
中国科学院微生物研究所,中国微生物学会
文章信息
- 刘吉文, 刘姣, 黄付燕, 任高杨, 张晓华. 2022
- LIU Jiwen, LIU Jiao, HUANG Fuyan, REN Gaoyang, ZHANG Xiaohua.
- 海洋奇古菌门认知的拓展:从新类群到新功能
- The expanding knowledge of marine Thaumarchaeota: from new groups to new functions
- 微生物学报, 62(12): 4628-4645
- Acta Microbiologica Sinica, 62(12): 4628-4645
-
文章历史
- 收稿日期:2022-09-15
- 修回日期:2022-10-26
2. 青岛海洋科学与技术试点国家实验室, 海洋生态与环境科学功能实验室, 山东 青岛 266071;
3. 中国海洋大学深海圈层与地球系统前沿科学中心, 山东 青岛 266100
2. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China;
3. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, Shandong, China
古菌是构成三域生命系统的一个域[1],其成员在细胞结构、生长繁殖和生理代谢等方面与细菌和真核生物具有明显区别。以往认为古菌仅生存于高温、高盐等极端环境中,但越来越多的证据表明,古菌在常规自然环境,如海水、土壤和沉积物中均有分布,并可成为优势类群。海洋是古菌的重要栖息地,在无光的深海水体中,以奇古菌门为代表的古菌类群可占总微生物群落的近40%,甚至超过细菌所占比重[2–3]。这些海洋古菌是碳、氮、硫等元素的循环转化过程中的重要驱动者,在维持生态系统稳定和调节气候变化中起关键作用。
Woese等在1977年提出古菌域时[1],古菌仅由泉古菌门(Crenarchaeota)和广古菌门(Euryarchaeota) 2个门类组成,前者主要包括在热泉中发现的嗜热类群,而后者则以嗜盐古菌和厌氧的产甲烷古菌为主要代表。由于这些微生物的生存环境与早期地球环境类似,因此得名古菌,且古菌一直被认为只生存于类似极端环境中。1992年,古菌所属16S rRNA基因序列在近岸和深海水体中的发现[4–5]颠覆了上述认知,使人们意识到古菌的物种多样性远超以往所知。这些从有氧、温度适中的海水中发现的古菌序列在进化树上形成了2个单系进化分支,分别属于泉古菌门和广古菌门,但均与先前已知的古菌类群亲缘关系较远,被命名为Group I和Group II。由于Group I代表首个从非高热环境发现的泉古菌门类群,因此当时被称为中温泉古菌(mesophilic Crenarchaeota)。从海绵组织中检测到的与之共生的Candidatus (Ca.) Cenarchaeum symbiosum同样具有较低的生长温度(约10–20)[6]。然而,随后基于Ca. C. symbiosum基因组的系统进化分析表明,这些中温泉古菌起源的时间早于泉古菌门和广古菌门的分化,应该代表一个新的古菌门,即奇古菌门(Thaumarchaeota)[7]。在最新的分类体系中,奇古菌门成员被归类为泉古菌门(Silva数据库)/热变形菌门(Thermoproteota;genome taxonomy database数据库)下的亚硝化球形菌纲(Nitrososphaeria)。然而,鉴于奇古菌门这一名称仍被广泛使用,且新的分类体系尚未被广泛接受,本文沿用奇古菌门这一名称。
奇古菌门在海洋和陆地环境中均有分布,但其优势类群构成不同的进化分支。海洋中奇古菌门的代表类群为Group I.1a,又称Marine Group I (MGI),而陆地/淡水类群更为多样,包括Group I.1b、I.1c、I.2和I.3等[8]。受河水径流等影响,近海特别是河口区域往往可检测到较高丰度的陆源类群[9]。在开放大洋区域,MGI在寡营养深海环境中的丰度高于表层海洋[2],其成员可通过氧化氨释放的能量固定CO2,主要营化能自养生活[10]。该类群固定的CO2也为黑暗无光深海中异养生物的生存提供了重要的碳源和能源,可贡献深海异养菌碳需求量的约0.1%–1.0%[11]。同时,MGI对海洋氮素的循环转化起关键作用,所有已知的海洋氨氧化古菌(ammonia-oxidizing archaea,AOA)都属于MGI。鉴于MGI的生态重要性,其一直是领域学者研究的焦点,不断有关于该类群的新的发现被报道出来(图 1)。早期国内对奇古菌门及氨氧化古菌的研究历史、多样性和生态功能已有较好的综述[12]。2020年,洪义国等对氨氧化古菌的氨氧化和碳固定途径和机制进行了介绍[13]。本文总结了近年来有关海洋中奇古菌门(主要是MGI类群)在分布特征、生理代谢和演化历史上的新结果和新发现。这些研究表明目前我们对奇古菌门的了解仍不全面,有待进一步探究。
![]() |
图 1 有关奇古菌门的重大发现时间轴 Figure 1 Timeline of significant discoveries in the Thaumarchaeota. |
1 海洋奇古菌门的多样性和分布规律
MGI是海洋中丰度最高的奇古菌门类群,其在真光层以下的海水中占主导地位,可占深海微生物细胞总量的35%–40%[2]。MGI主要包括4个属:Nitrosopumilus、Ca. Nitrosopelagicus、Ca. Nitrosomarinus和Ca. Cenarchaeum。其中前3个属均有纯培养或富集培养物,而Ca. Cenarchaeum是从海绵组织中发现和鉴定的类群,尚未获得培养。虽然Ca. Nitrosomarinus首次被报道时将其归类为一个新属,但Qin等近期基于基因组的系统发生分析表明,该属与Nitrosopumilus在进化上无法区分开,是Nitrosopumilus的异模式异名(heterotypic synonym)[14]。不同MGI种属在海水中的分布具有明显区别。例如,Nitrosopumilus主要分布于近海水体,而Ca. Nitrosopelagicus (water column A,WCA)则主要分布于大洋表层水体。深海中的MGI不仅数量高,而且种属组成显著区别于上层海洋,主导类群为尚未被培养的water column B (WCB)。WCB是整个深海水柱中的优势MGI类群,但在水深超过6 000 m的深渊海沟区域,一个特殊类群——深渊类群(hadal clade)的丰度显著升高[3, 15]。值得注意的是,深渊类群与Nitrosopumilus的亲缘关系更近,而并非在深海占优的WCB[15],其起源进化有待进一步探究。
除上述主导不同水层的MGI类群外,近期的研究发现海洋中还存在一些其他的具特殊代谢特征的奇古菌门类群。例如,Aylward等[16]与Reji等[17]分别在其研究中发现海洋中生活着一种基因组较小、缺乏氨氧化能力的化能异养类群(具糖酵解、脂肪酸β-氧化途径和三羧酸循环),可能使用二磷酸核酮糖羧化酶(RuBisCO)进行CO2的补偿吸收。该类群与典型的化能自养型MGI具有显著区别,代表与氨氧化古菌不同的进化分支,其主要分布在深海,广泛存在于全球范围中层海洋(mesopelagic,200–1 000 m),丰度可达MGI氨氧化古菌的6%[16]。除自由生活的奇古菌外,Wang等[18]在采集自西太平洋深海的海绵中获得了3个奇古菌门所属基因组,其中1个代表潜在的新种,具特殊的共生附着和与宿主互作相关的基因。Zou等[19]在中国九龙江口发现了Nitrosopumilus的1个新种,命名为Ca. Nitrosopumilus aestuariumsis。其基因组编码多个与糖代谢、重金属转运和趋化运动等相关的蛋白,可能是其适应生存环境的重要遗传基础。
奇古菌门MGI不仅存在于海水,也分布于海洋沉积物中,这与同期被发现的仅生活在海水中的广古菌门Group II (MGII)类群截然不同。MGI在近海和大洋沉积物中均有分布,并具有较高丰度。例如,我国边缘海表层沉积物中MGI的平均丰度占总古菌的60%以上[20];在大西洋等不同纬度(34°N–79°N)的深海表层沉积物中,MGI在古菌中的平均比重约为53%[21]。不同类型海洋沉积物中的MGI丰度与氧含量显著相关,高含氧量沉积物显著高于低氧含量沉积物[22]。在位于北大西洋的寡营养含氧沉积物中,MGI的相对丰度可达总微生物的80%,超过细菌成为最优势类群[23]。虽然MGI喜好相对有氧的环境,但诸多证据显示其也可存在于厌氧沉积物中,如Jorgensen等[24]发现其在挪威–格陵兰深海厌氧沉积层中可占总微生物丰度的半数以上。另外,Zhao等[25]近期从大西洋中脊侧翼的玄武岩地壳层中检测到了MGI,并通过模型预测其可介导活跃的硝化反应。
