
中国科学院微生物研究所,中国微生物学会
文章信息
- 屈嘉燕, 周润宇, 王晓, 谢家树, 惠竹梅, 王雪飞. 2022
- QU Jiayan, ZHOU Runyu, WANG Xiao, XIE Jiashu, XI Zhumei, WANG Xuefei.
- 油菜素内酯与美极梅奇酵母复配对葡萄灰霉病的抑制作用
- Combined application of brassinosteroid and Metschnikowia pulcherrima against controls Botrytis cinerea on grape berries
- 微生物学报, 62(11): 4541-4550
- Acta Microbiologica Sinica, 62(11): 4541-4550
-
文章历史
- 收稿日期:2022-03-25
- 修回日期:2022-07-14
- 网络出版日期:2022-07-27
葡萄灰霉病由半知菌亚门灰葡萄孢(Botrytis cinerea)引起,该病原菌具有宿主广泛、潜伏期长、易变异、繁殖快、环境适应能力强和耐低温等特点,在葡萄各个生长期和采后贮藏期间经常发生,引起植株幼嫩组织和果实霉烂,给葡萄产业造成巨大的经济损失。目前灰霉病的有效防治主要以化学手段为主,但化学药剂滥用引起的环境污染和抗药性等问题,制约了我国葡萄产业的可持续发展,研制新型安全的果实保鲜制剂是葡萄生产中的迫切现实需求[1–2]。
生物防治菌剂种类繁多,其中酵母菌因其繁殖速度快、抗逆性强和不产生抗生素等特点,在众多生防菌剂中商业化应用较多[3]。美极梅奇(Metschnikowia pulcherrima)酵母是葡萄表面与葡萄酒发酵过程中普遍存在的一种非酿酒酵母,常用于葡萄酒的混菌发酵、田间病害防控和采后果实贮藏保鲜[4–7]。研究表明,美极梅奇酵母具有较高的几丁质酶活性,且不产生抗生素,可以快速定殖于葡萄、番茄和芒果等果实表面[8–9]。本研究所用的美极梅奇酵母菌株P01C004能显著抑制灰霉菌在葡萄果实表面的生长,防止果实腐烂,保持果实采后的品质,具有良好的应用前景[9]。
单一生物防治菌剂或植物激素的防治效果容易受到环境条件多变性和复杂性影响,影响药效稳定性和有效成分活性的发挥。生防菌与其他生防菌剂或植物类激素等联合应用可以综合拮抗、竞争及诱导系统抗性等多种防御机制,弥补各自的局限性和弊端,实现对植物病害的高效防治,扩大生防菌剂的应用范围[10–13]。油菜素内酯(brassinosteroid,BR)是一种天然的甾醇类植物激素,研究发现外源BR通过BR信号转导途径激活转录因子BZR1,进而作用于多种激素信号通路,诱导植物病程相关蛋白(pathogenesis- related proteins,PRs)基因上调表达,同时能促进具有抗菌活性的白藜芦醇等酚类物质积累,增强植物抗病性[14–16]。Liu等[17]和杨艺琳等[18]发现,外源BR能诱导葡萄果实抗病性,有效抑制葡萄灰霉病的发生,显著降低灰霉菌孢子萌发率,提高几丁质酶和β-1, 3-葡聚糖酶等酶活性,提高葡萄果实贮藏品质。目前尚无生防酵母和BR联合防治葡萄灰霉病的相关报道。
本实验以“红地球”葡萄果实为材料,采用美极梅奇酵母和BR复配防治葡萄果实灰霉病,并从果实中抗氧化相关酶活力、单体酚类物质含量和抗病相关基因表达等角度探讨其诱导葡萄果实抗病作用机理,为该酵母和BR在葡萄采后保鲜中的复合应用奠定理论依据和技术支持。
1 材料与方法 1.1 葡萄、酵母、病原菌及其培养条件供试鲜食葡萄品种为“红地球”(Vitis vinifera L.),2020年10月采自陕西省合阳示范站葡萄园,采后立刻运回实验室。挑选成熟度一致、大小色泽统一及无机械损伤的健康果穗,剪下果粒并保留3 mm果梗,经75%酒精和无菌水清洗后晾干。美极梅奇(Metschnikowia pulcherrmia)酵母菌株P01C004和灰葡萄孢(Botrytis cinerea)菌株HDQ来自西北农林科技大学葡萄酒学院和宁夏大学农学院保藏菌种,酵母菌株采用YPD培养基保存,28 ℃培养48 h后收集菌体,血球计数板计数后稀释得到1×105 CFU/mL酵母菌悬液。灰霉菌株采用PDA培养基保存,24 ℃培养14 d后,采用无菌牙签刮取灰霉菌丝,无菌水涡旋振荡后,8层无菌纱布过滤,血球计数板计数后稀释得到1×106 CFU/mL孢子悬浮液,现配现用。
