微生物学报  2022, Vol. 62 Issue (11): 4414-4430   DOI: 10.13343/j.cnki.wsxb.20220154.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220154
中国科学院微生物研究所,中国微生物学会

文章信息

高婧, 梁志宏. 2022
GAO Jing, LIANG Zhihong.
赭曲霉G蛋白偶联受体的鉴定及生物信息学分析
Identification and bioinformatics analysis of G-protein-coupled receptors in Aspergillus ochraceus
微生物学报, 62(11): 4414-4430
Acta Microbiologica Sinica, 62(11): 4414-4430

文章历史

收稿日期:2022-03-10
修回日期:2022-04-03
网络出版日期:2022-06-12
赭曲霉G蛋白偶联受体的鉴定及生物信息学分析
高婧 , 梁志宏     
中国农业大学食品科学与营养工程学院, 北京食品营养与人类健康高精尖创新中心, 北京 100083
摘要[目的] 预测并分析赭曲霉(Aspergillus ochraceus)中存在的G蛋白偶联受体(G-protein- coupled receptors,GPCRs)的结构特征和理化性质,探究赭曲霉GPCR超家族蛋白的结构及所接收配体的聚类情况以及与其他同源蛋白的进化关系,为深入开展赭曲霉中GPCRs的定位、功能研究提供理论基础,也有望从G蛋白信号途径角度抑制赭曲霉毒素的产生,进一步控制粮食的真菌毒素污染。[方法] 基于已经报道的曲霉属典型GPCRs序列,在赭曲霉全基因组中进行BLASTp比对以获取候选GPCRs蛋白。通过SMART及多种软件进行保守结构域,特别是跨膜结构的分析,进一步分析候选序列的理化性质、信号肽、二级结构及亚细胞定位等特征。最后,利用MEGA构建赭曲霉中GPCRs与同源蛋白的系统发育树进行遗传关系的比较。[结果] 明确赭曲霉存在15个具有典型7次跨膜结构的GPCRs蛋白,不存在信号肽及转运肽,均含有较高比例的α螺旋结构,15个蛋白质中有7个定位在细胞膜。赭曲霉中的GPCRs与黄曲霉等曲霉属中相应的同源序列具有较近的亲缘关系。[结论] 本研究首次对赭曲霉的GPCR超蛋白家族进行了预测,分析其结构及理化性质,探讨了其与同源蛋白的聚类情况,为深入开展赭曲霉GPCRs的功能研究提供理论基础。
关键词赭曲霉    G蛋白偶联受体    基因家族    进化分析    真菌毒素防控    
Identification and bioinformatics analysis of G-protein-coupled receptors in Aspergillus ochraceus
GAO Jing , LIANG Zhihong     
Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Abstract: [Objective] This study aims to predict and analyze the structural characteristics and physicochemical properties of G-protein-coupled receptors (GPCRs) in Aspergillus ochraceus and to explore the clustering of GPCR proteins and their evolutionary relationships with the homologous proteins. The findings are expected to lay a theoretical basis of further research on the locations and functions of GPCRs in A. ochraceus, help inhibit ochratoxin production from the perspective of G protein signaling pathway, and further control mycotoxin contamination in grains. [Methods] Candidate GPCR proteins were screened through BLASTp alignment of A. ochraceus genome against the reported typical GPCR sequences of Aspergillus sp. Conserved domains, especially transmembrane domains, were analyzed by SMART and a variety of software. The physicochemical properties, signal peptides, secondary structures, and subcellular localization of the candidate sequences were further analyzed. Finally, MEGA was used to construct a phylogenetic tree of GPCRs in A. ochraceus and homologous proteins, and the genetic relationship was elucidated. [Results] A total of 15 GPCR proteins with typical seven transmembrane helices were found in A. ochraceus, but they had no signal peptides or transit peptides. They all contained a large proportion of α-helices, and 7 of the 15 proteins were located at the cell membrane. GPCRs in A. ochraceus had close genetic relationship with the homologous sequences in A. flavus and other Aspergillus species. [Conclusion] In this study, the GPCRs in A. ochraceus were predicted for the first time. The structures and physicochemical properties of them and the clustering with homologous proteins were analyzed, laying a theoretical basis for further research on the functions of GPCRs in A. ochraceus.
Keywords: Aspergillus ochraceus    G-protein-coupled receptors    gene family    phylogeny analysis    mycotoxin control    

赭曲霉(Aspergillus ochraceus)是一种广泛分布于粮食和饲料中的丝状真菌,也是产生有害次级代谢产物赭曲霉毒素(ochratoxin,OT)的模式菌株。赭曲霉毒素A (OTA)是我国粮食、果蔬及其制品中污染最严重的真菌毒素之一,其性质稳定且不易降解,污染范围广泛且涉及种类很多,可以通过食物链在动物体内蓄积,甚至海产品中也已检出[1]。食品中OTA限量范围从婴儿食品的≤0.5 μg/kg到干辣椒的≤20 μg/kg (EC/1881-2020,GB2761—2017),饲料限量是≤100 μg/kg (GB13078-2017)。近3年欧盟食品和饲料类快速预警系统(food and feed safety alerts,RASFF)通报的97例真菌毒素预警中,OTA占8%,仅次于黄曲霉毒素(aflatoxin,AF)。另一方面,OTA被国际癌症研究机构列为ⅡB类致癌物,具有强烈的肝肾毒性、遗传毒性、神经毒性、免疫毒性、血脑屏障损伤性、致畸和致癌性[2],严重威胁人类健康。如何防控OTA的产生并控制食品中OTA的污染是世界范围内亟待解决的问题。

鸟嘌呤核苷酸结合蛋白(G蛋白)信号途径是真核生物中最广泛也是最保守的信号转导途径之一,G蛋白偶联受体(G-protein-coupled receptors,GPCRs)是动物、植物、真菌等真核生物中普遍存在的跨膜受体家族,包括7个跨膜结构域(transmembrane domain,TMD),由交替的胞内环(intracellular loop,IL1-IL3)和胞外环(extracellular loop,EL1-EL3)连接[3]。胞外的氨基末端能够感知环境中多种信号分子,通过蛋白质折叠修饰将信号传递给胞内的羧基末端,激活同源异质三聚体G蛋白(Gαβγ)[4]。Gα亚基上的二磷酸鸟苷(GDP)被三磷酸鸟苷(GTP)替换,导致Gα亚基与Gβγ二聚体分离,二者均能与各自的效应器相互作用,激活或抑制特定的下游通路[56],包括cAMP蛋白激酶(cAMP-activated protein kinase A,cAMP-PKA)途径[7]、丝裂原活化蛋白激酶级联(mitogen- activated protein kinases,MAPK)途径[811]和磷脂酶C (phospholipase C,PKC)途径[12]等,通过调节下游基因表达,调控细胞生长、繁殖、应激和代谢等活动[13]