MGI的不同类群具有明显的生境偏好性,代表不同的生态型,基于16S rRNA基因的系统进化分析显示,海水和沉积物中的MGI属于不同的进化分支[26]。与海水类似,近海沉积物中的MGI主要来自于Nitrosopumilus类群。而在深海沉积物中,绝大多数类群无法被划分到上述的已知属,只暂时命名为upsilon、eta、zeta等亚类群(基于16S rRNA基因的分类,其中Nitrosopumilus为alpha亚类、Ca. Nitrosopelagicus为beta亚类、WCB为gamma亚类)。总体来说,沉积物中MGI类群的多样性高于海水中的浮游类群,但目前我们对底栖类群的了解十分有限。Kerou等[27]近期首次从深海沉积物(> 2 000 m水深)中获得了upsilon和eta等类群的基因组序列,发现它们具有以甲酸、乳酸和3-氨基丁酰基-CoA等发酵产物作为额外碳源的异养潜能。这些基因组的获得对进一步明确深海沉积物奇古菌门类群的系统发生、生境迁移和环境适应具有重要意义。
2 个体和基因水平的环境适应策略奇古菌门具有很强的环境适应能力,也正因此其成员遍布从低温到高温[28]、从淡水到高盐[29],从酸性到碱性[30]的各种不同生境。对盐度适应能力的差异是陆地与海洋奇古菌类群生态位分化的主要原因[31]。在海洋中,MGI对深海生境的偏好可能源于其对光的敏感性。研究表明,在实验室内光照可显著抑制MGI所属菌株的生长[32],且在野外光控实验中,增强光照可显著降低海水中MGI驱动的氨氧化反应速率[33]。对于光照是起直接作用,还是通过诱发光化学反应产生活性氧分子从而发挥间接作用,目前尚存有一定争议[34]。光照也一定程度上引发了MGI在表层和深层海洋间的生态分化,参与光损伤DNA修复的光裂解酶几乎仅存在于表层类群,而在深海类群中无法检测到[35]。在表层海洋占优的富集菌株Ca. Nitrosopelagicus brevis CN25即拥有2个脱氧核糖二嘧啶光裂解酶(deoxyribodipyrimidine photolyases)编码基因[36]。另外,铵浓度也是海洋MGI分布的重要影响因素,表层类群喜好高铵生境,而深海类群则偏好低铵生境[37]。一项最新的研究表明,相比表层类群,深海MGI的铵转运蛋白(ammonium transpoter,Amt)可通过放大跨膜电势从而提高对底物的亲和力[38]。事实上,MGI对氨的高亲和力是其比氨氧化细菌在海洋中更占优势的最主要原因。
除满足对氨的摄取需求,深海中的MGI也需面对高静水压力的挑战,它们的基因组中具有合成一些特殊渗透压保护剂如二肌肌醇磷酸(di-myo-inositol phosphate)和甘氨酸的编码基因,可能用于抵抗高压胁迫。ATP合成酶(ATPase)似乎也与深海,特别是深渊MGI的高压适应有关[15]。近海/表层海洋中的MGI (Nitrosopumilus和Ca. Nitrosopelagicus)的ATP合成酶主要为A型,而WCB类群则拥有V型ATP合成酶[14]。有趣的是,深渊MGI具有2个ATP合成酶基因拷贝,分别为A型和V型,前者在MGI中保守存在,而后者可能经过水平基因转移从广古菌门成员处获得,二者分别通过形成H+和Na+跨膜梯度进行ATP的合成[15]。Wang等发现酸性土壤中的奇古菌门成员也同时具有2种类型的ATP合成酶,其中的V型合成酶已经实验证明可通过外排质子提高大肠杆菌对酸性环境的适应[39]。然而,对V型ATP合成酶对高压保护的具体机制目前尚不清楚。
MGI是需氧型微生物,其分布也与氧的浓度密切相关。在全球范围海洋沉积物中,氧含量是MGI相对丰度的决定性影响因素[22]。MGI虽喜好有氧环境,但表现出较强的低氧耐受性。其代表菌株Nitrosopumilus maritimus SCM1的氧半饱和常数为3.91 µmol/L,可在低至约1 µmol/L的溶解氧环境中生长,大气氧水平甚至可一定程度抑制该菌株的生长[40–41]。对低氧的耐受性为MGI在海洋溶解氧最小值区(oxygen minimum zone,OMZ)氧跃层中的高丰度和高活性提供了竞争优势[42]。实际上,通过同位素示踪手段实地测量的氧半饱和常数甚至更低[低至(0.33±0.13) µmol/L][43]。OMZ中的MGI可通过硝化作用为厌氧氨氧化和反硝化细菌提供底物,并可与厌氧氨氧化细菌竞争氨底物,在该区域的氮素循环过程中发挥重要作用。
3 海洋奇古菌门的代谢特征与生态作用化能自养是海洋奇古菌门的主要营养类型。奇古菌门使用一种经过修饰的3-羟基丙酸/4-羟基丁酸(3-hydroxypropionate/4-hydroxybutyrate,HP/HB)途径进行CO2的固定。简而言之,该途径将乙酰CoA和2分子碳酸氢根转化为3-羟基丙酸,之后生成琥珀酰CoA,再由琥珀酰CoA转变为4-羟基丁酸,最终生成2分子乙酰CoA。3-羟基丙酸和4-羟基丁酸生成后的继续转化由2种不同的CoA连接酶介导发生,它们均消耗ATP产生二磷酸腺苷(adenosine diphosphate,ADP)。相比之下,在典型的未经修饰的HP/HB途径中(主要存在于好氧的泉古菌门类群),催化这一反应的酶消耗ATP的产物为单磷酸腺苷(adenosine monophosphate,AMP)。因此,经过修饰的HP/HB途径降低了其每循环一次所需消耗的高能磷酸键的数量,使其成为有氧条件下能量效率最高的碳固定途径[44]。目前,该途径仅在奇古菌门成员中发现,这也是奇古菌门MGI得以在寡营养的深海环境中占据优势的重要原因。作为深海初级生产力的重要贡献者[45],奇古菌门在驱动碳元素的循环中发挥重要作用。据估计,全球深海中的MGI每年可固定约3.3×1013 mol碳[46],其中4%–50%可释放到周围水体环境,占深海异养菌碳需求的0.1%–1.0%[11]。
CO2固定是耗能反应,而奇古菌门主要以氨作为能量来源,在有氧条件下将氨氧化为亚硝酸盐。氨氧化反应主要分为2个步骤,首先在氨单加氧酶(ammonia monooxygenase,AMO)的作用下产生羟胺。AMO为异源三聚体复合物,由3个亚基构成,分别由amoA、amoB和amoC编码,这3个基因在氨氧化细菌和氨氧化古菌中均存在,但后者具有一个额外的功能尚不清楚的amoX基因[47]。amoA已被广泛应用于不同环境中氨氧化微生物的多样性和分布规律研究[9, 48–49]。氨氧化反应的第二步是羟胺的转化,但目前该反应的具体发生机制尚存在争议。在氨氧化细菌中,羟胺在羟胺脱氢酶(hydroxylamine oxidoreductase,HAO)的作用下被氧化为NO[50],但NO的后续转化过程仍不清晰。有研究推测,含铜亚硝酸盐还原酶(nitrite reductase,NirK)及其同源蛋白亚硝基花青素(nitrosocyanin,NcyA)可能参与NO的转化,但这2种酶的编码基因并非保守存在于所有氨氧化细菌中,因此其作用有待进一步探究。氨氧化古菌中的羟胺转化过程更加模糊不清。首先,氨氧化古菌中不存在羟胺脱氢酶,羟胺的氧化机制尚不清楚,并且由于该酶的缺乏,NO可能并非由羟胺转化而来。其次,NO在氨氧化古菌中的产生和消耗紧密衔接,添加NO清除剂可显著抑制氨氧化古菌而非氨氧化细菌的活性,因此NO对氨氧化古菌来说是一种更为重要的中间代谢产物[51]。据此推测,羟胺和NO可能作为共同底物被转化为亚硝酸盐,而生成的部分亚硝酸盐在NirK的催化下被还原成NO,从而使反应循环进行[51–52],但这一推测尚需实验证实。尽管细菌和古菌均能介导氨的氧化,但奇古菌门MGI因具有比氨氧化细菌更高的氨亲和力,成为大洋寡营养环境中最具优势的氨氧化微生物[53]。多项研究表明海水中奇古菌amoA基因的丰度与氨氧化速率呈显著正相关[54–56],表明该门成员是海洋中氨氧化反应的主要执行者,它们将再生的氨态氮转化为氧化形式的硝态氮,活跃地驱动着海洋中氮元素的循环转化[53, 57]。
