微生物学报  2022, Vol. 62 Issue (4): 1231-1246   DOI: 10.13343/j.cnki.wsxb.20210465.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210465
中国科学院微生物研究所,中国微生物学会

文章信息

于雪, 张威, 吴玉洁, 陈拓, 刘光琇. 2022
YU Xue, ZHANG Wei, WU Yujie, CHEN Tuo, LIU Guangxiu.
微生物产色素机制及其生物活性
Production mechanism and biological activity of microbial pigments
微生物学报, 62(4): 1231-1246
Acta Microbiologica Sinica, 62(4): 1231-1246

文章历史

收稿日期:2021-08-05
修回日期:2021-11-25
网络出版日期:2022-01-14
微生物产色素机制及其生物活性
于雪1,2,4 , 张威1,2 , 吴玉洁2,3,4 , 陈拓2,3 , 刘光琇1,2     
1. 中国科学院西北生态环境资源研究院, 沙漠与沙漠化重点实验室, 甘肃 兰州 730000;
2. 中国科学院西北生态环境资源研究院, 甘肃省极端环境微生物资源与工程重点实验室, 甘肃 兰州 730000;
3. 中国科学院西北生态环境资源研究院, 冰冻圈科学国家重点实验室, 甘肃 兰州 730000;
4. 中国科学院大学, 北京 100049
摘要:近年来,随着人工合成色素的大量使用引起一系列环境和健康问题,增加了人们对安全、无毒天然色素的需求。天然色素主要来源于植物和微生物,由于植物生长周期较长使植物源色素在大规模应用中受限。与植物源天然色素相比,微生物源色素易于大规模快速培养,具有更广阔的应用前景。本文系统总结了不同微生物源色素产生机制,及其在抗菌、抗氧化及抗癌等生物医药领域的研究进展,并对其面临的问题及未来的发展进行了展望。
关键词微生物    色素    生物合成机制    生态适应机制    生物活性    
Production mechanism and biological activity of microbial pigments
YU Xue1,2,4 , ZHANG Wei1,2 , WU Yujie2,3,4 , CHEN Tuo2,3 , LIU Guangxiu1,2     
1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
2. Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
3. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The environmental and health problems caused by the massive use of synthetic pigments in recent years increase the demand for safe, non-toxic natural pigments. Natural pigments are mainly derived from plants and microorganisms. However, the large-scale application of plant-derived pigments is limited by the long growth cycle of plants. Compared with plants, microorganisms are easy to be cultivated on a large scale in a short time and thus microorganism-derived pigments have a broad application prospect. We systematically summarized the production mechanisms, reviewed the research progress in the antibacterial, anti-oxidation and anti-cancer activities, and put forward the opportunities and challenges in the development of microorganism-derived pigments.
Keywords: microorganism    pigment    biosynthesis mechanism    ecological adaptation mechanism    biological activity    

色素是吸收特定波长的光并反射剩余脉冲可见光谱(380–750 nm)的分子。目前,由于人工合成色素具有稳定性和经济性的优势,使其大量应用于食品加工和化妆品行业。然而合成色素的大量使用同时引起了一系列的环境和健康问题,如合成色素在环境中不易被降解,易导致过敏、致癌等[1]。据报道[2],合成色素市场需求量年增长率约为3%–5%,保持较低的增长率,而天然色素的年增长率预计将达到5%–10%。合成色素的诸多缺点增强了人们对天然、有机和生态友好型色素的需求[3]

自然界中天然色素通常以单体(如:类胡萝卜素、黄酮、卟啉、叶绿素和血红蛋白等)和聚合体(如:黑色素、鞣酸类和腐殖质)形式存在。为了能够进行电子共振和介质能量转移,几乎所有天然色素均含有共轭键。天然色素所捕获和反射的辐射能量具有多种生物学功能,包括利用太阳能进行新陈代谢和保护生物体免受辐射伤害。天然色素主要来源于植物和微生物,而植物源色素生长周期较长,使其在大规模应用中受限。相比于植物源色素,微生物由于生长快、生产成本低而具有更广阔的应用前景[4]。大多微生物均能产生色素,但在实际生产应用中,适宜生产色素的微生物需要满足色素产量高、无毒、无致病性和易于提纯等基本要求[5]。此外,微生物源色素同时也具有抗菌、抗癌、抗辐射和抗氧化等潜在的生物活性,这些因素推动了人们对微生物源色素的探索。

1 微生物源色素生物合成及生态适应机制

从极地到热带地区,从陆地到海洋环境中的大多微生物均能分离到天然色素。然而,目前大多数微生物源色素仍处于研发阶段(表 1)。这是由于不同微生物源色素的生物合成和表达均由各自的基因调节,而在不同生长环境下,基因表达亦具有差异性。因此,研究不同微生物源色素的生物合成及其对不同生长环境的适应机制,使利用微生物源色素具有更大的可能性。