GPCR在哺乳动物中研究最为透彻,近年来真菌相关研究日渐增多,目前可分为14类,感测信息素、碳/氮源、脂质、离子、光子等环境信号,调控营养、代谢和生长等多种生理行为[14]。构巢曲霉(A. nidulans)和黄曲霉(A. flavus)的GprC和GprD (Ⅲ类)已证实与真菌毒素合成相关[15],GprH (Ⅴ类)是真菌中葡萄糖和色氨酸传感器[16]。在新型隐球菌(Cryptococcus neoformans)、烟曲霉(A. fumigatus)、黄曲霉中相继发现,其毒素的生物合成受腺苷酸环化酶的调控[17],烟曲霉中通过GprK (Ⅵ类)感知碳源变化,激活cAMP-PKA通路从而调控毒素合成。cAMP-PKA是真菌毒素合成的主要调控途径之一,其他还有MAPK通路,可部分调控过氧化氢酶和超氧化物歧化酶基因的表达,影响AF、OTA、脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)等多种真菌毒素的生物合成[18]。Affeldt等构建的黄曲霉的9类Δgpr突变株在感知碳/氮源、脂质分子、环境压力等信号方面出现异常,并且生长、次级代谢和毒力等细胞行为受到影响,表明GPCR在信号感知与调节内部生长代谢中起到重要的介导作用[19]。另有研究验证cAMP激活PKA,调控黄曲霉、构巢曲霉等真菌中AF/杂色曲霉毒素(sterigmatocystin,ST)的合成[20],但也有研究表明cAMP途径不影响尖孢镰刀菌(Fusarium oxysporum)中伏马菌素(fumonisin,FB)的合成[21]。在构巢曲霉fadA菌株中,组成型激活Gα蛋白会抑制ST合成关键基因AnAflR的表达,但会增强青霉素合成基因AnIpnA的表达[22],这与Tsitsigiannis等的研究结果一致[23]。可见,GPCRs介导外源信号分子影响真菌毒素合成在不同菌种中结果不完全一致,有时甚至会出现矛盾的现象,同时已报道病原真菌的GPCRs超家族成员的数量及编码基因序列在不同种类真菌之间也存在较大的差异。综上所述,明确GPCRs的功能,对于探明真菌产毒机理、真菌与寄主互作的机制,进而防控农业生产中真菌危害具有重要的意义,而目前为止,赭曲霉中的GPCRs超家族尚未被鉴定,其调节OTA合成的路径也未见报道。

本研究利用NCBI网站公布的赭曲霉菌株fc-1的全基因组数据,结合其他近缘模式曲霉如黄曲霉、构巢曲霉中已报道的典型GPCR氨基酸序列,通过生物信息学方法对赭曲霉GPCRs超家族成员进行鉴定;对其保守结构域、理化性质、信号肽及转运肽和亚细胞定位等特征进行分析;并对赭曲霉GPCRs及同源蛋白的亲缘性进行比较,以期初步明确GPCRs超家族成员的组成,为进一步研究GPCRs在赭曲霉生长、产毒及其与宿主互作过程中发挥的作用奠定基础。

1 材料与方法 1.1 材料

赭曲霉菌株全基因组数据来自NCBI网站(https://www.ncbi.nlm.nih.gov/;BioProject: PRJNA264608)[24]。黄曲霉、构巢曲霉、烟曲霉、米曲霉(A. oryzae)等曲霉属的GPCRs氨基酸序列从NCBI网站、GPCRdb (https://www.gpcrdb.org/)及Aspergillus Genome Database (http://www.aspgd.org/)中以关键词搜索,合并去重复后获得。利用已发表的曲霉属中典型的GPCRs氨基酸序列在赭曲霉基因组中进行BLASTp比对(参数选择默认),E-value值小于0.001的蛋白质作为候选GPCR蛋白。

1.2 保守结构域预测

利用SMART网站(http://smart.embl-heidelberg.de/)在线分析A.ochraceus中所含GPCRs所具有的保守结构域特征[25]

1.3 跨膜结构域分析

利用ExPASy网站中的Tmpred (https://ch.embnet.org/software/TMPRED_form.html)[26]、TMHMM Server v.2.0 (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0)[27]及HMMTOP软件对候选GPCRs进行跨膜结构域的分析,以做进一步的筛选。

1.4 蛋白质理化性质及疏水性预测

利用ExPASy网站中的ProtParam (https://web.expasy.org/cgi-bin/protparam/protparam/)和Protscale (https://web.expasy.org/protscale/)软件对GPCRs进行理化性质分析及疏水性的预测[28],但不考虑蛋白质折叠后修饰情况。

1.5 信号肽及转运肽的预测

利用ExPASy网站中的SignalP4.1Server (http://www.cbs.dtu.dk/services/SignalP-4.1/)[29]和TargrtP (http://www.cbs.dtu.dk/services/TargetP/)[30]分别对GPCRs进行N端信号肽及转运肽的预测。

1.6 蛋白二级结构分析

利用PHD在线平台(https://npsa-prabi.ibcp.fr/)对GPCRs的二级结构进行分析。

1.7 蛋白亚细胞定位预测

利用Softberry网站中的ProtComp v 9.0 (http://www.softberry.com/berry.phtml/)对GPCRs进行亚细胞定位预测。

1.8 系统发育树构建

通过ClustalX软件对赭曲霉及其他曲霉属的GPCRs氨基酸序列进行多重序列比对分析[31],随后用MEGA 5.1中的邻近法(neighbor-joining)构建系统发育树,各分支之间的距离计算采用p-Distance模型,系统可信度检测采用自举法(bootstrapp)重复1 000进行[32]

2 结果与分析 2.1 赭曲霉GPCRs候选序列获取

在赭曲霉菌株fc-1全基因组(BioProject: PRJNA264608)序列中利用BLASTp,与A. flavus[19]A. nidulansA. fumigatusA. oryzae[33]等曲霉属中已发表的典型的GPCRs的氨基酸序列进行比对(表 1),共获取E值小于0.001的15条候选GPCRs片段,由于赭曲霉中未有GPCR蛋白及其编码基因的相关数据,故本文中将获得的GPCR蛋白命名为AoGprA– AoGprS及AoNopA。多数候选序列与黄曲霉中的同源序列相似性最高,AoGprC为81%、AoGprD为77%、AoGprJ为80%、AoGprP为90%、AoGprS为77%,AoGprO与构巢曲霉同源序列相似性最高,为79%,其余候选序列与其他曲霉中同源序列的同源性均低于70% (结果未显示)。