氨氧化反应中还会产生另外一种重要的中间代谢产物——N2O。由于N2O是一种重要的温室气体,效应比CO2更为显著,因此其产生和消耗过程被广为关注。在氨氧化细菌中,N2O可在硝化反硝化过程(nitrifier denitrification,即氨氧化产生的亚硝酸盐经NO被还原成N2O)及由细胞色素P460催化的厌氧羟胺氧化反应中产生。相比之下,氨氧化古菌中没有执行硝化反硝化过程的相关基因,也没有酶学证据表明其可将羟胺氧化为N2O。它们介导的N2O产生可能由中间代谢产物羟胺、亚硝酸盐和NO经非生物过程转化而来[52]。氨氧化古菌产生的N2O可占海洋硝化作用来源N2O总量的1.7%–100.0%[58],如此大的变化范围可能与研究区域及环境因子如溶解氧的差异有关[59–60]。Qin等对2个MGI菌株的研究发现,低氧浓度可显著增强其N2O的产生量[41]。因此,奇古菌门MGI被认为是海洋特别是OMZ区域N2O的重要来源[61]。除了产生N2O,一项最新的研究发现,菌株N. maritimus SCM1可在氧含量低至纳摩尔级别的条件下自行产生O2和N2,反应的中间产物为NO和N2O。由于缺乏生化证据,作者推测NO可通过歧化反应产生O2和N2O,后者进一步被还原为N2[62]。这一发现为好氧的奇古菌门类群在低氧环境中的生存提供了合理解释,同时表明奇古菌门介导的N2产生可能是厌氧环境中除反硝化和厌氧氨氧化外,脱氮作用的一条新途径。
尽管氨的氧化为奇古菌门提供了重要能量来源,但海洋尤其是深海中的氨氧化速率往往较低,使得仅靠氨氧化反应提供的能量可能无法长期维持奇古菌门处于较高的丰度水平,因此海洋奇古菌门还可能具有其他的物质和能量来源[63]。虽然绝大多数奇古菌门菌株均为专性自养菌,但基于底物和脂质同位素标记的实验证实奇古菌门细胞可摄入氨基酸、乙酸、尿素等有机质进行自身细胞合成[64–65],深海奇古菌门MGI的脂质碳也有约20%可能来自外源有机物质[66]。此外,2个Nitrosopumilus属的纯培养菌株被发现需要α-酮戊二酸等小分子有机质才能进行正常生长[32],尽管有研究指出α-酮戊二酸并非碳源,其生长促进作用源自于对过氧化物的清除[67]。此外,研究显示MGI可直接利用氰酸盐和尿素作为能源和氮源[68],但对氨基酸和有机胺等其他含氮有机物的利用能力相对有限,需要异养微生物的辅助才能进行[69]。对氰酸盐的利用已在N. maritimus SCM1菌株中得到验证[68],但在其基因组中未寻找到已知的氰化酶编码基因,暗示其通过未知的途径利用氰酸盐。另外,在九龙江口发现的Ca. Nitrosopumilus aestuariumsis被发现具有降解几丁质的潜能[19]。这些研究表明许多奇古菌门类群可能营混合营养(mixotrophy)生活以增强自身竞争优势。
奇古菌门在利用碳源的同时,可通过自身代谢释放一系列具不同反应活性的有机物,尤以含氮组分为主,包括氨基酸、胸腺嘧啶和B族维生素等易降解有机质。如上所述,奇古菌门释放的溶解有机质可贡献深海异养菌碳需求量的约0.1%–1.0%[11]。同时,奇古菌门释放的有机质分子中还含有约30%的富含羧基的脂环族化合物(carboxyl-rich alicyclic molecules,CRAM)[11]。CRAM是惰性有机物的代表,表明该门可通过微型生物碳泵作用贡献惰性有机碳库,促进碳在海洋中的长期存储[70]。除上述的基础碳、氮代谢外,奇古菌门还具有一些特殊的生理特征,例如能够合成维生素B12。在海洋中仅奇古菌门和特定异养细菌具有维生素B12合成能力,而所有生物却需依赖该物质进行正常生长。奇古菌门在深海具维生素B12合成潜力的微生物中占比30%–80%,是维生素B12的主要产生源,为深海中该物质缺陷型类群提供了基础营养成分[71]。奇古菌门成员还能够合成含C–P键的甲基膦酸,可作为许多海洋细菌类群在磷酸盐限制条件下的重要磷源物质[72]。细菌对甲基膦酸的分解能够生成甲烷,这可能是上层海洋中甲烷的重要来源,具有重要的气候效应[73]。反过来,由于大多数奇古菌门成员对过氧化氢十分敏感,因此其生长需要共存的异养细菌分泌酶以清除环境中的过氧化氢[67]。这些结果表明,奇古菌门与海洋中的其他微生物类群间具有复杂的代谢相互作用,对生态系统的稳定运转具有重要意义。
4 海洋奇古菌门的演化历程奇古菌门在海洋、陆地等不同环境中广泛存在,其生境迁移和演化历史也得到了领域学者的广泛关注。祖先重建分析表明奇古菌门的祖先是一类嗜热、好氧、营自养生活的类群[74],最早可追溯到约21亿年前的古元古代中期[75],而其具有氨氧化能力的分支出现于约12亿年前的中元古代时期[75]。当时罗迪尼亚(Rodinia)超大陆发生聚合,并伴随强烈的弧火山作用和热事件,为氨氧化古菌的出现提供了良好的环境条件,而热泉被认为是氨氧化古菌的起源地。罗迪尼亚超大陆在约9亿年前解体,地球随之进入冰川盛行的“雪球地球”时期,而后又经历短暂的“温室地球”时期。在此阶段,氨氧化古菌由热泉向周围低温环境迁移并发生适应性进化,在约7亿年前演化出可耐受低温的土壤类群。伴随海水的不断氧化,奇古菌门在大约5亿年前由陆地进入海洋环境,此后,由于深海氧含量持续升高,铵盐浓度降低,其在约3亿年前快速扩散到深海环境,衍生出对氨有高亲和力的类群[75]。奇古菌门由陆地向海洋的生境扩张可能并非一次性完成,而是至少经历了1次淡水到海洋和2次海洋到淡水的进化事件[31]。对Nitrosarchaeum的研究也表明,虽然其首个纯菌株Nitrosarchaeum koreense分离自农业土壤[76],但系统进化分析表明其可能是由近海/河口类群演化而来的[27],从而为奇古菌门从海洋向陆地生境的反向迁移提供了证据。值得注意的是,使用不同的分析模型,Ren等[77]推断奇古菌门由陆地向海洋及由浅海向深海分化的发生时间更为久远,分别为约10亿年和6.5亿年。这表明不同分析模型的使用会对推断结果产生一定影响。
5 海洋奇古菌门的培养因奇古菌门的化能自养和慢速生长等特性,难以在实验室条件下获得其成员的培养物,一定程度上限制了对其生理代谢和生态功能的了解。世界上第一个奇古菌门的纯培养株N. maritimus SCM1是从热带水族馆鱼缸的碎石中分离得到的[10]。在此之前,研究发现MGI古菌在自然硝化环境和硝化菌的富集培养物中占主导地位,预示MGI可能具有氨氧化活性[78]。2004年,Venter等[79]从海水宏基因组中拼接得到的MGI基因片段中发现了amoA基因,为奇古菌门的氨氧化能力提供了遗传证据。在此基础上,美国华盛顿大学的David A. Stahl教授团队建立了一种以氯化铵为电子供体、碳酸氢盐为唯一碳源的自养培养体系,在首先获得了MGI的富集培养物后,通过稀释性连续传代最终获得了奇古菌门的首个纯培养菌株,并且发现该菌株可氧化氨同时固定CO2,有机物的添加甚至可抑制该菌株的生长[10]。
采用同样的培养策略并加以修订,若干个海洋和陆地来源的奇古菌门菌株相继被培养出来(表 1)。例如,Park等采用常规培养基(synthetic Crenarchaeota media)无法获得奇古菌的富集物,但通过在培养基中额外添加硫代硫酸盐从而建立氨氧化古菌和硫氧化细菌的共培养体系,成功从近海沉积物中获得了2个MGI的富集培养物,作者猜测硫氧化细菌可能提供MGI必须的生长因子或通过呼吸作用产生低氧环境以提升MGI的活性[80]。通过调整培养基缓冲液(碳酸氢盐或HEPES)和降低氯化铵浓度,Qin等分离纯化到若干新的Nitrosopumilus属菌株(表 1),发现了以尿素为底物的氮获取方式以及小分子有机质如丙酮酸等对生长的促进作用,表明MGI可能营混合营养生活[32, 81]。虽然这些小分子有机质主要是用于清除环境中的H2O2而并非作为碳源,但MGI对尿素及氰酸盐[68]的利用表明其具有一定的异养能力。这些研究表明,奇古菌门有氧呼吸产生的过氧化物可能会抑制其自身生长,而在低氧环境下该抑制作用可有所缓解,这为解释其在海洋低氧环境的高丰度提供了新的思路。总之,对奇古菌门的培养需要盐度、铵盐、溶解氧、有机质等多重环境因素的综合考量。
Habitat | AOA strain | Source | Proportion/% | T/℃ | pH | References |
Marine | Ca. Nitrosopumilus koreensis AR1 | Marine sediment (Svalbard, the Arctic Circle) | > 80 | 25 | 8.0–8.2 | [80] |
Ca. Nitrosopumilus sediminis AR2 | Marine sediment (Svalbard, the Arctic Circle) | > 80 | 25 | 8.0–8.2 | [80] | |