表 1. 部分微生物色素类型及其工业应用现状[67] Table 1. Types of some microbial pigments and their industrial application[67]
Classification Species Pigment Colour Status
Fungi Monascus anka Ankaflavin Yellow Industrial production
Monascus ruber Monascorubramine Red Industrial production
Monascus pilosus Rubropunctatine Orange Industrial production
Ashbya gossypi Riboflavin Yellow Industrial production
Penicillium oxalicum Anthraquinone Red Industrial production
Blakeslea trispora Lycopene Red Research project
Fusarium sporotrichioides Lycopene Red Research project
Cordyceps unilateralis Naphtoquinone Dark-red Research project
Blakeslea trispora β-carotene Yellow-orange Industrial production
Fusarium sporotrichioides β-carotene Yellow-orange Research project
Mucor circinelloides β-carotene Yellow-orange Research project
Neurospora crassa β-carotene Yellow-orange Research project
Phycomyces blakesleeanus β-carotene Yellow-orange Research project
Bacteria Agrobacterium aurantiacum Astaxhantin Pink-red Research project
Paracoccus carotinifaciens Astaxhantin Pink-red Research project
Bradyrhizobium spp. Canthaxanthin Orange Research project
Streptomyces sp. Carotenoids Yellow Research project
Streptomyces echinoruber Rubrolone Red Research project
Paracoccus zeaxanthinifaciens Zeaxanthin Yellow Research project
Bradyrhizobium spp. Canthaxhantin Dark-red Research project
Pseudomonas Pyocyanin Blue, green Industrial production
Flavobacterium Zeaxanthin Yellow Research project
Microalgae Spirulina Phycocyanin Blue Industrial production
Dunaliella β-carotene Yellow-orange Industrial production
Haematococcus Astaxanthin Red Industrial production

1.1 真菌来源色素

目前已知的由真菌产生的天然色素主要有红曲霉素、类胡萝卜素、黑色素、聚酮类化合物等[812]

1.1.1 红曲霉素

红曲霉素是由红曲霉菌(Monascus)产生的聚酮类色素,主要有黄色、橙色以及紫红色3类(表 2)。该类化合物具有相似的分子结构和化学性质(图 1),均含有3个有机杂环,分别为内酯、不饱和酮、吡喃(R2=O)或吡啶(R2=NH)。朱雷等[18]在红曲霉菌培养过程中添加了6种代谢途径关键酶抑制剂后发现,聚酮合成酶抑制剂对红曲霉素的合成具有显著影响。Hajjaj等[19]研究认为红曲霉素和桔霉素具有相似的生物合成途径,首先通过Ⅰ型PKS催化乙酰辅酶A (acetyl-CoA)和丙二酰辅酶A (malonyl-CoA)的聚合物形成己酮发色团。然后通过反式酯化反应将己酮发色团和脂肪酸合成途径中衍生的长/中链脂肪酸转化为红曲橙色素。最后,通过还原作用和胺化作用将红曲橙色素转化为黄色或红色的红曲霉素。此外,氮源、碳源、温度以及pH值对红曲霉菌的生长和红曲霉素的产量至关重要。据报道[2021],氮源和碳源浓度的增加会导致红曲霉素产量降低,其中分别以氯化铵和麦芽糖为氮源和碳源时色素产量最高。

表 2. 红曲霉素的种类及来源 Table 2. Classification and source of Monascus pigments
Color Classification Species References
Yellow Ankaflavine Monascus anka U-1 [13]
Monascine Monascus sp. KB 10 [14]
Orange Rubropunctatine Monascus rubropunctatus [15]
Monascorubrine Monuscus purpureus [16]
Purplish-red Rubropunctamine Monascus sp. TTWMB 6093 [17]
Monascorubramine Monascus sp. TTWMB 6093 [17]

图 1 不同红曲霉素结构 Figure 1 Structures of Monascus pigments. A: rubropunctatine (R1=C5H11 R2=O), rubropunctamine (R1=C5H11 R2=NH), monascorubrine (R1=C7H15 R2=O), monascorubramine (R1=C7H15 R2=NH); B: monascine (R1=C5H11 R2=O), ankaflavine (R1=C7H15 R2=O).

1.1.2 类胡萝卜素

类胡萝卜素(carotenoids)是广泛分布于植物和微生物中的一类色素[22]。类胡萝卜素分为胡萝卜素和叶黄素,其中胡萝卜素只含有碳氢两种元素(如α-胡萝卜素、β-胡萝卜素和番茄红素),而叶黄素除了碳氢元素外,同时含有羟基、酮基、羧基和甲氧基等含氧官能团(如叶黄素和虾青素),结构如图 2所示。有200多种真菌能够产生类胡萝卜素[6],其中接合菌纲(Zygomycetes)、担子菌纲、子囊菌纲(Ascomycetes)中大多真菌均能产生类胡萝卜素。此外,类胡萝卜素属于萜类化合物,真菌主要通过甲羟戊酸合成途径合成萜类化合物[23]。Rodríguez-Sáiz等[24]发现carBcarRA基因是接合菌纲合成胡萝卜素的关键基因,分别编码番茄红素脱氢酶(CarB)和番茄红素环化酶(CarRA)。Álvarez等[25]对2株法夫酵母(Xanthophyllomyces dendrorhous)合成叶黄素和虾青素的关键基因crtS进行异源表达,结果表明,crtS基因所编码的虾青素合成酶参与了真菌β-胡萝卜素转化为虾青素和叶黄素的过程。

图 2 不同类胡萝卜素结构 Figure 2 Structure of various carotenoid.