表 1. 曲霉属中GPCRs种类及NCBI数据库中蛋白质编号 Table 1. GPCRs class type and NCBI protein ID in Aspergillus sp.
Class Gene Conserved domain (note) Protein ID(No. of amino acids)
A. niger A. flavus A. nidulans A. fumigatus A. oryzae A. welwitschiae A. steynii
gprA STE2 GPCR (S. cerevisiae pheromone receptor) XP_001393734.1(378 aa) XP_002378818.1(374 aa) XP_660124.1(430 aa) XP_754193.1(369 aa) EIT81758.1(374 aa) XP_026625843.1(379 aa) XP_024708743.1(379 aa)
gprB STE3 GPCR (S. cerevisiae pheromone receptor) XP_001390270.2(456 aa) XP_002378906.1(465 aa) XP_681012.1(426 aa) XP_753848.1(460 aa) XP_023092254.1(465 aa) XP_026622518.1(457 aa) XP_024708957.1(462 aa)
gprC Git3; Git3_C (S. pombe glucose receptor) XP_001396273.1(446 aa) XP_002372333.1(444 aa) XP_661369.1(439 aa) XP_749030.2(445 aa) XP_023088842.1(373 aa) XP_026620525.1(445 aa) XP_024709498.1(441 aa)
gprD Git3; Git3_C (S. pombe glucose receptor) XP_001399296.1(417 aa) XP_002379581.1(415 aa) XP_660991.1(427 aa) XP_755596.1(418 aa) XP_023091006.1(431 aa) XP_026625230.1(417 aa) XP_024703046.1(419 aa)
gprF PQ loop repeat(S. pombe nitrogen sensor) XP_001393966.2(385 aa) XP_002382886.1(300 aa) XP_663324.1(312 aa) XP_747934.1(391 aa) OOO11705.1(388 aa) XP_026625633.1(385 aa) XP_024698429.1(384 aa)
gprG PQ loop repeat(S. pombe nitrogen sensor) XP_001392527.2(431 aa) XP_002380336.1(426 aa) CBF88144.1(424 aa) XP_752556.1(431 aa) XP_023089637.1(426 aa) XP_026631783.1(431 aa) XP_024698997.1(389 aa)
gprH Secretin family (signal through cAMP pathways) XP_025449723.1(309 aa) XP_002382890.1(428 aa) XP_681531.1(404 aa) XP_001481495.1(413 aa) OOO11702.1(428 aa) XP_026624216.1(309 aa) XP_024698426.1(372 aa)
gprJ PQ loop repeat (S. pombe nitrogen sensor) XP_001399038.1(324 aa) XP_002381980.1(322 aa) XP_663324.1(312 aa) XP_750433.1(326 aa) XP_001819000.3(313 aa) XP_026624983.1(324 aa) XP_024702222.1(351 aa)
gprK RGS domain(regulator of G protein signaling) XP_025448982.1(691 aa) XP_002385224.1(560 aa) XP_681064.1(563 aa) XP_746323.2(559 aa) XP_001826832.1(560 aa) XP_026620316.1(560 aa) XP_024702945.1(603 aa)
gprM No conserved domains XP_001391376.2(499 aa) XP_002372417.1(490 aa) XP_664284.1(489 aa) XP_748979.2(497 aa) XP_023088881.1(433 aa) XP_026626712.1(499 aa) XP_024701329.1(497 aa)
gprO Hemolysin III related (broad range of ligands) XP_001397764.2(479 aa) XP_002374723.1(282 aa) XP_662536.1(318 aa) XP_754562.1(321 aa) XP_001819766.3(318 aa) XP_026627463.1(327 aa) XP_024708266.1(317 aa)
gprP Hemolysin III related (broad range of ligands) XP_001392002.1(500 aa) XP_002373732.1(502 aa) XP_662755.1(498 aa) XP_750609.1(500 aa) XP_001818492.3(502 aa) XP_026632081.1(500 aa) XP_024700758.1(499 aa)
gprR RGS domain (regulator of G protein signaling) XP_025448982.1(691 aa) XP_002373818.1(523 aa) XP_681064.1(563 aa) XP_746323.2(559 aa) XP_001826832.1(560 aa) XP_026619279.1(564 aa) XP_024702945.1(603 aa)
gprS PQ loop repeat(S. pombe nitrogen sensor) XP_001393900.2(266 aa) XP_002382832.1(266 aa) / KAH2918632.1(218 aa) XP_001822712.3(192 aa) XP_026625697.1(266 aa) XP_024707194.1(260 aa)
nopA Bacterio rhodopsin-like (photoreactive) XP_001395233.1(305 aa) XP_002384504.1(312 aa) XP_660965.1(320 aa) XP_746789.1(304 aa) XP_001827251.1(312 aa) XP_026628840.1(305 aa) XP_024706887.1(308 aa)
/: GPCR of this class has not been found in this strain.

2.2 赭曲霉GPCRs超家族成员跨膜结构域分析

典型的GPCR具有7个跨膜结构,基于SMART保守结构域分析,发现候选序列中除AoGprA、AoGprF、AoGprG外均具有7次跨膜结构(CTNS结构域具有2个跨膜螺旋[34]),其中AoGprK和AoGprR还存在G蛋白信号调控因子(regulators of G-protein signaling,RGS)结构域(图 1)。RGS蛋白是多功能的GTP酶加速蛋白,其通过异源三聚体G蛋白的α亚基促进GTP水解,从而使G蛋白失活并快速切断G蛋白偶联受体信号传导途径。

图 1 赭曲霉GPCRs的保守结构域示意图 Figure 1 Conserved domains of GPCRs in Aspergillus ochraceus.

由于SMART是基于TMHMM程序对跨膜结构进行分析[35],为了更好地分析GPCR跨膜结构,同时利用TMHMM、TMpred和HMMTOP软件预测赭曲霉候选GPCRs的跨膜结构域(表 2),3种方法预测出的跨膜次数、跨膜起始位置、终止位置并不相同,这可能是与各程序的算法有关。15条候选序列均能被至少一个软件预测出7次跨膜结构,故需进一步探讨候选序列的其他性质。