1.2 酵母和BR复配对葡萄灰霉病的防控作用随机选取表面消毒的葡萄果实放入以下处理中浸泡30 s:(1) 空白对照(CK):无菌水;(2) 酵母处理(Y):1×105 CFU/mL P01C004酵母菌悬液;(3) BR处理(BR):0.40 mg/L 2, 4-表油菜素内酯溶液;(4) 酵母与BR复合处理(YBR):1×105 CFU/mL P01C004酵母菌悬液和0.40 mg/L 2, 4-表油菜素内酯的混合溶液;(5) 酵母与BR抑制剂复合处理(YBZ):1×105 CFU/mL P01C004酵母菌悬液和1.31 mg/L油菜素唑的混和溶液。所有处理的果实置于超净台中晾干,6 h后放于无菌塑料培养盒(27.5 cm×16.5 cm×5.7 cm)中。用无菌牙签在葡萄赤道位置穿刺打孔(深2−3 mm),接种2 μL 1×105 CFU/mL灰霉菌孢子悬浮液,24 ℃培养7 d后,用游标卡尺测量每个样品30粒葡萄表面接种处病斑直径。分别在处理后0 h、12 h、48 h、4 d、7 d取样,以清水为对照,用于评估抗氧化酶活性、单体酚类物质和qRT-PCR测定。实验重复3次,每组100粒果实。
1.3 葡萄果实抗氧化酶活性测定过氧化物酶(peroxidase,POD)和多酚氧化酶(polyphenol oxidase,PPO)酶活性测定根据曹建康等[19]方法稍作修改,以每克葡萄样品每分钟在470 nm和420 nm波长处吸光值降低0.01分别表示POD和PPO的一个酶活力单位(U),单位为U/g。
1.4 葡萄果皮单体酚类物质测定单体酚类物质测定参考李俊楠等[20]的方法,每个样品随机选取10粒葡萄,冷冻状态剥皮,将果皮冷冻干燥24 h,液氮保护下研磨成粉末。准确称取1.00 g葡萄皮干粉,加入1 mL蒸馏水和9 mL乙酸乙酯,25 ℃条件下避光130 r/min振荡30 min,8 500 r/min离心5 min。收集上清液。重复萃取4次后合并上清液,30 ℃蒸干后,用色谱甲醇定容至2 mL,0.45 μm有机滤膜过滤,用于Waters Alliance HPLC高效液相色谱分析。流动相A为水: 乙腈=19:1 (含0.3%乙酸),流动相B为乙腈: 水=9:1 (含0.2%乙酸)。采用C18 (250 mm×4.6 mm, 5 μm)柱检测,柱温为室温,波长为306 nm,梯度洗脱设置为0.0−3.0 min,1%−15% A;3.0−11.0 min,15%−40% A;11.0−13.0 min,40% A;13.0−13.1 min,40%−1% A;13.1−15.0 min,1% A。流速0.5 mL/min,上样量15 μL。
1.5 RNA提取、反转录及qPCR扩增“红地球”葡萄果实的总RNA利用植物总RNA提取试剂盒(北京百泰克生物技术有限公司)提取,用Nano drop核酸仪测定RNA浓度。利用EasyScript® One-Step gDNA Removal and cDNA Synthesis SuperMix试剂盒将RNA反转录成cDNA。为了明确不同处理对BR信号转导途径、抗病防御响应和植保素白藜芦醇的影响,利用QuantStudioTM 6高产率荧光定量PCR仪(ABI赛默飞公司)测定BR信号转导途径转录因子基因VvBZR1、病程相关蛋白基因VvPR1和白藜芦醇合成的芪合成酶基因VvSTS的基因表达量,引物序列如表 1所示[21–23]。通过稀释法分析最终扩增产物的熔解曲线来评价引物的特异性,反应结果用Ct值归一化处理,用2−ΔΔCt法表示目标基因相对于内参基因(VvActin)的相对表达水平[24]。
Primer name | Primer sequences (5′→3′) |
VvSTS-F | TTAGAAACGCTCAACGTGCCAAGGG |
VvSTS-R | AATCAGCATAATCAGACTGGTAGAC |
VvPR1-F | ACTTGTGGGTGGGGGAGAA |
VvPR1-R | TGTTGCATTGAACCCTAGCG |
VvBZR1-F | GCCTAAGCACTGCGACAACA |
VvBZR1-R | ATCCATGCGTTCCACAGGTT |
VvActin-F | TCGGAACAGGACGGTTCAAGTGCC |
VvActin-R | TCCTTCGCCAGCCTATCAGCCAAG |
1.6 数据处理与分析
病情评估、抗氧化酶活性、酚类物质和基因表达量数据统计分析采用Microsoft Office Excel 2020和SPSS 26.0软件,并用Tukey法进行差异显著性分析(P < 0.05)。利用Origin pro 2021软件绘图,图表数据为平均值±标准差。