1.1.3 黑色素

黑色素(melanin)在自然界中分布广泛,主要存在于动物、植物及微生物中。黑色素是由酚类或吲哚类化合物氧化聚合而成,形成一类带负电荷的高分子量疏水型色素,其结构非常紧凑,通常与蛋白质相结合。根据结构不同,黑色素分为真黑素(eumelanins)、类黑色素(pheomelanins)和异黑色素(allomelanins)[26]。真菌界所有门均能观察到黑色素的存在,其大多位于真菌细胞壁内,且不同发育时期真菌黑色素分布和浓度差异较大。研究发现[27],在生长初期的新型隐球菌(Cryptococcus neoformans)细胞质膜内能够检测到黑色素的存在,在其稳定生长期时黑色素则充满整个细胞壁。大多真菌黑色素是由1, 8-二羟基萘(DHN)聚合而成的,但也有些真菌能够利用酪氨酸、γ-谷氨酰-4-羟基苯(GHB)、儿茶酚、同甘酸、儿茶酚胺和(+)-小柱孢酮等合成黑色素[28]。据报道[29],在温差大、高辐射、高渗透压、低水活性和寡营养等极端环境的真菌产黑色素比例较大,表明黑色素能够显著增强真菌在极端环境中的存活能力及竞争力。

1.1.4 蒽醌和萘醌

蒽醌(anthraquinones)和萘醌(naphthoquinones)等聚酮类化合物是真菌常见的色素类化合物(图 3)。目前,已发现了大约700种蒽醌类化合物,主要由曲霉属(Aspergillus)、散囊菌属(Eurotium)、镰刀菌属(Fusarium)、德氏霉属(Dreschlera)、青霉菌属(Penicillium)、裸胞壳属(Emericella)、弯孢属(Culvularia)、球腔菌属(Mycosphaerella)和小孢子菌属(Microsporum)等真菌产生[30]。据报道[31],丝状真菌(如青霉和曲霉)均能通过聚酮合成途径合成蒽醌和萘醌。通过14C对醋酸盐和丙二酸盐进行标记发现,醋酸盐和丙二酸盐共同参与了蒽醌的合成[30]。此外,将硝酸盐代替铵氮时抑制了真菌萘醌的形成[32],因此铵氮是合成萘醌的必要条件。同时,萘醌的形成与培养基的pH值以及碳源浓度显著相关,在pH值低于4,碳源浓度较高时,镰刀菌属(Fusarium)能够大量合成镰红菌素(fusarubin)、茄镰孢菌素(javanicin)、葡萄孢镰菌素(bostrycoidin)等萘醌类化合物。据推测[33],真菌中的蒽醌和萘醌类化合物参与了种间相互作用。例如,与植物共生真菌合成的蒽醌类化合物可以保护寄主植物免受昆虫或其他微生物的侵害[33]

图 3 萘醌和蒽醌的结构骨架 Figure 3 Scaffold of naphthoquinones and anthraquinones. A: naphthoquinones; B: anthraquinones.

1.1.5 嗜氮酮类化合物

嗜氮酮类化合物(azaphilones)是从真菌中分离到的一类聚酮类色素,该类色素均含有高度氧化的吡喃醌环状结构(图 4),主要呈黄色、红色和绿色。目前已从海洋和陆生真菌中分离到约677种嗜氮酮类化合物[34](数据截止:2020年10月),主要分布于担子菌门(Basidiomycete)和子囊菌门(Ascomycota)。嗜氮酮类化合物的生物合成机制并未完全阐明,但真菌基因组测序的发展揭示了该类化合物的部分生物合成途径,分别为桔青素、红曲霉属、曲霉属、毛壳菌属以及炭团菌属嗜氮酮合成途径[34]。5种嗜氮酮类化合物生物合成途径均通过一个非还原性PKS (nrPKS)或高度还原性PKS (hrPKS)和一个非还原性PKS共同合成中间体——2, 4-二羟基-3, 6-二甲基苯甲醛,该中间体在桔青素合成途径中被酶修饰产生嗜氮酮类化合物,或经单加氧酶羟基化生成吡喃醌环状结构,进一步被酶修饰进入红曲霉属、曲霉属、毛壳菌属以及炭团菌属嗜氮酮合成途径。此外,Pang等[35]研究表明,生防木霉菌(Trichoderma guizhouense)产生的嗜氮酮类化合物能够保护其免受自身产生的过氧化氢胁迫,以辅助该真菌对抗其同生态位真菌。

图 4 嗜氮酮类化合物结构骨架 Figure 4 Scaffold of azaphilones.