表 2. 赭曲霉GPCRs跨膜情况预测 Table 2. Prediction of GPCRs transmembrane status of Aspergillus ochraceus
Name Software Time TM1 TM2 TM3 TM4 TM5 TM6 TM7 TM8
From To From To From To From To From To From To From To From To
AoGprA TMHMM 4 45 64 158 180 200 222 235 257
TMpred(I-O) 7 47 65 76 96 121 142 158 181 203 224 240 258 271 289
TMpred(O-I) 8 49 67 71 91 86 108 114 136 158 180 203 224 240 264 267 286
HMMTOP 7 48 65 82 101 118 142 159 183 200 224 241 258 271 290
AoGprB TMHMM 7 11 33 40 62 82 104 124 146 166 188 216 238 277 294
TMpred(I-O) 8 11 31 37 56 83 105 124 144 168 186 216 239 273 294 304 323
TMpred(O-I) 7 11 31 38 56 82 105 124 146 165 193 216 239 278 298
HMMTOP 7 8 31 42 61 82 105 124 143 166 190 219 242 273 292
AoGprC TMHMM 7 45 67 87 109 129 151 164 186 209 231 258 280 290 312
TMpred(I-O) 7 39 64 89 115 128 149 159 179 209 227 254 275 288 308
TMpred(O-I) 7 39 64 89 113 126 149 158 178 212 230 254 277 288 311
HMMTOP 7 42 62 83 102 133 149 156 179 210 230 255 274 289 308
AoGprD TMHMM 7 10 32 52 74 94 116 129 151 174 196 223 245 255 277
TMpred(I-O) 7 47 69 81 109 139 155 167 184 213 230 258 279 292 312
TMpred(O-I) 7 45 69 81 109 139 156 164 184 216 232 263 282 291 315
HMMTOP 7 47 66 87 106 137 156 163 182 213 232 259 278 291 310
AoGprF TMHMM 4 137 159 174 196 213 235 267 289
TMpred(I-O) 5 2 22 137 157 178 195 212 230 262 285
TMpred(O-I) 5 1 21 137 157 181 205 213 230 269 285
HMMTOP 7 5 24 35 54 59 78 200 219 246 265 276 295 326 345
AoGprG TMHMM 5 36 58 75 97 102 124 286 308 339 361
TMpred(I-O) 7 42 64 69 92 104 122 218 237 254 270 286 304 339 358
TMpred(O-I) 7 40 58 77 97 104 123 219 237 254 270 286 305 335 358
HMMTOP 5 39 58 73 96 105 124 289 308 339 358
AoGprH TMHMM 7 20 39 46 68 83 105 118 140 164 186 302 324 339 361
TMpred(I-O) 8 21 39 46 64 83 107 123 140 167 189 301 319 321 348 337 361
TMpred(O-I) 7 20 39 46 64 86 107 122 140 167 186 296 318 330 361
HMMTOP 7 17 35 46 63 90 107 122 140 167 185 296 314 341 358
AoGprJ TMHMM 7 24 46 58 80 84 106 186 208 223 242 255 277 292 314
TMpred(I-O) 7 1 17 27 46 70 90 189 209 222 239 257 274 285 307
TMpred(O-I) 6 27 46 76 92 185 204 222 243 259 275 285 308
HMMTOP 7 24 43 56 75 84 105 186 203 222 239 256 277 284 301
AoGprK TMHMM 7 22 44 57 79 89 111 157 179 208 230 243 265 275 297
TMpred(I-O) 7 19 39 62 85 87 107 158 178 210 229 272 295 330 352
TMpred(O-I) 6 24 44 50 70 87 106 159 178 210 230 280 298
HMMTOP 7 20 43 56 80 89 106 157 179 210 229 246 265 280 298
AoGprM TMHMM 7 65 87 94 116 136 158 179 201 226 248 289 311 356 375
TMpred(I-O) 7 65 89 96 114 139 158 181 199 227 244 295 311 356 377
TMpred(O-I) 7 68 86 96 114 136 155 177 204 221 244 292 311 356 376
HMMTOP 7 69 88 97 116 139 158 179 202 225 244 292 311 358 377
AoGprO TMHMM 6 117 139 154 176 183 205 215 237 244 263 283 305
TMpred(I-O) 8 61 81 81 100 116 135 152 175 185 204 214 232 245 262 282 302
TMpred(O-I) 8 55 76 83 100 116 134 155 174 183 204 214 232 245 265 284 305
HMMTOP 7 81 100 117 135 156 174 183 201 214 232 245 264 285 302
AoGprP TMHMM 7 261 283 296 318 333 355 362 384 394 413 420 442 457 479
TMpred(I-O) 7 263 283 296 315 335 355 364 380 394 414 427 446 461 479
TMpred(O-I) 7 263 283 295 315 330 356 362 380 394 413 421 445 459 477
HMMTOP 7 261 280 295 315 330 347 362 379 394 411 426 443 456 473
AoGprR TMHMM 7 10 32 45 67 77 99 145 167 196 218 231 253 263 285
TMpred(I-O) 7 7 27 50 73 75 95 146 166 198 217 260 283 318 340
TMpred(O-I) 6 12 32 38 58 75 94 147 166 198 218 268 286
HMMTOP 7 8 31 44 68 77 94 145 167 198 217 234 253 268 286
AoGprS TMHMM 7 2 24 39 61 68 87 128 147 154 176 186 208 215 237
TMpred(I-O) 7 3 25 38 61 63 83 128 146 149 177 191 210 219 238
TMpred(O-I) 7 6 25 38 61 63 83 131 150 149 177 200 220 212 235
HMMTOP 7 4 23 36 54 63 82 130 149 158 176 189 210 219 237
AoNopA TMHMM 6 49 66 81 103 140 162 182 204 217 239 254 273
TMpred(I-O) 7 48 67 77 98 156 180 183 201 218 238 253 270 257 284
TMpred(O-I) 6 49 67 76 96 157 180 183 201 218 236 257 284
HMMTOP 6 48 67 80 98 140 162 183 202 219 238 265 284
I-O: transmembrane direction from intracellular to extracellular; O-I: transmembrane direction from extracellular to intracellular.

2.3 赭曲霉GPCRs超家族蛋白质理化性质及疏水性预测

赭曲霉中比对出的GPCRs在酸碱性、极性与非极性氨基酸组成及所占比例存在差异(表 3)。其相对分子质量在30−65 kDa之间,偏中性或碱性;非极性疏水氨基酸比例均高于极性亲水氨基酸,并且根据总平均亲水指数(grand average of hydropathicity,GRAVY)判断,除AoGprG、AoGprK、AoGprR为亲水性蛋白外,其余GPCRs为疏水性蛋白,这符合膜蛋白将疏水性残基暴露于蛋白分子表面接触磷脂双分子层,跨膜区域为高疏水性的结构特点;半衰期差异较大,且除AoGprG、AoGprR、AoGprS不稳定系数小于40为稳定蛋白外,其余GPCRs不稳定系数均大于40,为不稳定蛋白(表 4),不稳定系数与氨基酸长度及特定的二肽有关[36],侧面反映了GPCR的功能活跃。

表 3. 赭曲霉GPCRs的氨基酸组成 Table 3. Amino acid composition of GPCRs in Aspergillus ochraceus
Name AoGprA AoGprB AoGprC AoGprD AoGprF AoGprG AoGprH AoGprJ AoGprK AoGprM AoGprO AoGprP AoGprR AoGprS AoNopA
Acidic amino acid/% Glu (E) 123.2% 92.0% 204.8% 173.9% 102.7% 163.7% 143.4% 113.4% 274.6% 234.6% 41.3% 306.0% 244.3% 83.1% 92.9%
Asp (D) 112.9% 194.2% 153.6% 204.5% 195.2% 245.6% 92.2% 113.4% 264.5% 142.8% 113.5% 214.2% 254.5% 93.5% 134.2%
Basic amino acid/% Arg (R) 205.3% 255.5% 317.4% 286.4% 143.8% 214.9% 307.4% 154.7% 244.1% 234.6% 196.0% 346.8% 223.9% 103.8% 113.6%
Lys (K) 92.4% 194.2% 92.2% 122.7% 61.6% 92.1% 102.5% 61.9% 284.8% 183.6% 30.9% 153.0% 274.8% 72.7% 103.3%
His (H) 30.8% 122.6% 133.1% 133.0% 71.9% 92.1% 61.5% 20.6% 142.4% 112.2% 165.1% 163.2% 142.5% 41.5% 92.9%
Polar amino acid/% Asn (N) 154.0% 245.3% 112.6% 122.7% 113.0% 133.0% 122.9% 185.6% 132.2% 132.6% 51.6% 132.6% 132.3% 51.9% 62.0%
Cys (C) 92.4% 112.4% 51.2% 40.9% 92.5% 61.4% 82.0% 82.5% 81.4% 163.2% 72.2% 132.6% 81.4% 41.5% 00.0%
Gln (Q) 164.3% 102.2% 163.8% 163.6% 195.2% 163.7% 133.2% 144.4% 233.9% 142.8% 134.1% 122.4% 234.1% 93.5% 72.3%
Gly (G) 195.1% 245.3% 266.2% 276.1% 277.4% 358.2% 194.7% 288.7% 437.4% 367.3% 257.9% 255.0% 407.1% 155.8% 237.5%
Ser(S) 4111.0% 5211.4% 317.4% 409.1% 4512.3% 5312.4% 4811.8% 216.5% 579.8% 448.9% 206.3% 397.8% 529.3% 259.6% 185.9%
Thr (T) 246.4% 275.9% 235.5% 276.1% 174.7% 235.4% 204.9% 185.6% 305.1% 275.4% 165.1% 306.0% 285.0% 114.2% 227.2%
Tyr (Y) 112.9% 132.9% 215.0% 173.9% 154.1% 184.2% 215.2% 123.7% 162.7% 173.4% 134.1% 244.8% 162.9% 145.4% 123.9%
Total 36.1% 35.4% 31.7% 32.4% 39.2% 38.3% 34.7% 37.0% 32.5% 33.6% 31.3% 31.2% 32.1% 31.9% 28.8%
Nonpolar amino acid/% Ala (A) 308.0% 286.2% 337.9% 368.2% 277.4% 327.5% 368.8% 3811.8% 427.2% 336.7% 3210.1% 5010.1% 407.1% 238.8% 3210.5%
Val (V) 3810.2% 357.7% 378.9% 317.0% 256.8% 245.6% 256.1% 226.9% 417.0% 397.9% 268.2% 346.8% 417.3% 186.9% 3611.8%
Leu (L) 4411.8% 378.1% 4811.5% 4610.5% 4412.1% 5111.9% 348.4% 3310.3% 498.4% 5110.3% 3912.3% 5210.5% 488.6% 3111.9% 3611.8%
Ile (I) 246.4% 388.4% 276.5% 398.9% 226.0% 174.0% 338.1% 226.9% 376.3% 295.8% 144.4% 224.4% 366.4% 166.2% 206.5%
Trp(W) 30.8% 143.1% 92.2% 102.3% 41.1% 112.6% 122.9% 103.1% 244.1% 132.6% 82.5% 112.2% 244.3% 72.7% 92.9%
Met (M) 71.9% 102.2% 143.3% 102.3% 20.5% 92.1% 71.7% 51.6% 152.6% 142.8% 72.2% 142.8% 142.5% 114.2% 31.0%
Phe (F) 225.9% 275.9% 184.3% 194.3% 205.5% 174.0% 256.1% 154.7% 274.6% 285.6% 185.7% 275.4% 274.8% 207.7% 123.9%
Pro (P) 164.3% 214.6% 112.6% 163.6% 226.0% 255.8% 256.1% 123.7% 396.7% 336.7% 206.3% 153.0% 386.8% 135.0% 185.9%
Total 49.3% 46.2% 47.2% 47.1% 45.4% 43.5% 48.2% 49.0% 46.9% 48.4% 51.7% 45.2% 47.8% 53.4% 54.3%