Nitrosopumilus maritimus SCM1 | Tropical marine aquarium | 100 | 32 | 7.3 | [10, 81] | |
Ca. Nitrosoarchaeum limnia SFB1 | San Francisco Bay Estuary sediment | 84 | 22 | N/A | [82] | |
Nitrosopumilus cobalaminigenes HCA1 | The Puget Sound Estuary system 50 m depth marine water | 100 | 25 | 7.3 | [32, 81] | |
Nitrosopumilus ureiphilus PS0 | Puget Sound surface sediment | 100 | 26 | 6.8 | [32, 81] | |
Ca. Nitrosoarchaeum limnia BG20 | San Francisco Bay Estuary sediment | N/A | N/A | N/A | [83] | |
Ca. Nitrosopumilus salaria BD31 | San Francisco Bay Estuary sediment | N/A | N/A | N/A | [84] | |
Ca. Nitrosopumilus maritimus NAO2 | Surface ocean water (the Benguela upwelling system) | 100 | 22 | N/A | [85] | |
Ca. Nitrosopumilus maritimus NAO6 | Surface ocean water (the Benguela upwelling system) | 100 | 27 | N/A | [85] | |
Ca. Nitrosopelagicus brevis CN25 | 25 depth marine water in North Eastern Pacific | 90–95 | 22 | N/A | [36, 86] | |
Ca. Nitrosopelagicus brevis CN75 | 75 depth marine water in North Eastern Pacific | N/A | 22 | N/A | [86] | |
Ca. Nitrosopelagicus brevis CN150 | 150 depth marine water in North Eastern Pacific | N/A | 13 | N/A | [86] | |
Nitrosopumilus piranensis D3C | Northern Adriatic Sea from approx. 0.5 m depth | 100 | 32 | 7.1–7.3 | [87–88] | |
Nitrosopumilus adriaticus NF5 | Northern Adriatic Sea from approx. 0.5 m depth | 100 | 30–32 | 7.1 | [87–88] |
|
Nitrosopumilus maritimus DDS1 | 200 m depth of seawater | 100 | 25 | 7.5 | [67] | |
Ca. Nitrosomarinus catalina SPOT01 | San Pedro Ocean Time-Series seawater | ≥97 | 23 | N/A | [89] | |
Nitrosopumilus oxyclinae HCE1 | 17 m depth marine water in Hood Canal | 100 | 25 | 7.3 | [81] | |
Nitrosopumilus zosterae NM25 | Shimoda coastal eelgrass zone sediment | 100 | 30 | 7.1 | [90–91] | |
Terrigenous | Ca. Nitrosocaldus yellowstonii HL72 | Hot spring sediment | > 90 | 65–72 | N/A | [28] |
Nitrososphaera viennensis EN76 | Garden soil | 100 | 42 | 7.5 | [92–93] | |
Ca. Nitrososphaera sp. EN123 | Garden soil | > 75 | 37 | 7.5 | [92] | |
Nitrosoarchaeum koreensis MY1 | Agricultural soil | 100 | 25 | 7.0 | [76, 94] | |
Ca. Nitrososphaera sp. JG1 | Agricultural soil | 90 | 37 | 6.5 | [95] | |
Ca. Nitrosotenuis uzonensis N4 | Kamchatka peninsula (Russia) hot spring | 50 | 46 | 7.6–7.8 | [96] | |
Ca. Nitrososphaera evergladensis SR1 | Everglades soil | 50 | N/A | N/A | [97] | |
Ca. Nitrosotenuis chungbukensis MY2 | Agricultural soil | 91 | 30 | 7.0–7.5 | [98] | |
Ca. Nitrosotalea devanaterra Nd1 | Acid agricultural soil | 100 | 25 | 5.0 | [99–100] | |
Ca. Nitrosotalea sp. Nd2 | Acidic paddy field soil | 100 | 35 | 5.0 | [100] | |
Ca. Nitrososphaera gargensis Ga9.2 | Microbial mats (Garga hot spring) | 100 | 46 | 8.2 | [101–102] | |
Ca. Nitrosotenuis cloacae SAT1 | Activated sludge (wastewater treatment plant) | 91 | 29 | 6.5 | [103] | |
Ca. Nitrosocosmicus oleophilus MY3 | Coal tar-contaminated sediment | > 99 | 30 | 6.5–7.0 | [104] | |
Ca. Nitrosocosmicus franklandus C13 | Arable soil | 100 | 40 | 7.5 | [105] | |
Ca. Nitrosocosmicus exaquare G61 | Biofilm (wastewater treatment plant) | 99 | 33 | 8.5 | [106] | |
Ca. Nitrososphaera sp. OTU-8 | Wastewater treatment plant | 91 | 30 | 7.5 | [107] | |
Ca. Nitrosocaldus islandicus | Hot spring biofilm | 85 | 60 | 7.0–8.0 | [108] | |
Ca. Nitrosocaldus cavascurensis SCU2 | Hot spring mud | 92 | 68 | N/A | [109] | |
Ca. Nitrosotenuis aquarius AQ6F | Freshwater aquarium biofilter | 97–99 | 33 | 8.5 | [110] | |
Ca. Nitrosocosmicus agrestis SS | Vegetable soil | 92–94 | 30 | 7.0 | [111–112] | |
Ca. Nitrosocosmicus sp. HNSD | Paddy soil | 91 | 30 | 7.0 | [112] | |