1.2 细菌来源色素

相比于真菌,细菌具有生命周期短、易于进行遗传修饰等优点,但大多细菌源色素仍处于研发阶段。此外,与真菌相似,细菌源色素类型较广,主要有类胡萝卜素、黑色素、紫色杆菌素(violacein)、灵菌红素(prodigiosin)、绿脓菌素(pyocyanin)和放线紫红素(actinorhodin)[36]等。

1.2.1 类胡萝卜素

Yabuzaki[37]基于类胡萝卜素数据库统计发现,细菌能够合成迄今发现的所有C45、大多数的C30以及C50类胡萝卜素。相比于古菌和真核生物,细菌产生的类胡萝卜素范围更广,因此Yabuzaki[37]推测类胡萝卜素可能起源于细菌。现有研究报道了179种细菌能够产生类胡萝卜素(http://carotenoiddb.jp)(数据截止:2020年11月),主要分布于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)和绿菌门(Chlorobi)。细菌中类胡萝卜素合成途径主要由磷酸甘油醛与丙酮酸经1-脱氧木酮糖-5-磷酸途径合成,形成的异戊烯基焦磷酸经多次缩合生成番茄红素,再经脱氢、环化、羟基化和环氧化等转变为其他类胡萝卜素。在产叶黄素和虾青素的微生物中发现,羟化酶和酮醇化酶参与了β-胡萝卜素向叶黄素和虾青素的转化。据推测[38],类胡萝卜素作为非酶类抗氧化剂,可能与细菌对环境胁迫的抗性机制相关。Dieser等[39]通过反复冻融和太阳辐射对南极湖泊和河流系统中分离出来的异养细菌研究发现类胡萝卜素增加了异养细菌的抗性。Zhang等[40]通过敲除耐辐射奇异球菌(Deinococcus radiodurans)的crtBcrtI基因构建了2个不产类胡萝卜素的突变株,对2个突变株和野生型菌株比较分析表明,2个无色突变株对电离辐射、紫外线和过氧化氢更敏感。同时,通过对类胡萝卜素合成基因crtBcrtR进行靶向基因突变结果显示,相比于野生型菌株,类胡萝卜素缺陷型菌株对活性氧和电离辐射的敏感性更强。

1.2.2 黑色素

与真菌黑色素类似,细菌黑色素是一类复杂的生物聚合体,由于其特性和多种生物活性而受到广泛的关注。细菌黑色素在革兰氏阳性菌和革兰氏阴性菌均有广泛的分布。根据合成途径和中间代谢产物的不同,细菌黑色素主要分为4类,真黑素、类黑素、脓黑素(pyomelanin)以及1, 8-二羟基萘黑素(DHN)。据报道[41],细菌黑色素的形成主要包括2条途径,分别以氨基酸(如酪氨酸)或丙二酰辅酶A为底物,通过芳香族氨基酸的转换或聚酮合成酶的催化作用合成黑色素。在细菌中,黑色素的形成与Cu2+、氮源等营养因素驱动的调节酶合成有关,同时也与细胞控制过程,如氮固定、细胞应激反应及细胞形态建立有关。目前,关于细菌黑色素的研究主要集中于根际细菌中,该类细菌黑色素的形成依赖于多种营养因子。Borthakur等[42]在菜豆根瘤菌(Rhizobium leguminosarum bv. Phaseoli)共生质粒中发现了与黑色素合成相关的基因,而该菌在寡营养培养基中无法产生黑色素。研究表明[4345],黑色素能够保护微生物免受紫外线辐射、重金属及氧化应激伤害。

1.2.3 紫色杆菌素

紫色杆菌素是细菌产生的脂溶性紫色色素,由2个色氨酸分子氧化缩合而成的一种吲哚衍生物[46](图 5)。目前已知能够产生紫色杆菌素的细菌主要有紫色色杆菌(Chromobacterium violaceum)、河流色杆菌(Chromobacterium fluviatile)、深蓝紫色杆菌(Janthinobacterium lividum)、Alteromonas luteoviolaceaPseudoalteromonas tunicata,其中紫色色杆菌作为最早发现的产紫色杆菌素的菌株,其相关研究最为广泛。据报道[4748],紫色杆菌素的合成主要由5个基因参与,分别为vioAvioBvioCvioDvioE。该基因簇分别编码合成紫色杆菌素相关单加氧酶(即VioA、VioB、VioC、VioD、VioE),以L-色氨酸为底物,在生物体内经过酶促反应最终合成紫色杆菌素,目前该色素已在不同基因工程菌中实现高效表达[46]。此外,紫色杆菌素具有多种生物活性,这可能与其生物学功能有关。研究表明,在不同环境条件下,紫色杆菌素的产量有较大差异,在有过氧化氢酶或抗坏血酸等抗氧化剂存在的条件下,紫色杆菌素的产生会延迟2 h,表明菌株产生紫色杆菌素能够增强该菌株的抗氧化能力。荧光电子显微观察结果显示[49],紫色杆菌素能够渗透到革兰氏阳性菌的细胞质膜内,进而破坏其磷脂双分子层。

图 5 紫色杆菌素结构 Figure 5 Structure of violacein.