表 4. 赭曲霉GPCRs的基本理化性质 Table 4. Basic physicochemical properties of GPCRs in Aspergillus ochraceus
Name Molecular weight/Da Theoretical pI Atoms Half-life Instability index Aliphatic index Grand average of hydropathicity (GRAVY)
C H N O S Total number of atoms
AoGprA 40 950.65 8.84 1 853 2 945 483 528 16 5 825 30.0 47.99 108.40 0.435
AoGprB 51 134.12 9.44 2 326 3 589 621 638 21 7 195 1.9 41.72 92.75 0.123
AoGprC 47 591.22 8.84 2 163 3 368 582 591 19 6 723 30.0 49.62 103.54 0.169
AoGprD 49 342.95 8.55 2 242 3 502 600 627 14 6 985 30.0 46.98 103.95 0.153
AoGprF 39 608.03 5.17 1 792 2 757 461 531 11 5 552 1.1 58.82 97.78 0.191
AoGprG 47 048.13 5.37 2 111 3 229 559 633 15 6 547 30.0 53.67 85.50 −0.087
AoGprH 46 103.31 9.64 2 122 3 234 556 568 15 6 495 30.0 50.90 90.86 0.127
AoGprJ 34 964.13 6.14 1 586 2 440 418 449 13 4 906 30.0 36.45 98.54 0.268
AoGprK 65 049.69 6.92 2 971 4 529 771 829 23 9 123 30.0 40.35 85.13 −0.064
AoGprM 55 171.24 8.26 2 522 3 877 645 686 30 7 760 30.0 49.78 92.36 0.211
AoGprO 35 060.80 9.14 1 618 2 456 434 414 14 4 936 30.0 46.81 99.40 0.323
AoGprP 56 482.84 6.76 7 884 3 906 682 718 27 7 884 30.0 55.91 87.97 0.016
AoGprR 62 701.16 7.47 2 877 4 371 741 791 22 8 802 > 20.0 38.93 86.87 −0.029
AoGprS 29 350.35 6.89 1 372 2 064 326 359 15 4 136 30.0 35.35 99.42 0.466
AoNopA 33 317.78 6.82 1 556 2 409 389 416 3 4 773 100.0 40.38 115.95 0.469

2.4 赭曲霉GPCRs超蛋白家族的信号肽及转运肽分析

信号肽是蛋白质N-末端的一段疏水性的、用于引导新合成蛋白质向通道转移的短肽链;转运肽是一段引导蛋白质进入线粒体和叶绿体的富含碱性氨基酸的前导序列。对赭曲霉候选GPCRs超蛋白家族的信号肽及转运肽分析表明,其中均不含有信号肽及转运肽(表 5)。首先,这符合GPCR定位于膜的特性,同时这与结果2.3中分析出GPCRs超家族碱性氨基酸比例较低的结果相符。

表 5. 赭曲霉GPCRs的信号肽及转运肽分析 Table 5. Analysis of signal peptide and transport peptide of GPCRs in Aspergillus ochraceus
Name Mitochondrial transporter peptide (mTP) Signal peptide (SP) Other Signal peptide or not
AoGprA 0 0 1 NO
AoGprB 0.000 7 0.005 2 0.994 2 NO
AoGprC 0.001 2 0 0.998 7 NO
AoGprD 0.000 3 0 0.999 7 NO
AoGprF 0.000 3 0.038 3 0.961 4 NO
AoGprG 0.000 1 0.000 1 0.999 9 NO
AoGprH 0.000 2 0 0.999 8 NO
AoGprJ 0.001 2 0.001 4 0.997 3 NO
AoGprK 0.000 1 0.000 2 0.999 6 NO
AoGprM 0 0 1 NO
AoGprO 0 0 1 NO
AoGprP 0 0 1 NO
AoGprR 0.001 1 0.001 6 0.982 9 NO
AoGprS 0.002 5 0.022 6 0.974 9 NO
AoNopA 0 0 1 NO

2.5 赭曲霉GPCRs超家族蛋白的二级结构分析

典型GPCR的跨膜区为α螺旋结构。通过PHD在线网站对赭曲霉GPCR超家族进行二级结构分析,结果表明所有GPCRs均由α-螺旋(alpha helix)、延伸链(extended strand)和无规则卷曲(random coil)组成,其中α-螺旋占比为24.18%−64.99% (表 6)。

表 6. 赭曲霉GPCRs的二级结构分析 Table 6. Analysis of secondary structure of GPCRs in Aspergillus ochraceus
Name Alpha helix (Hh) Extended strand (Ee) Random coil (Cc)
AoGprA 108 (28.88%) 124 (33.16%) 142 (37.97%)
AoGprB 110 (24.18%) 114 (25.05%) 231 (50.77%)
AoGprC 161 (38.52%) 71 (16.99%) 186 (44.50%)
AoGprD 162 (36.82%) 72 (16.36%) 206 (46.82%)
AoGprF 86 (28.38%) 50 (16.50%) 167 (55.12%)
AoGprG 129 (30.07%) 64 (14.92%) 236 (55.01%)
AoGprH 135 (33.17%) 76 (18.67%) 196 (48.16%)
AoGprJ 51.71% 9.97% 38.32%
AoGprK 236 (40.48%) 61 (10.46%) 286 (49.06%)
AoGprM 170 (34.27%) 81 (16.33%) 245 (49.40%)
AoGprO 163 (51.58%) 48 (15.19%) 105 (33.23%)
AoGprP 323 (64.99%) 65 (13.08%) 109 (21.93%)
AoGprR 231 (41.25%) 58 (10.36%) 271 (48.39%)
AoGprS 129 (49.62%) 37 (14.23%) 94 (36.15%)
AoNopA 112 (36.60%) 78 (25.49%) 116 (37.91%)
The secondary structure of AoGprJ sequence PHD cannot be calculated, and the results can be obtained by online analysis of predict protein.