Ca. Nitrosocosmicus sp. HNBJ | Banana soil | 89 | 30 | 7.0 | [112] | |
N/A: no report in the related reference. |
目前所报道的奇古菌门菌株或富集培养物都是在液体培养基中生长并维持的。液体培养方式便于收集菌体,监控生长、底物消耗和产物生成等过程,但难以构建遗传操作体系从而解析分子机制。而在固体培养基中获得菌株的单克隆菌落,对深入理解奇古菌门的代谢机制具有重要意义。2015年,Chu等[113]通过穿刺培养方法,证实了奇古菌门菌株可以在低熔点琼脂糖中生长和维持,但仅观测到连续的细胞团块,而并非单一菌落。2022年,Klein等[114]进一步改善了培养条件,他们使用一种液固联合培养法成功对奇古菌门的3个纯培养菌株进行了培养,并成功获得了单一菌落。该方法使用的培养基分为2层,其中下层为半固体培养基,而上层为等体积的液体培养基。此研究为富集纯化奇古菌所属菌株,乃至其他难培养微生物类群的纯培养提供了新的思路。
6 研究展望如上所述,目前我们已对海洋奇古菌门类群的多样性、分布、代谢和功能有了许多认识,它们广泛分布于海洋的各个角落,响应环境变化衍生出多个不同的进化分支,通过氧化氨和固定CO2,为真光层中的浮游藻类提供硝酸盐,为深海中异养微生物提供有机质,因而在海洋元素的地球化学循环中发挥关键作用。然而,目前对海洋奇古菌门(MGI)的研究仍存在着许多重要问题,其解决有待于进一步开展更多更细致的工作。
首先,自MGI发现以来,近30年围绕该类群的研究极大地拓展了对其代谢特性的认识,从氧化氨为亚硝酸盐,产生NO和N2O,合成膦酸类化合物和维生素B12,到最新发现的具有产O2和N2的活性,关于该类群的新发现不断涌现。因此,未来的工作应进一步聚焦MGI的生理代谢特征,以增进对其驱动的生物地球化学循环的理解。另一方面,虽然MGI的许多代谢活性已得到实验证实,但其相应的遗传基础和分子机制仍未阐明,例如羟胺的氧化和O2的产生等,因此对该类群遗传机制的解析有待加强。
其次,已有研究报道海洋中的浮游和底栖MGI代表不同的进化分支[24],但现有针对MGI的研究多数聚焦于水体,而对同样具有高丰度和多样性的近海和大洋沉积物中的MGI知之甚少。海洋沉积物中的MGI物种多样性显著高于水体环境,可能衍生出特殊的物质利用能力,比如吸收和降解有机质的异养代谢[19, 32],但目前罕有关于深海沉积物中MGI代谢特征的相关报道。因此,后续研究应更多关注海洋沉积物中的MGI类群,有望进一步扩充其系统发育多样性,深化对该类群生理代谢和生态功能的认知。
再次,已知MGI与许多海洋微生物间形成了基于代谢偶联的互惠共生关系,但海洋生态系统中的代谢过程是一个复杂的网络体系,可能包括更为丰富的代谢形式,涉及更多类群的参与。解析高阶层次的涉及MGI的物种互作和代谢交流对深入理解该类群的生态角色和环境效应具有重要科学意义。
最后,MGI的培养依然是亟需攻克的难题。以上所有工作的开展和科学问题的解答均有赖于针对MGI纯培养菌株的室内验证实验。基于基因amoA的系统进化分析表明,目前已有纯培养物的分支仅占MGI多样性的一小部分[115],其中以高丰度生存于深海水体中MGI类群仍未获得纯培养。在此背景下,进一步从不同环境中获得更多的纯培养菌株迫在眉睫。未来的研究需进一步明确MGI的营养缺陷特性,有针对性地改良培养基,并结合基因组学特性指导培养基的配制,逐步建立不同MGI类群通用的富集和纯培养体系。
[1] | Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS, 1977, 74(11): 5088-5090. DOI:10.1073/pnas.74.11.5088 |
[2] | Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 2001, 409(6819): 507-510. DOI:10.1038/35054051 |
[3] | Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Ken TK. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. PNAS, 2015, 112(11): E1230-E1236. |
[4] | DeLong EF. Archaea in coastal marine environments. PNAS, 1992, 89(12): 5685-5689. DOI:10.1073/pnas.89.12.5685 |
[5] | Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature, 1992, 356(6365): 148-149. DOI:10.1038/356148a0 |
[6] | Preston CM, Wu KY, Molinski TF, DeLong EF. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov.. PNAS, 1996, 93(13): 6241-6246. DOI:10.1073/pnas.93.13.6241 |
[7] | Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 2008, 6(3): 245-252. DOI:10.1038/nrmicro1852 |
[8] | Jurgens G, Glöckner FO, Amann R, Saano A, Montonen L, Likolammi M, Münster U. Identification of novel archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization1. FEMS Microbiology Ecology, 2000, 34(1): 45-56. |
[9] | Liu YY, Liu JW, Yao P, Ge TT, Qiao YL, Zhao MX, Zhang XH. Distribution patterns of ammonia-oxidizing archaea and bacteria in sediments of the eastern China marginal seas. Systematic and Applied Microbiology, 2018, 41(6): 658-668. DOI:10.1016/j.syapm.2018.08.008 |
[10] | Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058): 543-546. DOI:10.1038/nature03911 |
[11] | Bayer B, Hansman RL, Bittner MJ, Noriega-Ortega BE, Niggemann J, Dittmar T, Herndl GJ. Ammonia-oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environmental Microbiology, 2019, 21(11): 4062-4075. DOI:10.1111/1462-2920.14755 |
[12] |
Zhang LM, He JZ. A novel archaeal phylum: Thaumarchaeota—a review. Acta Microbiologica Sinica, 2012, 52(4): 411-421.
(in Chinese) 张丽梅, 贺纪正. 一个新的古菌类群——奇古菌门(Thaumarchaeota). 微生物学报, 2012, 52(4): 411-421. |
[13] |
Hong YG, He X, Wu JP, Liu XH. Carbon-nitrogen biogeochemical cycle processes driven by ammonia- oxidizing archaea in marine environment. Journal of University of Chinese Academy of Sciences, 2020, 37(4): 433-441.