1.2.4 灵菌红素

灵菌红素是一类具有三吡咯环的脂溶性红色素,主要包括灵菌红素(prodigiosin,PG)、间环丙菌素(metacycloprodigiosin,MPG)、十一烷基灵菌红素(undecylprodigiosin,UPG)、壬烷基灵菌红素(nonylprodigiosin,NPG)、环丙烷灵菌红素(cycloprodigiosin,CPG)。能够产灵菌红素的细菌主要有黏质沙雷菌(Serratia marcescens)、假单胞菌属(Pseudomonas)、弧菌属(Vibrio)、Alteromonas rubraRugamonas rubraStreptoverticillium rubrireticuli[50]。灵菌红素是由2个分子组成的三吡咯结构(图 6),分别为2-methyl-3-n-amyl-pyrrole (MAP)和4-methoxy-2, 20-bipyrrole-5-carbaldehyde (MBC)。灵菌红素由pig基因簇中的11个基因参与合成,首先是通过基因编码的PigB、PigD、PigE蛋白合成MAP化合物,然后通过PigA、PigF、PigG、PigH、PigJ、PigL、PigM蛋白合成MBC化合物,最后由PigC蛋白利用ATP促进MAP和MBC缩合形成灵菌红素[51]。灵菌红素具有抗菌、抗原生动物、免疫抑制及抗肿瘤活性等[5253],基于其广泛的生物活性,Franks等[54]研究认为假单胞菌属产生灵菌红素等次级代谢产物作为某种化学防御机制使其宿主免受各种病原体的伤害。

图 6 灵菌红素结构 Figure 6 Structure of prodigiosin.

1.2.5 绿脓菌素

绿脓菌素是由铜绿假单胞菌(Pseudomonas aeruginosa)产生的一种蓝绿色含氮杂环化合物(图 7)。绿脓菌素在铜绿假单胞菌铁代谢中发挥重要作用,在铁含量较低的培养基中铜绿假单胞菌能够大量分泌绿脓菌素[42]。Sterritt等[55]研究发现,绿脓菌素的合成是以氯甲酸(CA)为前体,由2个操纵子(phzA1B1C1D1E1F1G1和phzA2B 2C2D2E2F2G2)编码的7个蛋白(PhzABCDEFG)将氯甲酸转化为1-羧基吩嗪,然后在NADPH存在的条件下分别由phzMphzS基因编码的PhzM和PhzS合成酶合成绿脓菌素。同时,群体感应(quorum sense,QS)机制对绿脓菌素的合成具有调节作用[56],通过产生N-酰基-高丝氨酸内酯(AHL)和假单胞奎诺酮(PQS)类信号分子,以密度依赖的方式调控绿脓菌素的表达。此外,绿脓菌素在铜绿假单胞菌中具有重要的作用,包括基因表达、维持细菌正常生长以及生物膜的形成[57]。有研究表明[58],该化合物可用作铜绿假单胞菌呼吸过程中的电子传递介质,同时具有抗细菌和抗真菌活性。相比于寡营养环境,铜绿假单胞菌在富营养条件下能够产生更多的绿脓菌素[59]

图 7 绿脓菌素结构 Figure 7 Structure of pyocyanin.

1.2.6 放线紫红素

放线紫红素是由天蓝色链霉菌(Streptomyces coelicolor)和变铅青链霉菌(Streptomyces lividans)产生的一种蓝色色素(图 8)[60]。放线紫红素是通过Ⅱ型聚酮合成酶(PKS)合成的聚酮类化合物,同时也是研究Ⅱ型聚酮合成酶及其辅助酶的最佳模型化合物之一。1984年Malpartida等[61]将22个参与放线紫红素合成的act基因在不产放线紫红素的微小链霉菌(Streptomyces parvulus)中实现了异源表达,是第一个将完整的生物合成基因簇实现异源表达的抗生素。余皎皎和陶美凤[62]研究了无机盐对阿维链霉菌异源表达放线紫红素发现,放线紫红素仅在含有高浓度CaCl2的F3培养基中表达。此外,放线紫红素具有氧化还原活性,可作用于菌株氧化还原循环反应[63]。该色素结构上的醌基可以通过还原反应产生与分子氧相互作用的电子,产生的超氧阴离子(O2.–)进一步歧化产生过氧化氢(H2O2)等活性氧(ROS)。该色素同时也是体外氧化反应的催化剂,对L-抗坏血酸和L-半胱氨酸进行体外催化,产生过氧化氢。

图 8 放线紫红素结构 Figure 8 Structure of actinorhodin.

1.3 其他微生物源色素

微藻和蓝细菌是能进行产氧性光合作用的单细胞生物,同时亦是天然色素的重要来源,该类微生物产生的色素类型主要有叶绿素(chlorophylls)、藻胆蛋白(phycobiliproteins)以及类胡萝卜素[6],主要参与微藻和蓝细菌光吸收以及能量转移过程。

1.3.1 叶绿素

叶绿素是微藻和蓝细菌中最常见的天然色素,主要包括叶绿素a、b、c、d和f,该类色素在藻类有氧光合作用和生长繁殖中具有重要作用。在微藻(真核生物)中,叶绿素位于叶绿体中,而在蓝细菌(原核生物)中,叶绿素位于光合片层中。叶绿素的合成是以原绿素为前体,通过一系列复杂的酶反应和特异性还原反应生成[64]。根据对光的依赖性,原绿素还原为叶绿素分为2种途径,一种是以光照作为辅助因子,通过酶反应将原绿素a还原为叶绿素a;另一种途径是在黑暗条件下,原绿素a通过植酸化生成叶绿素[65]。光合生物中叶绿素的存在能够为其生长代谢提供能量。其中,叶绿素c通过将光激发后的电子传递给叶绿素a,增强了光合生物如蓝细菌、藻类和植物的光吸收特性。相比于叶绿素a,叶绿素d在近红外光区域能够进行更好地生长繁殖[66]。此外,叶绿素f能够吸收远红外光,扩大了蓝细菌的光吸收区域,使蓝细菌能够在远红外光为主的环境中正常生长[67]