2 结果与分析 2.1 酵母和BR复配对红地球葡萄果实灰霉病的防控效果“红地球”葡萄果实经美极梅奇酵母、油菜素内酯和油菜素唑等处理6 h后,接种灰霉菌,7 d后评估葡萄果实上的病斑大小。在无灰霉菌接种和人工穿刺打孔条件下,果实无灰霉病斑,穿刺打孔引起的果实生理生化变化较低,显著低于CK中灰霉菌接种引起的影响。除CK外,Y处理的葡萄果实上灰霉病斑直径最大,平均值为14.00 mm (图 1)。YBR处理的葡萄果实上病斑直径最小,平均值为10.69 mm,显著低于CK、Y和BR处理,YBR对灰霉菌的防效较Y处理提高23.64%。YBZ处理组的病斑直径介于BR与YBR处理之间,YBZ处理组的病斑直径较YBR增加11.76%。结果表明,添加BR能提高美极梅奇酵母P01C004对灰霉病害的防控效果,有效扼制灰霉菌在葡萄果实上的生长。
![]() |
图 1 美极梅奇酵母与油菜素内酯复配对接种灰霉菌后第7天葡萄果实灰霉病斑直径的影响 Figure 1 The disease diameter on grape berries treated with Metschnikowia pulcherrima and brassinosteroid after 7 day-inoculation of Botrytis cinerea. Error bars in figure represent standard deviation, and different letters indicate significant difference (P < 0.05) among treatments at the same time. |
2.2 酵母和BR复配对抗氧化相关酶活性的影响
“红地球”葡萄果实经各处理6 h后,接种灰霉菌,并于接种灰霉菌后4 d和7 d时测定POD和PPO酶活。结果显示,随着病菌侵染时间的增加,Y、YBR和YBZ处理中POD和PPO酶活性均有所增加(图 2)。在葡萄果实接种灰霉菌第4天和第7天时,BR显著提高了葡萄果实的POD酶活,YBZ处理的POD酶活性显著低于其他处理,Y和YBR处理介于BR和YBZ处理之间(图 2A)。在接种灰霉菌第7天时,YBR处理的POD酶活性比Y处理显著提高了24.88%。接种灰霉菌的第4天和第7天时,Y和YBR处理的PPO酶活性显著高于CK (图 2B)。4 d时,BR处理果实的PPO酶活性显著高于CK,YBR较Y处理显著提高了27.57%,YBZ显著低于Y、BR和YBR。YBZ处理的PPO酶活性在7 d时迅速增加,与BR处理无显著差异。结果表明油菜素内酯可以诱导提高POD酶活性,美极梅奇酵母P01C004能够诱导提高PPO酶活,酵母与油菜素内酯间存在相互作用,共同调控葡萄果实POD和PPO酶活。
![]() |
图 2 不同处理接种灰霉菌对红地球葡萄果实过氧化物酶(A)和多酚氧化酶(B)活性的影响 Figure 2 Effects on the activities of peroxidase (A) and polyphenol oxidase (B) enzymes in the Red Globe grapes of different treatments after Botrytis cinerea inoculation. Error bars in figure represent standard deviation, and different letters indicate significant difference (P < 0.05) among treatments at the same time. |
2.3 酵母和BR复配对红地球葡萄中单体酚类物质的影响
“红地球”葡萄果实经各处理6 h后,接种灰霉菌,并在接种灰霉菌后2 d和4 d时共检测到13种单体酚物质,其中原儿茶素酸含量最高,反式对香豆酸含量最低(表 2)。与CK对比,接种灰霉菌后2 d时绿原酸、原儿茶酸、咖啡酸、儿茶素、表儿茶素和芹菜素在YBR处理中显著升高,没食子酸、反式阿魏酸和儿茶素在Y处理的果皮中显著升高,YBZ中所有酚类物质含量均无显著变化。接种灰霉菌后4 d时4组处理的酚类物质含量均无显著差异,说明BR和美极梅奇酵母P01C004能在灰霉菌侵染初期有效激活果实多种酚类物质的快速合成,提高果实对病原菌的防御力。
Monomeric phenolic compounds | Days after treatment | Content/(μg/g) | |||
CK | Y | YBR | YBZ | ||
Chlorogenic acid | 2 | 0.16±0.01b | 0.21±0.08ab | 0.26±0.03a | 0.14±0.06b |
4 | 0.09±0.06a | 0.15±0.01a | 0.09±0.07a | 0.14±0.02a | |
Gallic acid | 2 | 0.09±0.02a | 0.04±0.03a | 0.12±0.01a | 0.11±0.03a |