(in Chinese) 洪义国, 何翔, 吴佳鹏, 刘晓晗. 海洋氨氧化古菌及其驱动的碳氮生物地球化学循环过程研究进展. 中国科学院大学学报, 2020, 37(4): 433-441. |
[14] | Qin W, Zheng Y, Zhao F, Wang YL, Urakawa H, Martens-Habbena W, Liu HD, Huang XW, Zhang XX, Nakagawa T, Mende DR, Bollmann A, Wang BZ, Zhang Y, Amin SA, Nielsen JL, Mori K, Takahashi R, Virginia Armbrust E, Winkler MKH, DeLong EF, Li M, Lee PH, Zhou JZ, Zhang CL, Zhang T, Stahl DA, Ingalls AE. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. The ISME Journal, 2020, 14(10): 2595-2609. DOI:10.1038/s41396-020-0710-7 |
[15] | Zhong HH, Lehtovirta-Morley L, Liu JW, Zheng YF, Lin HY, Song DL, Todd JD, Tian JW, Zhang XH. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome, 2020, 8(1): 78. DOI:10.1186/s40168-020-00849-2 |
[16] | Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems, 2020, 5(3): e00415-e00420. |
[17] | Reji LT, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. The ISME Journal, 2020, 14(8): 2105-2115. DOI:10.1038/s41396-020-0675-6 |
[18] | Wang P, Li MC, Dong L, Zhang C, Xie W. Comparative genomics of Thaumarchaeota from deep-sea sponges reveal their niche adaptation. Frontiers in Microbiology, 2022, 13: 869834. DOI:10.3389/fmicb.2022.869834 |
[19] | Zou DY, Wan R, Han LL, Xu MN, Liu Y, Liu HB, Kao SJ, Li M. Genomic characteristics of a novel species of ammonia-oxidizing archaea from the Jiulong River Estuary. Applied and Environmental Microbiology, 2020, 86(18): e00736-20. |
[20] | Liu JW, Zhu SQ, Liu XY, Yao P, Ge TT, Zhang XH. Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. The ISME Journal, 2020, 14(6): 1463-1478. DOI:10.1038/s41396-020-0621-7 |
[21] | Danovaro R, Molari M, Corinaldesi C, Dell'Anno A. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Science Advances, 2016, 2(4): e1500961. DOI:10.1126/sciadv.1500961 |
[22] | Hoshino T, Doi H, Uramoto GI, Wörmer L, Adhikari RR, Xiao N, Morono Y, D'Hondt S, Hinrichs KU, Inagaki F. Global diversity of microbial communities in marine sediment. PNAS, 2020, 117(44): 27587-27597. DOI:10.1073/pnas.1919139117 |
[23] | Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, Spivack AJ, Smith DC, Pockalny R, Murray RW, D'Hondt S, Orsi WD. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 2019, 5(6): eaaw4108. DOI:10.1126/sciadv.aaw4108 |
[24] | Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, Ovreås L, Steen IH, Thorseth IH, Pedersen RB, Schleper C. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. PNAS, 2012, 109(42): E2846-E2855. |
[25] | Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. mSystems, 2020, 5(2): e00758-19. |
[26] | Liu JW, Yu SL, Zhao MX, He BY, Zhang XH. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiology Ecology, 2014, 90(2): 424-435. |
[27] | Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jørgensen SL, Schleper C. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. The ISME Journal, 2021, 15(9): 2792-2808. DOI:10.1038/s41396-021-00962-6 |
[28] | De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology, 2008, 10(3): 810-818. DOI:10.1111/j.1462-2920.2007.01506.x |
[29] | Pachiadaki MG, Yakimov MM, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. The ISME Journal, 2014, 8(12): 2478-2489. DOI:10.1038/ismej.2014.100 |
[30] | Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, MacQueen DJ. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. PNAS, 2015, 112(30): 9370-9375. DOI:10.1073/pnas.1419329112 |
[31] | Ren ML, Wang JJ. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. The ISME Journal, 2022, 16(6): 1491-1501. DOI:10.1038/s41396-022-01199-7 |
[32] | Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust EV, Stahl DA. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS, 2014, 111(34): 12504-12509. DOI:10.1073/pnas.1324115111 |
[33] | Horak REA, Qin W, Bertagnolli AD, Nelson A, Heal KR, Han H, Heller M, Schauer AJ, Jeffrey WH, Armbrust EV, Moffett JW, Ingalls AE, Stahl DA, Devol AH. Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnology and Oceanography, 2018, 63(2): 741-757. DOI:10.1002/lno.10665 |
[34] | Liu Q, Tolar BB, Ross MJ, Cheek JB, Sweeney CM, Wallsgrove NJ, Popp BN, Hollibaugh JT. Light and temperature control the seasonal distribution of Thaumarchaeota in the South Atlantic bight. The ISME Journal, 2018, 12(6): 1473-1485. DOI:10.1038/s41396-018-0066-4 |
[35] | Luo HW, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, Hollibaugh JT. Single-cell genomics shedding light on marine Thaumarchaeota diversification. The ISME Journal, 2014, 8(3): 732-736. DOI:10.1038/ismej.2013.202 |
[36] | Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, Yang Y, Orsi WD, Moran DM, Saito MA. Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean. PNAS, 2015, 112(4): 1173-1178. DOI:10.1073/pnas.1416223112 |
[37] | Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environmental Microbiology, 2013, 15(5): 1647-1658. DOI:10.1111/j.1462-2920.2012.02801.x |
[38] | Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biology, 2022, 12(7): 220041. DOI:10.1098/rsob.220041 |
[39] | Wang BZ, Qin W, Ren Y, Zhou X, Jung MY, Han P, Eloe-Fadrosh EA, Li M, Zheng Y, Lu L, Yan X, Ji JB, Liu Y, Liu LM, Heiner C, Hall R, Martens-Habbena W, Herbold CW, Rhee SK, Bartlett DH, Huang L, Ingalls AE, Wagner M, Stahl DA, Jia ZJ. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. The ISME Journal, 2019, 13(12): 3067-3079. DOI:10.1038/s41396-019-0493-x |
[40] | Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature, 2009, 461(7266): 976-979. DOI:10.1038/nature08465 |
[41] | Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E, Ingalls AE, Stahl DA. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environmental Microbiology Reports, 2017, 9(3): 250-256. DOI:10.1111/1758-2229.12525 |
[42] | Lam P, Lavik G, Jensen MM, Van De Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. PNAS, 2009, 106(12): 4752-4757. DOI:10.1073/pnas.0812444106 |
[43] | Bristow L, Dalsgaard T, Tiano L, Mills DB, Ulloa O, Canfield D, Revsbech N, Thamdrup B. High sensitivity of ammonia and nitrite oxidation rates to nanomolar oxygen concentrations. Mineralogical Magazine, 2013, 77(5): 775. |
[44] | Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Von Borzyskowski LS, Erb TJ, Stahl DA, Berg IA. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. PNAS, 2014, 111(22): 8239-8244. DOI:10.1073/pnas.1402028111 |
[45] | Yakimov MM, Cono VL, Smedile F, DeLuca TH, Juárez S, Ciordia S, Fernández M, Albar JP, Ferrer M, Golyshin PN, Giuliano L. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (central Mediterranean Sea). The ISME Journal, 2011, 5(6): 945-961. DOI:10.1038/ismej.2010.197 |
[46] | Wuchter C, Abbas B, Coolen MJL, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damsté JS. Archaeal nitrification in the ocean. PNAS, 2006, 103(33): 12317-12322. DOI:10.1073/pnas.0600756103 |
[47] | Tolar BB, Herrmann J, Bargar JR, Van Den Bedem H, Wakatsuki S, Francis CA. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. Environmental Microbiology Reports, 2017, 9(5): 484-491. DOI:10.1111/1758-2229.12567 |