1.3.2 藻胆蛋白

藻胆蛋白是在蓝细菌(Cyanobacteria)、隐藻(Cryptophyta)和灰藻(Glaucophytes)中发现的一类光合色素[68]。已知的藻胆蛋白主要可以分为4类,藻红蛋白(phycoerythrin,PE)、藻蓝蛋白(phycocyanin,PC)、藻红蓝蛋白(phycoerythrocyanin,PEC)以及别藻蓝蛋白(allophycocyanin,APC)。图 9为藻蓝蛋白(A)和藻红蛋白(B)发色基团分子结构,藻胆蛋白由线性四吡咯基团与脱辅基蛋白结合形成,通过硫醚键与半胱氨酸残基(Cys)连接,其吸收光谱取决于所附着的发色基团[6970],其中藻蓝蛋白发色团为藻蓝素(phycocyanobilin)(图 9A),藻红蛋白发色团为藻红素(phycoerythrobilin)(图 9B)。据报道[71],藻胆蛋白是以谷氨酸为原料,通过大量酶(如尿卟啉原合酶、羟甲基胆汁合酶、胆色素原合成酶)参与合成其前体——原卟啉Ⅸ。藻胆蛋白在微藻和蓝细菌中可以作为蛋白储藏功能,使藻类在氮源缺乏的季节得以生存。通过对蓝细菌UV-B辐照耐受性研究发现,藻胆蛋白能够保护蓝细菌免受氧化损害,相比于含有藻蓝蛋白的蓝细菌,含有藻红蛋白的蓝细菌对UV-B辐射的耐受性更强[72]

图 9 藻胆蛋白发色基团分子结构 Figure 9 Structure of phycobiliprotein chromophores. A: phycocyanobilin (blue); B: phycoerythrobilin (red).

1.3.3 类胡萝卜素

除了细菌和真菌等微生物能够合成类胡萝卜素外,微藻和蓝细菌也能合成类胡萝卜素。微藻和蓝细菌的类胡萝卜素合成机制与植物类胡萝卜素合成机制类似,但某些仅在微藻和蓝细菌中发现的类胡萝卜素具有特异性合成途径,这些途径是基于微藻和蓝细菌产生的类胡萝卜素的化学结构提出的。微藻和蓝细菌中一些常见的类胡萝卜素合成基因与植物类胡萝卜素合成基因具有同源性(如crtI、crtBcrtE等),但大多数与藻类特异性途径有关的基因和酶仍然未知。此外,相比于大多数细菌和真菌,微藻和蓝细菌类胡萝卜素产量较高,其中每100 g螺旋藻属(Spirulina)能产生0.8–1.0 g β-胡萝卜素。同时,相比于其他藻类和有机体,杜氏藻属(Dunaliella)是最好的产类胡萝卜素有机体[73]。在高盐度或氮耗竭等极端环境条件下,杜氏藻能够积累大量的β-胡萝卜素(可以达到其干重的10%–14%)。研究表明[7475],杜氏藻在环境胁迫下可触发其自然防御机制,从而产生大量的β-胡萝卜素。

2 微生物源色素的生物活性研究进展

据报道[76],微生物产色素主要是为了抵御不利的生长环境,提高生存能力。例如,Foreman等[77]通过反复冻融和太阳辐射对南极湖泊和河流系统中分离出来的异养细菌研究发现,类胡萝卜素增加了异养细菌在环境胁迫条件下的抗性。同时黑色素能够保护微生物免受紫外线辐射、重金属及氧化应激伤害。因此,微生物源色素是挖掘新型天然生物活性物质的重要来源。

2.1 微生物色素抗菌活性研究

全球范围内多种耐药菌的出现使得新型抗生素的研发仍然是医学界的一个主要问题。据报道[78],类胡萝卜素、黑色素、核黄素、红曲霉素及紫色杆菌素类化合物等微生物色素能够对抗各种病原体。例如,从红曲霉菌中分离到的红斑红曲素和红曲玉红素不仅对细菌有抑菌作用,而且对酵母和丝状真菌也有抑菌作用[79]。Sudhakar等[80]发现,绿脓菌素对植物病原微生物具有一定的拮抗作用,对黄曲霉(Aspergillus flavus)和烟曲霉(Aspergillus fumigates)的最小抑菌浓度(MIC)为64 μg/mL,对念珠菌属(Candida)为128 μg/mL。紫色杆菌素对革兰氏阳性和革兰氏阴性菌表现出广谱的抗菌活性[8183]。此外,关于微生物色素抵抗各种病原体的作用机制已有较多研究。其中Danevčič等[84]发现灵菌红素能够使大肠杆菌细胞外膜发生破裂,对细胞生长、分裂、蛋白质和RNA的合成及其整个代谢活性具有明显的影响。