4 | 0.02±0.02b | 0.17±0.27a | 0.07±0.08ab | 0.10±0.03ab | |
Protocatechuic acid | 2 | 1.15±0.14b | 1.09±0.47b | 2.22±0.56a | 1.19±0.56b |
4 | 0.51±0.39a | 1.06±0.08a | 0.58±0.49a | 1.04±0.26a | |
Ferulic acid | 2 | 0.04±0.00bc | 0.08±0.03a | 0.06±0.01ab | 0.03±0.01c |
4 | 0.02±0.01a | 0.04±0.01a | 0.03±0.03a | 0.03±0.01a | |
Caffeic acid | 2 | 0.03±0.00b | 0.04±0.04b | 0.08±0.02a | 0.04±0.02b |
4 | 0.03±0.02a | 0.05±0.00a | 0.03±0.03a | 0.03±0.01a | |
Resveratrol | 2 | 0.08±0.03a | 0.14±0.07a | 0.08±0.02a | 0.08±0.03a |
4 | 0.05±0.04a | 0.11±0.05a | 0.09±0.08a | 0.03±0.01a | |
Trans para coumaric acid | 2 | 0.01±0.00a | 0.01±0.00a | 0.00±0.00a | 0.00±0.00a |
4 | 0.01±0.00a | 0.01±0.00a | 0.00±0.00a | 0.00±0.00a | |
Kaempferol | 2 | 0.09±0.03a | 0.07±0.02a | 0.11±0.02a | 0.08±0.02a |
4 | 0.05±0.03a | 0.09±0.03a | 0.09±0.06a | 0.05±0.02a | |
Myricetin | 2 | 0.01±0.00a | 0.02±0.01a | 0.02±0.01a | 0.02±0.01a |
4 | 0.01±0.00a | 0.02±0.01a | 0.02±0.01a | 0.02±0.01a | |
Catechins | 2 | 0.11±0.03b | 0.48±0.14a | 0.42±0.08a | 0.17±0.08b |
4 | 0.15±0.11a | 0.24±0.01a | 0.18±0.15a | 0.20±0.03a | |
Epicatechin | 2 | 0.02±0.02b | 0.08±0.06ab | 0.10±0.02a | 0.04±0.02b |
4 | 0.04±0.03a | 0.04±0.01a | 0.06±0.00a | 0.03±0.02a | |
Quercetin | 2 | 0.03±0.00ab | 0.02±0.00b | 0.04±0.01a | 0.03±0.01b |
4 | 0.02±0.01a | 0.03±0.01a | 0.03±0.01a | 0.02±0.01a | |
Apigenin | 2 | 0.04±0.01b | 0.02±0.01b | 0.15±0.20a | 0.02±0.01b |
4 | 0.02±0.02a | 0.02±0.01a | 0.01±0.01a | 0.00±0.00a | |
Different lowercase letters indicate that the same phenolic substance has significant differences among different treatments (P < 0.05) at the same day. |
2.4 美极梅奇酵母和BR复配对VvBZR1和抗病相关基因表达的影响
“红地球”葡萄果实接种灰霉菌后,VvBZR1表达量在CK、Y和YBR处理中呈上升趋势,在YBZ处理中先升高,12 h后下调表达(图 3A)。48 h后,YBR中VvBZR1表达量明显上调,显著高于其他的处理,是CK的1.6倍。Y和YBZ的VvBZR1表达量无明显差异,均显著低于CK。结果说明YBR激活了果实中油菜素内酯信号转导途径,Y和YBZ处理抑制了果实中的VvBZR1转录因子表达。0 h时Y中抗病相关基因VvPR1表达量显著高于其他处理(图 3B)。48 h时CK、YBR和YBZ处理中VvPR1呈上升趋势,但Y中VvPR1表达量显著低于YBR和YBZ。结果说明美极梅奇酵母P01C004处理能够较早地触发葡萄果实的防御反应,但持续时间较短,而酵母和BR复合处理能较长时间维持葡萄果实的防御反应。0 h时YBZ中白藜芦醇合成相关基因VvSTS基因表达量显著高于其他处理,之后逐渐下降(图 3C)。0 h时YBR中VvSTS表达量显著高于CK,在48 h时上调表达。接种后12 h时,Y中VvSTS显著上调表达,48 h时Y中VvSTS呈下降趋势,是CK的1.7倍。