[48] | Li M, Cao HL, Hong YG, Gu JD. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Applied Microbiology and Biotechnology, 2011, 89(4): 1243-1254. DOI:10.1007/s00253-010-2929-0 |
[49] | Wu JP, Hong YG, He X, Liu XH, Ye JQ, Jiao LJ, Li YB, Wang Y, Ye F, Yang YH, Du J. Niche differentiation of ammonia-oxidizing archaea and related autotrophic carbon fixation potential in the water column of the South China Sea. iScience, 2022, 25(5): 104333. DOI:10.1016/j.isci.2022.104333 |
[50] | Caranto JD, Lancaster KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. PNAS, 2017, 114(31): 8217-8222. DOI:10.1073/pnas.1704504114 |
[51] | Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. The ISME Journal, 2016, 10(8): 1836-1845. DOI:10.1038/ismej.2016.2 |
[52] | Stein LY. Insights into the physiology of ammonia-oxidizing microorganisms. Current Opinion in Chemical Biology, 2019, 49: 9-15. DOI:10.1016/j.cbpa.2018.09.003 |
[53] | Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annual Review of Marine Science, 2019, 11: 131-158. DOI:10.1146/annurev-marine-121916-063141 |
[54] | Tolar BB, Ross MJ, Wallsgrove NJ, Liu Q, Aluwihare LI, Popp BN, Hollibaugh JT. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. The ISME Journal, 2016, 10(11): 2605-2619. DOI:10.1038/ismej.2016.61 |
[55] | Peng XF, Fuchsman CA, Jayakumar A, Warner MJ, Devol AH, Ward BB. Revisiting nitrification in the Eastern Tropical South Pacific: a focus on controls. Journal of Geophysical Research: Oceans, 2016, 121(3): 1667-1684. DOI:10.1002/2015JC011455 |
[56] | Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura KI, Ehama M, Hayashizaki KI, Takahashi K, Hamasaki K, Furuya K. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. The ISME Journal, 2016, 10(9): 2184-2197. DOI:10.1038/ismej.2016.18 |
[57] | Hutchins DA, Capone DG. The marine nitrogen cycle: new developments and global change. Nature Reviews Microbiology, 2022, 20(7): 401-414. DOI:10.1038/s41579-022-00687-z |
[58] | Wu L, Chen XM, Wei W, Liu YW, Wang DB, Ni BJ. A critical review on nitrous oxide production by ammonia-oxidizing archaea. Environmental Science & Technology, 2020, 54(15): 9175-9190. |
[59] | Löscher CR, Kock A, Könneke M, LaRoche J, Bange HW, Schmitz RA. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences, 2012, 9(7): 2419-2429. DOI:10.5194/bg-9-2419-2012 |
[60] | Yoshikawa C, Abe H, Aita MN, Breider F, Kuzunuki K, Toyoda S, Ogawa NO, Suga H, Ohkouchi N, Danielache SO, Wakita M, Honda MC, Yoshida N. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model. Journal of Oceanography, 2016, 72(3): 491-508. DOI:10.1007/s10872-015-0308-2 |
[61] | Trimmer M, Chronopoulou PM, Maanoja ST, Upstill-Goddard RC, Kitidis V, Purdy KJ. Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific. Nature Communications, 2016, 7: 13451. DOI:10.1038/ncomms13451 |
[62] | Kraft B, Jehmlich N, Larsen M, Bristow LA, Könneke M, Thamdrup B, Canfield DE. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 2022, 375(6576): 97-100. DOI:10.1126/science.abe6733 |
[63] | Offre P, Spang A, Schleper C. Archaea in biogeochemical cycles. Annual Review of Microbiology, 2013, 67: 437-457. DOI:10.1146/annurev-micro-092412-155614 |
[64] | Seyler LM, McGuinness LR, Gilbert JA, Biddle JF, Gong D, Kerkhof LJ. Discerning autotrophy, mixotrophy and heterotrophy in marine TACK archaea from the North Atlantic. FEMS Microbiology Ecology, 2018, 94(3): fiy014. |
[65] | Ouverney CC, Fuhrman JA. Marine planktonic archaea take up amino acids. Applied and Environmental Microbiology, 2000, 66(11): 4829-4833. DOI:10.1128/AEM.66.11.4829-4833.2000 |
[66] | Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ERM, Pearson A. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. PNAS, 2006, 103(17): 6442-6447. DOI:10.1073/pnas.0510157103 |
[67] | Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Jung MY, Kim SJ, Gwak JH, Hong H, Si OJ, Lee S, Madsen EL, Rhee SK. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. PNAS, 2016, 113(28): 7888-7893. DOI:10.1073/pnas.1605501113 |
[68] | Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, Könneke M, Littmann S, Mooshammer M, Niggemann J, Petrov S, Richter A, Stewart FJ, Wagner M, Kuypers MMM, Bristow LA. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nature Microbiology, 2019, 4(2): 234-243. DOI:10.1038/s41564-018-0316-2 |
[69] | Damashek J, Bayer B, Herndl GJ, Wallsgrove NJ, Allen T, Popp BN, Hollibaugh JT. Limited accessibility of nitrogen supplied as amino acids, amides, and amines as energy sources for marine Thaumarchaeota. bioRxiv, 2021, DOI: 10.1101/2021.07.22.453390. |
[70] | Jiao NZ, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo TW, Chen F, Azam F. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8(8): 593-599. DOI:10.1038/nrmicro2386 |
[71] | Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, Moffett JW, Devol AH, Armbrust EV, Stahl DA, Ingalls AE. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. PNAS, 2017, 114(2): 364-369. DOI:10.1073/pnas.1608462114 |
[72] | Metcalf WW, Griffin BM, Cicchillo RM, Gao JT, Janga SC, Cooke HA, Circello BT, Evans BS, Martens-Habbena W, Stahl DA, Van Der Donk WA. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science, 2012, 337(6098): 1104-1107. DOI:10.1126/science.1219875 |
[73] | Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF. Aerobic production of methane in the sea. Nature Geoscience, 2008, 1(7): 473-478. DOI:10.1038/ngeo234 |
[74] | Abby SS, Kerou M, Schleper C. Ancestral reconstructions decipher major adaptations of ammonia-oxidizing archaea upon radiation into moderate terrestrial and marine environments. mBio, 2020, 11(5): e02371‒20. |
[75] | Yang YY, Zhang CL, Lenton TM, Yan XM, Zhu MY, Zhou MD, Tao JC, Phelps TJ, Cao ZW. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. Molecular Biology and Evolution, 2021, 38(9): 3637-3648. DOI:10.1093/molbev/msab129 |
[76] | Jung MY, Islam MA, Gwak JH, Kim JG, Rhee SK. Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(10): 3084-3095. DOI:10.1099/ijsem.0.002926 |
[77] | Ren ML, Feng XY, Huang YJ, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo HW. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. The ISME Journal, 2019, 13(9): 2150-2161. DOI:10.1038/s41396-019-0418-8 |
[78] | Stahl DA. The path leading to the discovery of the ammoniaoxidizing archaea. Environmental Microbiology, 2020, 22(11): 4507-4519. DOI:10.1111/1462-2920.15239 |
[79] | Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667): 66-74. DOI:10.1126/science.1093857 |
[80] | Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damsté JS, Rhee SK. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Applied and Environmental Microbiology, 2010, 76(22): 7575-7587. DOI:10.1128/AEM.01478-10 |
[81] | Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, Amin SA, Walker CB, Urakawa H, Könneke M, Devol AH, Moffett JW, Armbrust EV, Jensen GJ, Ingalls AE, Stahl DA. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(12): 5067-5079. DOI:10.1099/ijsem.0.002416 |
[82] | Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One, 2011, 6(2): e16626. DOI:10.1371/journal.pone.0016626 |