2.2 微生物色素抗氧化活性研究

生物在代谢过程中会产生活性氧类(ROS)物质,这些化学性质非常活泼的物质可以与生物大分子作用而破坏生物膜的结构和功能,引起细胞凋亡、衰老及癌症等[85]。而微生物色素,如类胡萝卜素、嗜氮酮类化合物都具有抗氧化活性。研究发现[86],强辐射地区的土壤,在阳光辐照时会产生大量活性氧类自由基,对生存于其中的微生物造成高强度氧化胁迫。Arcangeli和Cannistraro[87]从南极地区分离到的节丛孢菌属(Arthrobotrys)在UV辐照下类胡萝卜素发生了降解,表明类胡萝卜素在UV辐照条件下对该真菌具有光保护作用。极端环境微生物鳕盐球菌(Halococcus morrhuae)、盐沼盐杆菌(Halobacterium salinarium)和热杆菌(Thermus filiformis)产生的C50类胡萝卜素能够维持细胞膜稳定性,同时也可作为抗氧化剂[88]。Borić等[89]发现,能够产生灵菌红素的弧菌属在高剂量紫外线暴露(324 J/m2)下的存活率是不产色素的弧菌突变株的1 000倍。因此,从微生物中对色素进行提取分离是寻求高效抗氧化剂的重要途径。

2.3 微生物色素抗癌活性研究

癌症是目前人类已知最致命的疾病之一,而大多数癌症目前仍旧无法得到有效全面的治疗。因此,抗癌药物的研发对整个人类社会显得尤为重要。Díaz-Ruiz等[90]研究发现,灵菌红素对人体57种不同癌细胞均具有较强的抗性,且对人体正常细胞没有明显的细胞毒性。同时,藻蓝蛋白的抗癌潜力已在肝癌细胞、结肠癌细胞、肺癌细胞及乳腺癌细胞等不同的癌细胞中进行了报道[91]。Zheng等[92]研究发现,红斑胺素能够抑制胃癌细胞BGC-823的增殖,并对正常胃上皮细胞GES-1没有显著的细胞毒性。Zhan等[93]研究发现,藤黑镰刀菌(Fusarium fujikuroi)产生的显红色的比卡菌素(bikaverin)具有抗肿瘤活性,表明该化合物具有药物研发潜力。综上所述,开发不同的微生物色素用于癌症治疗具有较大的应用前景。

2.4 微生物色素其他生物活性研究

微生物色素除了具有抗菌、抗氧化以及抗癌活性外,还具有抗突变、抗肥胖等广泛的生物活性。沙门氏菌实验结果表明[94],从安卡红曲霉菌(Monascus anka)和紫红曲霉(Monascus purpureus)中提取到的红色和黄色红曲霉素加速了杂环胺类物质的降解而抑制了其致突变性。此外,红曲霉素能够调节胆固醇水平,Jeun等[95]以不同氨基酸发酵红曲霉菌获得其代谢产物,发现苏氨酸代谢产生的红曲霉素显著降低了小鼠体内的低密度脂蛋白水平(LDL),增加了其高密度脂蛋白(HDL)。同时,紫色杆菌素亦具有广泛的生物活性,除了抗肿瘤、抗菌外,还具有抗溃疡、抗原生动物及抗病毒活性,具有较大的药用潜力[8183]

3 微生物源色素发展与展望

几乎所有的人工合成色素都不能向人类提供营养物质,某些合成色素甚至会危害人体健康,引起中毒和癌变等人类健康问题。因此,近年来市场上关于天然、无毒、生态友好型色素的需求量逐渐增大。据报道[96],在各种色素中仅类胡萝卜素一项,到2022年市场份额将达到20亿美元。而微生物色素由于其生产成本高导致其市场份额较小,相比于其他来源的天然色素产量较小。因此,为加强对微生物源色素的研究,寻找廉价、最佳的生长培养基,降低色素的生产成本并提高其工业生产的适用性显得尤为重要。此外,由于微生物色素培养成本高使得其工业化应用受到阻碍。通过菌株改良或使用低成本、可再生能源来降低微生物色素的生产成本。Liu等[97]采用微波诱变筛选得到了一株高产灵菌红素的黏质沙雷氏菌,相比于野生型,该突变株灵菌红素产量提高了108%。同时笔者实验室从珠穆朗玛峰地区土壤中分离到一株能够分泌一种胞外水溶性蓝色素的Arthrobacter sp.菌株,该菌株产生的蓝色素具有抗氧化活性,对该菌株进行重离子辐照诱变获得一株高产蓝色素菌株,该突变株蓝色素产量是野生型菌株的1.46倍。Tian等[98]发现Deinococcus xibeiensis R13菌株在C/N比为1:5,Fe2+浓度为10 µmol/L培养条件下,类胡萝卜素产量达到最大,相比于初始条件增加了84%。利用工农业废料作为微生物生长基质不仅节约成本,还符合人们日益增长的节能意识,并且解决环境污染问题[99]。此外,代谢工程近些年已被广泛接受并作为天然产物合成与开发的有效工具。Su等[100]通过代谢工程手段引入外源基因,阻断了类球红菌(Rhodobacter sphaeroides)的磷酸戊糖合成途径使其番茄红素产量提高了88%。