![]() |
图 3 不同处理接种灰霉菌对红地球葡萄中VvBZR1 (A)、VvPR1 (B)和VvSTS (C)基因表达量的影响 Figure 3 Effects of different treatments on the gene expression levels of VvBZR1 (A), VvPR1 (B) and VvSTS (C) in the Red Globe grapes after Botrytis cinerea inoculation. Error bars in figure represent standard deviation, and different letters indicate significant difference (P < 0.05) among treatments at the same time. |
3 讨论与结论
生防菌对多种病原物具有良好的拮抗效应和生物活性,能够增强植物营养物质的吸收利用,从而增强了植物的抗病性和生长能力。依据生防菌和化学制剂的抗病机理进行复配施用,可减轻生防菌株在复杂环境中的竞争压力,形成多元保护系统,协同增强病害防治能力和稳定性,降低果蔬中的农药残留,是一种切实可行且环境友好的防治方法[25–26]。研究证实,外源油菜素内酯可增强烟草抵御白粉病菌的侵染,显著提升水稻抵御白叶枯病菌和稻瘟病菌的能力[27]。本研究首次将生防酵母美极梅奇P01C004和油菜素内酯的复合配施,实现葡萄果实灰霉病的防治增效23.64%,为研制果实采后病害的新型生防菌剂奠定了基础。
植物细胞内自由基的产生与清除处于一种动态平衡,病原菌的侵染破坏生理氧化还原稳态,导致植物呼吸暴发,大量活性氧积累于感染部位,细胞死亡限制病原物的生长。前人研究结果表明,BR能显著提高草莓[28]、葡萄[17]和杏[29]等果实中POD和PPO酶活性,与抗氧化酶协同作用,使自由基维持在一个低水平,清除代谢产生的H2O2,减少氧化损伤。诱导氧化防御相关的酶是生防酵母的拮抗机制之一,生防酵母和BR复配处理7 d时显著提高了葡萄果实中PPO酶活,有利于减少自由基氧化分解造成膜结构的破坏,缓解ROS介导的损伤[30]。同时,生防酵母和植物激素协同作用降低果实氧化压力,抑制成熟果皮呼吸消耗,减缓果实腐烂速率[31–32]。
酚类物质广泛存在于浆果中,是一类抗氧化、抗菌的活性物质。本研究中,在灰霉菌侵染初期生防酵母单独处理仅提高了果实中部分酚类物质含量,BR的添加显著提高了果实中绿原酸、原儿茶酸、咖啡酸、表儿茶素和芹菜素等酚类物质含量。外源BR与各类激素相互串联,参与调控酚类物质合成基因的表达水平,促进果实总酚、花色苷和类黄酮的积累[33–34]。绿原酸等酚类物质作为抗氧化剂能清除细胞内活性氧(reactive oxygen species,ROS),阻止植物膜脂过氧化,形成化学屏障抵御病原菌定殖,其早期响应有利于激活植物对病原菌的防御系统[35–37]。此外,酚类物质还可抑制真菌孢子的早期透膜化,增加病原菌质膜通透性,抑制病原菌的正常生长[37–38]。
BR信号转导途径下游关键转录因子BZR1与植物中多种转录因子和内源激素通路间交叉互作以维持生长发育和逆境响应平衡[39–40]。本研究发现美极梅奇酵母与BR复合处理48 h时能有效提高VvBZR1基因的表达水平。较高水平表达的VvBZR1可影响下游基因及信号网络,将抗病性信号传递给下游病程相关蛋白,上调VvPR1基因表达,提高植物对病原的防御反应[40]。美极梅奇酵母单独处理显著提高了白藜芦醇合成途径的关键基因VvSTS表达量,但所有处理并未引起白藜芦醇的积累,表明酵母可能利用其他防御响应途径增强果实的抗病性,具体调控机制有待进一步开展相关试验进行验证。后续研究将针对美极梅奇酵母和BR信号转导途径关联的多种激素信号网络和不同酚类物质代谢调控展开研究,以期更深入探讨BR和美极梅奇酵母共同调控果实的抗性应答作用。
[1] |
Li QF, Zhang HY, Yang QY, Lin Z, Cheng YY, Sun YW. Progress in biocontrol yeast agents for preventing and treating diseases of fruits. Food Science, 2018, 39(1): 291-296.