2.6 赭曲霉GPCRs超蛋白家族的亚细胞定位分析

曲霉GPCRs超蛋白家族的亚细胞定位分析结果表明,AoGprA、AoGprC、AoGprD、AoGprH、AoGprM、AoGprP、AoGprS最可能位于质膜,AoGprK、AoGprO、AoGprR、AoNopA可能位于内质网,AoGprF、AoGprG、AoGprJ可能定位于液泡膜,AoGprB可能位于高尔基体质膜。传统意义上GPCRs被认为定位于细胞表面,行使传递细胞内外信号交流的作用(表 7)。但近年来的研究显示,许多GPCRs也被发现可以结合不同的信号系统,并分布于不同的胞内膜[3739],如人类内皮细胞、大脑和/或肝细胞核发现的前列腺素EP3和EP4受体[40];神经元内质网及核膜发现的代谢型谷氨酸受体mGlu5[4142];GPCRs还被发现在囊泡、线粒体[43]、核膜[4447],甚至在核体和/或核内陷的核浆内[4850]

表 7. 赭曲霉GPCRs的亚细胞定位预测 Table 7. Prediction of subcellular localization of GPCRs in Aspergillus ochraceus
Name Subcellular localization Nuclear Plasma membrane Extracel-lular Cytoplas-mic Mitochon- drial Endoplasm. retic. Peroxiso-mal Lysosomal Golgi Vacuolar
AoGprA Plasma membrane 1.08 6.31 0.00 0.00 0.15 1.27 0.00 0.00 0.38 0.83
AoGprB Golgi 0.33 1.59 0.31 0.15 0.32 1.01 0.00 0.31 5.28 0.70
AoGprC Plasma membrane 0.00 8.39 0.16 0.20 0.48 0.00 0.00 0.00 0.78 0.00
AoGprD Plasma membrane 0.02 3.46 0.00 0.32 0.00 2.88 0.00 1.31 0.30 1.70
AoGprF Vacuolar 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 9.97
AoGprG Vacuolar 0.00 0.21 0.05 0.00 0.00 0.51 0.57 0.02 0.02 8.62
AoGprH Plasma membrane 0.26 5.64 1.27 0.32 1.24 0.26 0.16 0.00 0.85 0.00
AoGprJ Vacuolar 0.03 0.17 0.00 0.00 0.02 0.00 0.01 0.00 0.03 9.74
AoGprK Endoplasm. retic 0.32 2.34 0.97 0.35 0.90 4.23 0.12 0.00 0.77 0.00
AoGprM Plasma membrane 0.01 7.57 0.12 0.10 0.28 0.00 0.00 0.00 1.91 0.00
AoGprO Endoplasm. retic 0.02 4.42 0.00 0.00 0.07 5.44 0.00 0.00 0.00 0.04
AoGprP Plasma membrane 0.00 9.92 0.00 0.00 0.05 0.00 0.00 0.00 0.02 0.01
AoGprR Endoplasm. retic 0.12 2.15 1.35 0.23 0.45 5.13 0.13 0.00 0.43 0.00
AoGprS Plasma membrane 0.95 3.96 0.33 0.30 0.85 2.15 0.00 0.20 0.42 0.85
AoNopA Endoplasm. retic 0.17 0.00 0.00 0.00 0.00 9.83 0.00 0.00 0.00 0.00

2.7 赭曲霉GPCRs超家族成员遗传关系分析

GPCRs跨膜区域保守,根据序列同源性,国际基础与临床药理学联合会(The International Union of Basic and Clinical Pharmacology,IUPHAR)药理学指南将其分为6类:A (视紫红素样受体rhodopsin-like)、B (分泌素受体家族secretin receptor family)、C (代谢型谷氨酸受体metabotropic glutamate)、D (真菌交配信息素受体fungal mating pheromone receptors)、E (环单磷酸腺苷受体cyclic AMP receptors)以及F (卷曲型受体frizzled)即GRAFS分类系统[51]。而由于真菌同源性与哺乳动物较低,不能归为上述GPCRdp中的综合分类,所以对真菌有单独的划分系统,目前发现了14类,包括6类典型GPCR:class Ⅰ (α-factor pheromone)、class Ⅱ (a-factor pheromone)、class Ⅲ (carbon source)、class Ⅳ(nitrogen/nutrient)、class Ⅴ (cAMP)、class Ⅸ (microbial opsins),此外还有8类新发现的受体class Ⅵ (RGS domain)、class Ⅶ (MG00532-like)、class Ⅷ (mPR-like)、class Ⅹ (PTMI-like)、class ⅩⅠ (GPCR89/ABA)、class ⅩⅡ (family C-like)、class ⅩⅢ (SGPR11)、class ⅩⅣ (Pthl1-like)[5254],而随着技术的不断升级,GPCRs家族种类还在进一步扩增。

对赭曲霉中15条候选GPCRs的氨基酸序列进行亲缘关系分析,所得的系统发育树中出现了几个较明显的聚类(图 2):GprK和GprR同根的支持度为100%,二者可能为同一序列,事实上,GprK和GprR都代表具有RGS结构域的class Ⅵ GPCR,A. nigerA. flavusA. nidulansA. fumigatusA. oryzaeA. welwitschiaeA. steynii中二者均为同一序列;GprC和GprD亲缘关系较近,二者在模式菌株A. nidulansA. flavus中已有研究,归类为Class Ⅲ,可感知碳源及脂氧合物,下游通路为cAMP-PKA,调节菌株的毒素产生;GprF、GprJ、GprG归为一类,代表感知氮源的class Ⅳ。另外进行赭曲霉中GPCR序列于其他曲霉属中同源序列的系统发育分析,各类GPCR聚类情况基本与赭曲霉中相似(图 3),反映了GPCR进化上的保守性。

图 2 赭曲霉GPCRs家族的聚类分析 Figure 2 Cluster analysis of GPCRs family in Aspergillus ochraceus.

图 3 曲霉属中GPCRs家族的系统发育树[B1] [GJ2] Figure 3 Phylogenetic tree of the GPCRs family in Aspergillus sp..

