, Peng XL, Wang X. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus from food poisoning outbreaks and retail foods in China. Foodborne Pathogens and Disease, 2020, 17(11): 728-734. DOI:10.1089/fpd.2019.2774 |
[22] | Luo R, Zhao LN, Du PC, Luo HP, Ren X, Lu P, Cui SH, Luo YP. Characterization of an oxacillin-susceptible mecA-positive Staphylococcus aureus isolate from an imported meat product. Microbial Drug Resistance, 2020, 26(2): 89-93. DOI:10.1089/mdr.2018.0211 |
[23] | Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, Chow H, Ip M, Jatzwauk L, Jonas D, Kadlec K, Kearns A, Laurent F, O'Brien FG, Pearson J, Ruppelt A, Schwarz S, Scicluna E, Slickers P, Tan HL, Weber S, Ehricht R. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE, 2011, 6(4): e17936. DOI:10.1371/journal.pone.0017936 |
[24] | Mama OM, Morales L, Ruiz-Ripa L, Zarazaga M, Torres C. High prevalence of multidrug resistant S. aureus from pig-derived food in Spain.. International Journal of Food Microbiology, 2020, 320: 108510. DOI:10.1016/j.ijfoodmicro.2020.108510 |
[25] | Li GH, Wu CM, Wang X, Meng JH. Prevalence and characterization of methicillin susceptible Staphylococcus aureus ST398 isolates from retail foods. International Journal of Food Microbiology, 2015, 196: 94-97. DOI:10.1016/j.ijfoodmicro.2014.12.002 |
[26] | Li XH, Huang T, Xu K, Li CL, Li YR. Molecular characteristics and virulence gene profiles of Staphylococcus aureus isolates in Hainan, China. BMC Infectious Diseases, 2019, 19(1): 873. DOI:10.1186/s12879-019-4547-5 |
[27] |
Li XM, Wu DJ, Geng WJ, Liu YC, Wang CQ, Deng QL, Zheng YJ, Liu L, Li CC, Shang YX, Zhao CA, Yang YH, Shen XZ. Research on virulence genes and associated mobile genetic elements in Staphylococcus aureus causing pediatric infections. Chinese Journal of Practical Pediatrics, 2011, 26(8): 572-577.
(in Chinese) 李向梅, 吴德静, 耿文静, 刘颖超, 王传清, 邓秋莲, 郑跃杰, 刘岚, 李昌崇, 尚云晓, 赵长安, 杨永弘, 沈叙庄. 儿童金黄色葡萄球菌感染分离株致病基因和相关可移动遗传元件研究. 中国实用儿科杂志, 2011, 26(8): 572-577. |
[28] |
Wu YH, Meng QL, Qiao J, Li J, Cai KJ, Wang DF, Cai XP. Detection of biofilm, enterotoxin genes distribution and virulence and its correlation in Xinjiang isolates of Staphylococcus aureus from cow mastitis. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2693-2698.
(in Chinese) 伍晔晖, 孟庆玲, 乔军, 李静, 蔡扩军, 王登峰, 才学鹏. 奶牛源金黄色葡萄球菌新疆分离株生物被膜、肠毒素基因与毒力的检测及其相关性分析. 西南农业学报, 2019, 32(11): 2693-2698. |
[29] | Umeda K, Nakamura H, Yamamoto K, Nishina N, Yasufuku K, Hirai Y, Hirayama T, Goto K, Hase A, Ogasawara J. Molecular and epidemiological characterization of staphylococcal foodborne outbreak of Staphylococcus aureus harboring seg, sei, sem, sen, seo and selu genes without production of classical enterotoxins. International Journal of Food Microbiology, 2017, 256: 30-35. DOI:10.1016/j.ijfoodmicro.2017.05.023 |
[30] |
Jin SH, Ma Y. Retrospect and prospect in surveillance and research on antimicrobial resistance in China. Chinese Journal of Antibiotics, 2005, 30(5): 257-259, 283.
(in Chinese) 金少鸿, 马越. 国内细菌耐药性监测研究的回顾与展望. 中国抗生素杂志, 2005, 30(5): 257-259, 283. DOI:10.3969/j.issn.1001-8689.2005.05.001 |
[31] |
Zhang Q, Xing XN, Wang X, Wang X, Yu Y, Wu CM, Shen JZ. Antimicrobial susceptibility, toxin genes and molecular typing of methicillin-resistant Staphylococcus aureus ST9 from dairy cow and swine. Chinese Journal of Animal and Veterinary Sciences, 2014, 45(5): 853-858.