(in Chinese) 李侨飞, 张红印, 杨其亚, 林珍, 程洋洋, 孙艺文. 防治水果病害的生防酵母及生防制剂研究进展. 食品科学, 2018, 39(1): 291-296. |
[2] | De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P. Botrytis cinerea and table grapes: a review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods: Basel, Switzerland, 2020, 9(9): 1138. |
[3] | Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World Journal of Microbiology and Biotechnology, 2019, 35(10): 1-19. |
[4] | Morata A, Loira I, Escott C, Del Fresno JM, Bañuelos MA, Suárez-Lepe JA. Applications of Metschnikowia pulcherrima in wine biotechnology. Fermentation, 2019, 5(3): 63. DOI:10.3390/fermentation5030063 |
[5] | Zhang M, Zhong T, Heygi F, Wang ZR, Du MY. Effects of inoculation protocols on aroma profiles and quality of plum wine in mixed culture fermentation of Metschnikowia pulcherrima with Saccharomyces cerevisiae. LWT, 2022, 161: 113338. DOI:10.1016/j.lwt.2022.113338 |
[6] | Zhang HY, Godana EA, Sui Y, Yang QY, Zhang XY, Zhao LN. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Critical Reviews in Microbiology, 2020, 46(4): 450-462. DOI:10.1080/1040841X.2020.1794793 |
[7] | Oro L, Feliziani E, Ciani M, Romanazzi G, Comitini F. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. International Journal of Food Microbiology, 2018, 265: 18-22. DOI:10.1016/j.ijfoodmicro.2017.10.027 |
[8] |
Tian YQ, Ge NN, Zhou Y, Shao YZ. Primary study on antagonism mechanism of Metschnikowia pulcherrima yeast inhibiting Colletotrichum gloeosporioides in mango fruit. Science and Technology of Food Industry, 2018, 39(1): 82-86.