3 讨论与结论

中国是谷物粮食生产及消费大国,而主要由A. ochraceus产生的OTA在谷物类农产品中广泛分布,潜伏着巨大的食品安全隐患。目前粮食中OTA的脱毒方法主要采用物理吸附剂,而被认为很有应用前景的微生物脱毒法,由于菌株脱毒功能的不稳定而限制了其应用。因而,深入研究靶向控制OTA产生的阻断剂成为一个热点领域,而这一工作的前提是找到特异的减少OTA产生的分子靶点。GPCRs是调控多个重要信号通路的起点,也是药物靶点和药物设计的丰富资源,超过40%的临床药物靶标于GPCRs[55],如目前广泛应用的肾上腺受体激动剂和阻滞剂、胆碱受体激动剂和阻滞剂等。另一方面,GPCRs配体种类多样,已确定的仅占一小部分,更多的是配体及下游效应器均未阐明的孤儿GPCRs (orphan GPCRs),其作为药物靶点的巨大潜力尚待挖掘。随着测序技术的发展与成熟,包括A. ochraceus在内的多种曲霉全基因组被成功解析,为从全基因组水平分析和鉴定蛋白家族提供了便利。目前,虽然没有GPCRs作为直接靶蛋白的抑制剂报道,但已有研究将真菌中的GPCRs与毒素产生联系起来。A. fumigatus转录组分析显示,与野生型相比,ΔgprM、ΔgprJ菌株与次级代谢、黑色素和非核糖体多肽代谢相关基因表达上调,GprM (class Ⅶ)、GprJ (class Ⅳ)通过有丝分裂原蛋白激酶(mitogen-activated protein kinase,MAPK)通路负调控次级代谢物(黑色素)编码基因[56]gprK基因缺失抑制A. fumigatus的无性发育,关键的发育激活因子表达减少,同时与转运有关的基因下调[57]A. nidulans的全基因组转录数据的代谢网络分析显示,GPCRs与不同碳源的感知[58]、氧化应激[59]有关。但A. ochraceus中还尚无GPCR相应的报道,因此,从全基因组中筛选、预测与分析赭曲霉GPCRs超家族,可以完善GPCRs的理论基础,进而深入探究赭曲霉中调控生长发育和OTA产生的GPCRs及其信号途径,为控制食品OTA生物合成的阻断剂研究提供靶向信号通路或靶分子,具有巨大的研究潜力和良好的应用前景。

本研究利用BLASTp对赭曲霉全基因组进行氨基酸序列比对,获得了15条GPCR候选蛋白,有6条候选序列与已鉴定的同源序列相似性达70%以上。利用SMART分析其保守结构,同时利用TMHMM、TMpred和HMMTOP重点分析其是否具有GPCRs超家族的典型7次跨膜结构特征,15条序列均被至少一种软件预测出7次跨膜结构域。其次分析候选序列的理化性质,12个候选蛋白为疏水蛋白;12个候选蛋白为不稳定蛋白,这符合膜蛋白的疏水特性。候选蛋白均非信号肽或转运肽,均由α-螺旋、延伸链和无规则卷曲组成。7个候选蛋白定位于细胞膜上,但不排除胞内膜蛋白存在的可能,还需要进一步实验验证。15条候选蛋白可归为9类,class Ⅲ、class Ⅳ和class Ⅵ有明显的聚类,同时也与其他曲霉属中的同源蛋白基于保守结构的归属一致。本研究下一步将从基因层面研究赭曲霉中预测出各GPCR的功能,寻找其配体、下游激活通路以及对OTA合成基因簇上关键基因的调控作用,最终期望以GPCRs为靶标,从源头防控粮食中的OTA污染。