[83] | Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosoarchaeum limnia" BG20, a low-salinity ammonia-oxidizing archaeon from the San Francisco Bay Estuary. Journal of Bacteriology, 2012, 194(8): 2119-2120. DOI:10.1128/JB.00007-12 |
[84] | Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosopumilus salaria" BD31, an ammonia-oxidizing archaeon from the San Francisco Bay Estuary. Journal of Bacteriology, 2012, 194(8): 2121-2122. DOI:10.1128/JB.00013-12 |
[85] | Elling FJ, Könneke M, Mußmann M, Greve A, Hinrichs KU. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates. Geochimica et Cosmochimica Acta, 2015, 171: 238-255. DOI:10.1016/j.gca.2015.09.004 |
[86] | Santoro AE, Casciotti KL. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. The ISME Journal, 2011, 5(11): 1796-1808. DOI:10.1038/ismej.2011.58 |
[87] | Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JA, Volland JM, Srivastava A, Schleper C, Herndl GJ. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. The ISME Journal, 2016, 10(5): 1051-1063. DOI:10.1038/ismej.2015.200 |
[88] | Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(7): 1892-1902. DOI:10.1099/ijsem.0.003360 |
[89] | Ahlgren NA, Chen YY, Needham DM, Parada AE, Sachdeva R, Trinh V, Chen T, Fuhrman JA. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environmental Microbiology, 2017, 19(6): 2434-2452. DOI:10.1111/1462-2920.13768 |
[90] | Nakagawa T, Koji M, Hosoyama A, Yamazoe A, Tsuchiya Y, Ueda S, Takahashi R, Stahl DA. Nitrosopumilus zosterae sp. nov., an autotrophic ammonia-oxidizing archaeon of phylum Thaumarchaeota isolated from coastal eelgrass sediments of Japan. International Journal of Systematic and Evolutionary Microbiology, 2021, 71(8). DOI:10.1099/ijsem.0.004961 |
[91] | Matsutani N, Nakagawa T, Nakamura K, Takahashi R, Yoshihara K, Tokuyama T. Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone. Microbes and Environments, 2011, 26(1): 23-29. DOI:10.1264/jsme2.ME10156 |
[92] | Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. PNAS, 2011, 108(20): 8420-8425. DOI:10.1073/pnas.1013488108 |
[93] | Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, Schleper C. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_8): 2738-2752. |
[94] | Jung MY, Park SJ, Min D, Kim JS, Rijpstra WIC, Sinninghe Damsté JS, Kim GJ, Madsen EL, Rhee SK. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I. 1a from an agricultural soil. Applied and Environmental Microbiology, 2011, 77(24): 8635-8647. |
[95] | Kim JG, Jung MY, Park SJ, Rijpstra WIC, Sinninghe Damsté JS, Madsen EL, Min D, Kim JS, Kim GJ, Rhee SK. Cultivation of a highly enriched ammonia- oxidizing archaeon of thaumarchaeotal group I. 1b from an agricultural soil. Environmental Microbiology, 2012, 14(6): 1528-1543. |
[96] | Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, Grigor'eva NV, Galushko A, Schmid M, Palatinszky M, Le Paslier D, Daims H, Wagner M. Enrichment and genome sequence of the group I. 1a ammonia-oxidizing archaeon "Ca. PLoS One, 2013, 8(11): e80835. DOI:10.1371/journal.pone.0080835 |
[97] | Zhalnina KV, Dias R, Leonard MT, Dorr De Quadros P, Camargo FAO, Drew JC, Farmerie WG, Daroub SH, Triplett EW. Genome sequence of Candidatus Nitrososphaera evergladensis from group I. 1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One, 2014, 9(7): e101648. |
[98] | Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damsté JS, Jeon CO, Rhee SK. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I. 1a cultivated from a deep oligotrophic soil horizon. Applied and Environmental Microbiology, 2014, 80(12): 3645-3655. DOI:10.1128/AEM.03730-13 |
[99] | Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. PNAS, 2011, 108(38): 15892-15897. DOI:10.1073/pnas.1107196108 |
[100] | Lehtovirta-Morley LE, Ge CR, Ross J, Yao HY, Nicol GW, Prosser JI. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiology Ecology, 2014, 89(3): 542-552. DOI:10.1111/1574-6941.12353 |
[101] | Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, Von Bergen M, Lagkouvardos I, Karst SM, Galushko A, Koch H, Berry D, Daims H, Wagner M. Cyanate as an energy source for nitrifiers. Nature, 2015, 524(7563): 105-108. DOI:10.1038/nature14856 |
[102] | Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. PNAS, 2008, 105(6): 2134-2139. DOI:10.1073/pnas.0708857105 |
[103] | Li YY, Ding K, Wen XH, Zhang B, Shen B, Yang YF. A novel ammonia-oxidizing archaeon from wastewater treatment plant: its enrichment, physiological and genomic characteristics. Scientific Reports, 2016, 6: 23747. DOI:10.1038/srep23747 |
[104] | Jung MY, Kim JG, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environmental Microbiology Reports, 2016, 8(6): 983-992. DOI:10.1111/1758-2229.12477 |
[105] | Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI, Nicol GW. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiology Ecology, 2016, 92(5): fiw057. DOI:10.1093/femsec/fiw057 |
[106] | Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. The ISME Journal, 2017, 11(5): 1142-1157. DOI:10.1038/ismej.2016.192 |
[107] | Chen HY, Yue YY, Jin WB, Zhou X, Wang QL, Gao SH, Xie GJ, Du S, Tu RJ, Han SF, Guo KX. Enrichment and characteristics of ammonia-oxidizing archaea in wastewater treatment process. Chemical Engineering Journal, 2017, 323: 465-472. DOI:10.1016/j.cej.2017.04.130 |
[108] | Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, Kirkegaard RH, de la Torre JR, Daims H, Wagner M. Cultivation and genomic analysis of "Candidatus Nitrosocaldus islandicus", an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in graendalur valley, Iceland. Frontiers in Microbiology, 2018, 9: 193. DOI:10.3389/fmicb.2018.00193 |
[109] | Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, Pfeifer K, Schleper C. Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome. Frontiers in Microbiology, 2018, 9: 28. DOI:10.3389/fmicb.2018.00028 |
[110] | Sauder LA, Engel K, Lo CC, Chain P, Neufeld JD. "Candidatus Nitrosotenuis aquarius", an ammonia-oxidizing archaeon from a freshwater aquarium biofilter. Applied and Environmental Microbiology, 2018, 84(19): e01430-18. |
[111] | Liu LT, Liu MF, Jiang YM, Lin WT, Luo JF. Production and excretion of polyamines to tolerate high ammonia, a case study on soil ammonia-oxidizing archaeon "Candidatus Nitrosocosmicus agrestis". mSystems, 2021, 6(1): e01003-e01020. |
[112] | Liu LT, Li SR, Han JM, Lin WT, Luo JF. A two-step strategy for the rapid enrichment of Nitrosocosmicus-like ammonia-oxidizing Thaumarchaea. Frontiers in Microbiology, 2019, 10: 875. DOI:10.3389/fmicb.2019.00875 |
[113] | Chu YJ, Lee JY, Shin SR, Kim GJ. A method for cell culture and maintenance of ammonia-oxidizing archaea in agar stab. Indian Journal of Microbiology, 2015, 55(4): 460-463. DOI:10.1007/s12088-015-0536-6 |
[114] | Klein T, Poghosyan L, Barclay JE, Murrell JC, Hutchings MI, Lehtovirta-Morley LE. Cultivation of ammonia-oxidising archaea on solid medium. FEMS Microbiology Letters, 2022, 369(1): fnac029. DOI:10.1093/femsle/fnac029 |
[115] | Alves RJE, Minh BQ, Urich T, von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 2018, 9: 1517. DOI:10.1038/s41467-018-03861-1 |