(in Chinese) 田亚琴, 葛念念, 周易, 邵远志. 美极梅奇酵母抑制芒果炭疽菌的拮抗机理初探. 食品工业科技, 2018, 39(1): 82-86. DOI:10.13386/j.issn1002-0306.2018.01.015 |
[9] | Wang XF, Glawe DA, Kramer E, Weller D, Okubara PA. Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington state. Phytopathology, 2018, 108(6): 691-701. DOI:10.1094/PHYTO-09-17-0306-R |
[10] | Xu XM, Jeffries P, Pautasso M, Jeger MJ. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 2011, 101(9): 1024-1031. DOI:10.1094/PHYTO-08-10-0216 |
[11] | Ons L, Bylemans D, Thevissen K, Cammue BPA. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 2020, 8(12): 1930. DOI:10.3390/microorganisms8121930 |
[12] | Li TT, Zhang JD, Tang JQ, Liu ZC, Li YQ, Chen J, Zou LW. Combined use of Trichoderma atroviride CCTCCSBW0199 and brassinolide to control Botrytis cinerea infection in tomato. Plant Disease, 2020, 104(5): 1298-1304. DOI:10.1094/PDIS-07-19-1568-RE |
[13] | Ji XX, Li JJ, Meng Z, Zhang SA, Dong B, Qiao K. Synergistic effect of combined application of a new fungicide fluopimomide with a biocontrol agent Bacillus methylotrophicus TA-1 for management of gray mold in tomato. Plant Disease, 2019, 103(8): 1991-1997. DOI:10.1094/PDIS-01-19-0143-RE |
[14] | Li QF, Lu J, Yu JW, Zhang CQ, He JX, Liu QQ. The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochimica et Biophysica Acta: BBA - Gene Regulatory Mechanisms, 2018, 1861(6): 561-571. DOI:10.1016/j.bbagrm.2018.04.003 |
[15] | Babalık Z, Demirci T, Aşcı ÖA, Baydar NG. Brassinosteroids modify yield, quality, and antioxidant components in grapes (Vitis vinifera cv. alphonse lavallée). Journal of Plant Growth Regulation, 2020, 39(1): 147-156. DOI:10.1007/s00344-019-09970-5 |
[16] | Xiong J, He R, Yang F, Zou L, Yi K, Lin H, Zhang D. Brassinosteroids are involved in ethylene-induced Pst DC3000 resistance in Nicotiana benthamiana. Plant Biology: Stuttgart, Germany, 2020, 22(2): 309-316. DOI:10.1111/plb.13074 |
[17] | Liu Q, Xi ZM, Gao JM, Meng Y, Lin S, Zhang ZW. Effects of exogenous 24-epibrassinolide to control grey mould and maintain postharvest quality of table grapes. International Journal of Food Science & Technology, 2016, 51(5): 1236-1243. |
[18] |
Yang YL, Zhang ZM, Li ML, Zhao LY, Jin P, Zheng YH. Modes of action of 2, 4-epibrassionolide against postharvest gray mold decay of grapes. Food Science, 2019, 40(15): 231-238.
(in Chinese) 杨艺琳, 张正敏, 李美琳, 赵立艳, 金鹏, 郑永华. 2, 4-表油菜素内酯对葡萄果实采后灰霉病的抑制作用机理. 食品科学, 2019, 40(15): 231-238. DOI:10.7506/spkx1002-6630-20180821-222 |
[19] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007. |
[20] |
Li JN, Ning PF, Ren RH, Yang J, Zhang ZW. Infiuence of berry shriveling on grape and wine composition of 'cabernet sauvignon' in southwest Shanxi province of China. Food Science, 2020, 41(14): 239-246.
(in Chinese) 李俊楠, 宁鹏飞, 任瑞华, 杨君, 张振文. 浆果皱缩对晋西南地区'赤霞珠'葡萄及葡萄酒品质的影响. 食品科学, 2020, 41(14): 239-246. DOI:10.7506/spkx1002-6630-20190802-044 |
[21] | Wang JF, Ma L, Xi HF, Wang LJ, Li SH. Resveratrol synthesis under natural conditions and after UV-C irradiation in berry skin is associated with berry development stages in 'Beihong' (V. vinifera × V. amurensis). Food Chemistry, 2015, 168: 430-438. DOI:10.1016/j.foodchem.2014.07.025 |
[22] | Perazzolli M, Bampi F, Faccin S, Moser M, De Luca F, Ciccotti AM, Velasco R, Gessler C, Pertot I, Moser C. Armillaria mellea induces a set of defense genes in grapevine roots and one of them codifies a protein with antifungal activity. Molecular Plant-Microbe Interactions: MPMI, 2010, 23(4): 485-496. DOI:10.1094/MPMI-23-4-0485 |
[23] |
Jiang QQ, Wang YT, Xi ZM. Identification and expression analysis of BZR gene family in grapevine. Plant Physiology Journal, 2021, 57(6): 1218-1228.
(in Chinese) 江倩倩, 王雨婷, 惠竹梅. 葡萄BZR基因家族的鉴定及表达分析. 植物生理学报, 2021, 57(6): 1218-1228. DOI:10.13592/j.cnki.ppj.2021.0030 |
[24] | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262 |
[25] | Zhang HY, Mahunu GK, Castoria R, Yang QY, Apaliya MT. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science & Technology, 2018, 78: 180-187. |
[26] |
Huang HJ, Luo K. Research progress in the control of plant diseases by the combination of Bacillus and fungicides. Microbiology China, 2021, 48(3): 938-947.