References
[1] San-Martín, Rovirosa J, Vaca I, Vergara K, Acevedo L, Viña D, Orallo F, Chamy MC. New butyrolactone from a marine-derived fungus Aspergillus sp.. Journal of the Chilean Chemical Society, 2011, 56(1): 625-627. DOI:10.4067/S0717-97072011000100023
[2] Kőszegi T, Poór M. Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins, 2016, 8(4): 111. DOI:10.3390/toxins8040111
[3] Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors. The EMBO Journal, 1993, 12(4): 1693-1703. DOI:10.1002/j.1460-2075.1993.tb05814.x
[4] Ja B, Ad J, Liapakis G, Sg R, Shi L, Gether U, Ja J. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. The Journal of Biological Chemistry, 2001, 276(31): 29171-29177. DOI:10.1074/jbc.M103747200
[5] Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbe JC, Miller GJ, Hebert TE. The expanding roles of G beta gamma subunits in G protein-coupled receptor signaling and drug action. Pharmacological Reviews, 2013, 65(2): 545-577. DOI:10.1124/pr.111.005603
[6] Brown NA, Schrevens S, Van Dijck P, Goldman GH. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nature Microbiology, 2018, 3(4): 402-414. DOI:10.1038/s41564-018-0127-5
[7] Xue C, Bahn YS, Cox GM, Heitman J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Molecular Biology of the Cell, 2006, 17(2): 667-679. DOI:10.1091/mbc.e05-07-0699
[8] Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 2007, 1773(8): 1311-1340. DOI:10.1016/j.bbamcr.2007.05.003
[9] Atoui A, Bao DP, Kaur N, Grayburn WS, Calvo AM. Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase. Applied and Environmental Microbiology, 2007, 74(11): 3596-3600.
[10] Hamel LP, Nicole MC, Duplessis S, Ellis BE. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell, 2012, 24(4): 1327-1351. DOI:10.1105/tpc.112.096156
[11] Ma DM, Li RY. Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia, 2013, 175(1/2): 13-23.
[12] Ansari K, Martin S, Farkasovsky M, Ehbrecht IM, Küntzel H. Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 1999, 274(42): 30052-30058. DOI:10.1074/jbc.274.42.30052
[13] Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli AN, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46(4): 287-298. DOI:10.1016/j.fgb.2009.01.002
[14] Gao J, Xu XG, Huang KL, Liang ZH. Fungal G-protein-coupled receptors: a promising mediator of the impact of extracellular signals on biosynthesis of ochratoxin A. Frontiers in Microbiology, 2021, 12: 631392. DOI:10.3389/fmicb.2021.631392
[15] De Souza WR, Morais ER, Krohn NG, Savoldi M, Goldman MHS, Rodrigues F, Caldana C, Semelka CT, Tikunov AP, Macdonald JM, Goldman GH. Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS One, 2013, 8(5): e62088. DOI:10.1371/journal.pone.0062088
[16] Brown NA, Dos Reis TF, Ries LNA, Caldana C, Mah JH, Yu JH, Macdonald JM, Goldman GH. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans. Molecular Microbiology, 2015, 98(3): 420-439. DOI:10.1111/mmi.13135
[17] Yang KL, Qin QP, Liu YH, Zhang LM, Liang LL, Lan HH, Chen CH, You YC, Zhang F, Wang SH. Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Frontiers in Cellular and Infection Microbiology, 2016, 6: 190.
[18] Jiang C, Zhang CK, Wu CL, Sun PP, Hou R, Liu HQ, Wang CF, Xu JR. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environmental Microbiology, 2016, 18(11): 3689-3701. DOI:10.1111/1462-2920.13279
[19] Affeldt KJ, Carrig J, Amare M, Keller NP. Global survey of canonical Aspergillus flavus G protein- coupled receptors. mBio, 2014, 5(5): e01501-14.
[20] Shimizu K, Keller NP. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics, 2001, 157(2): 591-600. DOI:10.1093/genetics/157.2.591
[21] Choi YE, Xu JR. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Molecular Plant Microbe Interactions, 2010, 23(4): 522-533. DOI:10.1094/MPMI-23-4-0522
[22] Tag A, Hicks J, Garifullina G, Ake C, Phillips TD, Beremand M, Keller N. G-protein signalling mediates differential production of toxic secondary metabolites. Molecular Microbiology, 2000, 38(3): 658-665. DOI:10.1046/j.1365-2958.2000.02166.x
[23] Tsitsigiannis DI, Keller NP. Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Molecular Microbiology, 2006, 59(3): 882-892. DOI:10.1111/j.1365-2958.2005.05000.x
[24] Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing FG. Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins, 2016, 8(3): 10.3390.
[25] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research, 2020, 49(D1): D458-D460.
[26] Hofmann K, Stoffel W. TMbase: a database of membrane spanning protein segments. Biological Chemistry, 1993, 374: 166.
[27] Möller S, Croning MDR, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 2002, 18(1): 218. DOI:10.1093/bioinformatics/18.1.218
[28] Walker JM. The Proteomics Protocols Handbook || Protein identification by in-gel digestion and mass spectrometric analysis. 2005, (Chapter 30): 311–314.
[29] Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8(10): 785-786. DOI:10.1038/nmeth.1701
[30] Armenteros J, Salvatore M, Emanuelsson O, Winther O, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance, 2019, 2(5): e201900429. DOI:10.26508/lsa.201900429
[31] Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, 2002, Chapter 2: Unit 2.3.
[32] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739. DOI:10.1093/molbev/msr121
[33] Lafon A, Han KH, Seo JA, Yu JH, D'Enfert C. G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genetics Biology, 2006, 43(7): 490-502. DOI:10.1016/j.fgb.2006.02.001
[34] Ponting CP, Mott R, Bork P, Copley RR. Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Research, 2001, 11(12): 1996-2008. DOI:10.1101/gr.198701
[35] Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research, 2011, 40(D1): D302-D305.
[36] Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 1990, 4(2): 155-161. DOI:10.1093/protein/4.2.155
[37] Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB, Conti M, Von Zastrow M. Functional selectivity of GPCR-directed drug action through location bias. Nature Chemical Biology, 2017, 13(7): 799-806. DOI:10.1038/nchembio.2389
[38] Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SGF, Sunahara RK, El-Samad H, Huang B, Von Zastrow M. Conformational biosensors reveal GPCR signalling from endosomes. Nature, 2013, 495(7442): 534-538. DOI:10.1038/nature12000
[39] Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. British Journal of Pharmacology, 2018, 175(21): 4026-4035. DOI:10.1111/bph.14023
[40] Bhattacharya M, Peri K, Ribeiro Da Silva A, Almazan G, Shichi H, Hou X, Varma DR, Chemtob S. Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. The Journal of Biological Chemistry, 1999, 274(22): 15719-15724. DOI:10.1074/jbc.274.22.15719
[41] O'Malley KL, Jong YJI, Gonchar Y, Burkhalter A, Romano C. Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons. The Journal of Biological Chemistry, 2003, 278(30): 28210-28219. DOI:10.1074/jbc.M300792200
[42] Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutiérrez S, Martín-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, López-Rodríguez ML, Grandes P, Rossignol R, Marsicano G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nature Neuroscience, 2012, 15(4): 558-564. DOI:10.1038/nn.3053
[43] Maggio-Hall LA, Lyne P, Wolff JA, Keller NP. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45(3): 180-189. DOI:10.1016/j.fgb.2007.06.004
[44] Calebiro D, Nikolaev VO, Persani L, Lohse MJ. Signaling by internalized G-protein-coupled receptors. Trends in Pharmacological Sciences, 2010, 31(5): 221-228. DOI:10.1016/j.tips.2010.02.002
[45] Gobeil F, Fortier A, Zhu T, Bossolasco M, Leduc M, Grandbois M, Heveker N, Bkaily G, Chemtob S, Barbaz D. G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Canadian Journal of Physiology and Pharmacology, 2006, 84(3–4): 287-297.
[46] Tadevosyan A, Vaniotis G, Allen BG, Hébert TE, Nattel S. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function. The Journal of Physiology, 2012, 590(6): 1313-1330. DOI:10.1113/jphysiol.2011.222794
[47] Joyal JS, Nim S, Tang Z, Sitaras N, Rivera JC, Zhuo S, Sapieha P, Hamel D, Sanchez M, Zaniolo K. Subcellular localization of coagulation factor II receptor-like 1 in neurons governs angiogenesis. Nature Medicine, 2014, 20: 1165-1173. DOI:10.1038/nm.3669
[48] Lee DK, Lança AJ, Cheng R, Nguyen T, Ji XD, Gobeil F, Chemtob S, George SR, O'Dowd BF. Agonist-independent nuclear localization of the apelin, angiotensin AT1, and bradykinin B2 receptors. The Journal of Biological Chemistry, 2004, 279(9): 7901-7908. DOI:10.1074/jbc.M306377200
[49] Morinelli TA, Raymond JR, Baldys A, Yang Q, Lee MH, Luttrell L, Ullian ME. Identification of a putative nuclear localization sequence within ANG II AT(1A) receptor associated with nuclear activation. American Journal of Physiology Cell Physiology, 2007, 292(4): C1398-C1408. DOI:10.1152/ajpcell.00337.2006
[50] Wright CD, Wu SC, Dahl EF, Sazama AJ, O'Connell TD. Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes. Cellular Signalling, 2012, 24(3): 794-802. DOI:10.1016/j.cellsig.2011.11.014
[51] Alexander SP, Christopoulos A, Davenport AP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, CGTP Collaborators. The concise guide to pharmacology 2017/18: G protein-coupled receptors. British journal of pharmacology, 2017, 174(suppl1): S17-S129.
[52] Han CZ. Advance in functional research of G protein-coupled receptors in phytopathogenic filamentous fungi. Microbiology China, 2015, 42(2): 374-383. (in Chinese)
韩长志. 植物病原丝状真菌G蛋白偶联受体的研究进展. 微生物学通报, 2015, 42(2): 374-383. DOI:10.13344/j.microbiol.china.140473
[53] Han KH, Seo JA, Yu JH. A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Molecular Microbiology, 2004, 51(5): 1333-1345. DOI:10.1111/j.1365-2958.2003.03940.x
[54] Xue CY, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews, 2008, 32(6): 1010-1032. DOI:10.1111/j.1574-6976.2008.00131.x
[55] Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP. Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Applied and Environmental Microbiology, 2008, 74(18): 5674-5685. DOI:10.1128/AEM.00565-08
[56] Da Costa Filho AP, Brancini GTP, De Castro PA, Ferreira JA, Silva LP, Rocha MC, Malavazi I, De Moraes Pontes JG, Fill T, Silva RN, Almeida F, Steenwyk JL, Rokas A, Dos Reis TF, Ries LNA, Goldman GH. Aspergillus fumigatus G-protein coupled receptors GprM and GprJ are important for the regulation of the cell wall integrity pathway, secondary metabolite production, and virulence. bioRxiv, 2020. DOI:10.1101/2020.08.03.235119
[57] Jung MG, Kim SS, Yu JH, Shin KS. Characterization of gprK encoding a putative hybrid G-protein-coupled receptor in Aspergillus fumigatus. PLoS One, 2016, 11(9): e0161312. DOI:10.1371/journal.pone.0161312
[58] David H, Hofmann G, Oliveira AP, Jarmer H, Nielsen J. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biology, 2006, 7(11): R108. DOI:10.1186/gb-2006-7-11-r108
[59] Pusztahelyi T, Klement E, Szajli E, Klem J, Miskei M, Karányi Z, Emri T, Kovács S, Orosz G, Kovács KL, Medzihradszky KF, Prade RA, Pócsi I. Comparison of transcriptional and translational changes caused by long-term menadione exposure in Aspergillus nidulans. Fungal Genetics and Biology, 2011, 48(2): 92-103. DOI:10.1016/j.fgb.2010.08.006
赭曲霉G蛋白偶联受体的鉴定及生物信息学分析
高婧 , 梁志宏