(in Chinese) 张强, 邢晓楠, 王新, 王晓, 俞英, 吴聪明, 沈建忠. ST9型动物源耐甲氧西林金黄色葡萄球菌的分子分型、毒素基因检测及耐药性分析. 畜牧兽医学报, 2014, 45(5): 853-858. |
[32] | Reynaga E, Navarro M, Vilamala A, Roure P, Quintana M, Garcia-Nuñez M, Figueras R, Torres C, Lucchetti G, Sabrià M. Prevalence of colonization by methicillin-resistant Staphylococcus aureus ST398 in pigs and pig farm workers in an area of Catalonia, Spain. BMC Infectious Diseases, 2016, 16(1): 1-8. |
[33] | Sakoulas G, Gold HS, Venkataraman L, DeGirolami PC, Eliopoulos GM, Qian Q. Methicillin-resistant Staphylococcus aureus: comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. Journal of Clinical Microbiology, 2001, 39(11): 3946-3951. DOI:10.1128/JCM.39.11.3946-3951.2001 |
[34] | Chen FJ, Wang CH, Chen CY, Hsu YC, Wang KT. Role of the mecA gene in oxacillin resistance in a Staphylococcus aureus clinical strain with a pvl-positive ST59 genetic background. Antimicrobial Agents and Chemotherapy, 2014, 58(2): 1047-1054. DOI:10.1128/AAC.02045-13 |
[35] | Memmi G, Filipe SR, Pinho MG, Fu ZB, Cheung A. Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains. Antimicrobial Agents and Chemotherapy, 2008, 52(11): 3955-3966. DOI:10.1128/AAC.00049-08 |
[36] | Giannouli S, Labrou M, Kyritsis A, Ikonomidis A, Pournaras S, Stathopoulos C, Tsakris A. Detection of mutations in the FemXAB protein family in oxacillin-susceptible mecA-positive Staphylococcus aureus clinical isolates. Journal of Antimicrobial Chemotherapy, 2010, 65(4): 626-633. DOI:10.1093/jac/dkq039 |
[37] | Swenson JM, Lonsway D, McAllister S, Thompson A, Jevitt L, Zhu WM, Patel JB. Detection of mecA-mediated resistance using reference and commercial testing methods in a collection of Staphylococcus aureus expressing borderline oxacillin MICs. Diagnostic Microbiology and Infectious Disease, 2007, 58(1): 33-39. DOI:10.1016/j.diagmicrobio.2006.10.022 |
[38] | Liu JL, Li TM, Zhong N, Wang X, Jiang J, Zhang WX, Tang R, Guo YJ, Liu Y, Hu J, He LH, Tang J, Wu WJ, Li M. Current status of oxacillin-susceptible mecA-positive Staphylococcus aureus infection in Shanghai, China: A multicenter study. Journal of Microbiology Immunology and Infection, 2020. DOI:10.1016/j.jmii.2020.07.021 |
[39] | Cuny C, Wieler LH, Witte W. Livestock-Associated MRSA: The impact on humans. Antibiotics: Basel, Switzerland, 2015, 4(4): 521-543. |
[40] | Fessler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. Journal of Antimicrobial Chemotherapy, 2010, 65(4): 619-625. DOI:10.1093/jac/dkq021 |
[41] | Bonnet I, Millon B, Meugnier H, Vandenesch F, Maurin M, Pavese P, Boisset S. High prevalence of spa type t571 among methicillin-susceptible Staphylococcus aureus from bacteremic patients in a French university hospital. PLoS ONE, 2018, 13(10): e0204977. DOI:10.1371/journal.pone.0204977 |
[42] | Lozano C, López M, Gómez-Sanz E, Ruiz-Larrea F, Torres C, Zarazaga M. Detection of methicillin-resistant Staphylococcus aureus ST398 in food samples of animal origin in Spain. Journal of Antimicrobial Chemotherapy, 2009, 64(6): 1325-1326. DOI:10.1093/jac/dkp378 |
[43] |
Yang YH, Chen L, Chen WW, Li MZ, Ye LQ. Characteristics of spa typing of foodborne Staphylococcus aureus in Fujian Province, 2013. Practical Preventive Medicine, 2017, 24(3): 369-372.
(in Chinese) 杨毓环, 陈力, 陈伟伟, 李闽真, 叶玲清. 福建省2013年食源性金黄色葡萄球菌spa基因分型特征. 实用预防医学, 2017, 24(3): 369-372. DOI:10.3969/j.issn.1006-3110.2017.03.033 |