(in Chinese) 黄慧婧, 罗坤. 芽孢杆菌与杀菌剂复配防治植物病害的研究进展. 微生物学通报, 2021, 48(3): 938-947. DOI:10.13344/j.microbiol.china.200444 |
[27] | Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal: for Cell and Molecular Biology, 2003, 33(5): 887-898. DOI:10.1046/j.1365-313X.2003.01675.x |
[28] |
Li YY, Wang L, Zhou MJ, Zhang Y, Jin P, Zheng YH. Effect of 2, 4-epibrassionolide on postharvest quality and antioxidant activity of strawberry fruit. Food Science, 2018, 39(1): 279-284.
(in Chinese) 李园园, 王莉, 周梦洁, 张瑜, 金鹏, 郑永华. 2, 4-表油菜素内酯对草莓果实贮藏品质及抗氧化活性的影响. 食品科学, 2018, 39(1): 279-284. |
[29] |
Shi L, Li LH, Zhang RJ, Li YL, Li L, Zhang Y, Liao HH, Zhu X. 24-epibrassinolide regulates active oxygen metabolism to enhance postharvest disease resistance of apricot fruit. Food Science, 2020, 41(9): 126-132.
(in Chinese) 石玲, 李丽花, 张瑞杰, 李亚玲, 李玲, 张昱, 廖海慧, 朱璇. 24-表油菜素内酯调控活性氧代谢增强杏果实采后抗病性. 食品科学, 2020, 41(9): 126-132. |
[30] | Shah K, Kumar RG, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001, 161(6): 1135-1144. DOI:10.1016/S0168-9452(01)00517-9 |
[31] | Goetz G, Fkyerat A, Métais N, Kunz M, Tabacchi R, Pezet R, Pont V. Resistance factors to grey mould in grape berries: identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry, 1999, 52(5): 759-767. DOI:10.1016/S0031-9422(99)00351-9 |
[32] | Qin XJ, Xiao HM, Xue CH, Yu ZF, Yang R, Cai ZK, Si LY. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biology and Technology, 2015, 100: 160-167. DOI:10.1016/j.postharvbio.2014.09.010 |
[33] | Liu CX, Chen LL, Zhao RR, Li R, Zhang SJ, Yu WQ, Sheng JP, Shen L. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. Journal of Agricultural and Food Chemistry, 2019, 67(22): 6116-6124. DOI:10.1021/acs.jafc.9b00058 |
[34] | Yang N, Zhou Y, Wang Z, Zhang Z, Xi Z, Wang X. Emerging roles of brassinosteroids and light in anthocyanin biosynthesis and ripeness of climacteric and non-climacteric fruits. Critical Reviews in Food Science and Nutrition, 2021: 2021 Nov 18; 1-2021 Nov 1813. |
[35] | Mei YM, Sun HL, Du GD, Wang XQ, Lyu DG. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Scientia Horticulturae, 2020, 274: 109676. DOI:10.1016/j.scienta.2020.109676 |
[36] | 马利菁. 酚类物质及酚类合成相关酶与苹果灰霉病抗性的关系. 西北农林科技大学硕士学位论文, 2018. |
[37] | Koskimäki JJ, Hokkanen J, Jaakola L, Suorsa M, Tolonen A, Mattila S, Pirttilä AM, Hohtola A. Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. European Journal of Plant Pathology, 2009, 125(4): 629-640. DOI:10.1007/s10658-009-9511-6 |
[38] | Martínez G, Regente M, Jacobi S, Del Rio M, Pinedo M, De La Canal L. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 2017, 140: 30-35. DOI:10.1016/j.pestbp.2017.05.012 |
[39] | Qi G, Chen H, Wang D, Zheng HY, Tang XF, Guo ZZ, Cheng JY, Chen J, Wang YP, Bai MY, Liu FQ, Wang DW, Fu ZQ. The BZR1-EDS1 module regulates plant growth-defense coordination. Molecular Plant, 2021, 14(12): 2072-2087. |
[40] | Liao K, Peng YJ, Yuan LB, Dai YS, Chen QF, Yu LJ, Bai MY, Zhang WQ, Xie LJ, Xiao S. Brassinosteroids antagonize jasmonate-activated plant defense responses through BRI1-EMS-SUPPRESSOR1 (BES1). Plant Physiology, 2019, 182(2): 1066-1082. |