目前来看,合成色素由于其成本低、易生产、稳定性强等优点在市场上仍占据较大优势。而随着合成色素导致的一系列环境和健康问题,消费者对天然着色剂的需求日益增加。在科学研究领域,越来越多的研究工作注重天然色素开发。尽管许多微生物源色素已进入生产应用阶段,但它们的产量仍然无法满足市场需求。因此必须寻求新的微生物色素来源,通过优化产色素条件、菌株改良、基因工程等手段来降低生产成本,提高色素产量,以替代有毒的合成色素。

References
[1] Osman MY, Sharaf IA, Osman HMY, El-Khouly ZA, Ahmed EI. Synthetic organic food colouring agents and their degraded products: effects on human and rat cholinesterases. British Journal of Biomedical Science, 2004, 61(3): 128-132. DOI:10.1080/09674845.2004.11732657
[2] Parmar M, Phutela UG. Biocolors: the new generation additives. International Journal of Current Microbiology and Applied Sciences, 2015, 4(7): 688-694.
[3] Manikprabhu D, Lingappa K. γ actinorhodin a natural and attorney source for synthetic dye to detect acid production of fungi. Saudi Journal of Biological Sciences, 2013, 20(2): 163-168. DOI:10.1016/j.sjbs.2013.01.004
[4] Indra Arulselvi P, Umamaheswari S, Ranandkumar Sharma G, Karthik C, Jayakrishna C. Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. Journal of Food Processing & Technology, 2013, 5(1): 1-4.
[5] Rao MPN, Xiao M, Li WJ. Fungal and bacterial pigments: secondary metabolites with wide applications. Frontiers in Microbiology, 2017, 8: 1113. DOI:10.3389/fmicb.2017.01113
[6] Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Chidambara Murthy KN, Ravishankar GA. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends in Food Science & Technology, 2005, 16(9): 389-406.
[7] Kirti K, Amita S, Priti S, Mukesh Kumar A, Jyoti S. Colorful world of microbes: carotenoids and their applications. Advances in Biology, 2014, 2014: 837891.
[8] Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biology and Biotechnology, 2017, 4: 4. DOI:10.1186/s40694-017-0033-2
[9] Mortensen A. Carotenoids and other pigments as natural colorants. Pure and Applied Chemistry, 2006, 78(8): 1477-1491. DOI:10.1351/pac200678081477
[10] Nagia FA, EL-Mohamedy RSR. Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes and Pigments, 2007, 75(3): 550-555. DOI:10.1016/j.dyepig.2006.07.002
[11] Mapari SAS, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants?. Trends in Biotechnology, 2010, 28(6): 300-307. DOI:10.1016/j.tibtech.2010.03.004
[12] Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Current Opinion in Biotechnology, 2014, 26: 56-61. DOI:10.1016/j.copbio.2013.09.007
[13] Noguchi H, Sato K, Iwakami S, Goda Y, Okuyama E, Yoshihira K, Ichi T, Odake Y, Sankawa U. Novel natural colorants from Monascus anka U-1. Heterocycles, 1992, 34(11): 2057. DOI:10.3987/COM-92-6142
[14] Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R. Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World Journal of Microbiology and Biotechnology, 1993, 9(1): 85-90. DOI:10.1007/BF00656524
[15] Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A. 722. The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. Journal of the Chemical Society: Resumed, 1959: 3598-3610.
[16] Kumasaki S, Nakanishi K, Nishikawa E, Ohashi M. Structure of monascorubrin. Tetrahedron, 1962, 18(10): 1171-1184. DOI:10.1016/S0040-4020(01)99285-3
[17] Lin TF, Yakushijin K, Büchi GH, Demain AL. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes. Journal of Industrial Microbiology, 1992, 9(3/4): 173-179.
[18] Zhu L, Chang HP, Tang XY, Li KY, Cao YY. Effects of enzyme inhibitors on the pigment synthesis in Monascus anka. Acta Microbiologica Sinica, 2007, 47(4): 706-709. (in Chinese)
朱雷, 常慧萍, 唐欣昀, 李坤阳, 曹媛媛. 几种酶活抑制剂对红曲霉色素合成的影响. 微生物学报, 2007, 47(4): 706-709. DOI:10.3321/j.issn:0001-6209.2007.04.027
[19] Hajjaj H, Klaébé A, Loret MO, Goma G, Blanc PJ, François J. Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13C nuclear magnetic resonance. Applied and Environmental Microbiology, 1999, 65(1): 311-314. DOI:10.1128/AEM.65.1.311-314.1999
[20] Silveira ST, Daroit DJ, Sant'Anna V, Brandelli A. Stability modeling of red pigments produced by Monascus purpureus in submerged cultivations with sugarcane bagasse. Food and Bioprocess Technology, 2013, 6(4): 1007-1014. DOI:10.1007/s11947-011-0710-8
[21] Chen MH, Johns MR. Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme and Microbial Technology, 1994, 16(7): 584-590. DOI:10.1016/0141-0229(94)90123-6
[22] Phadwal K. Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria. Gene, 2005, 345(1): 35-43. DOI:10.1016/j.gene.2004.11.038
[23] Avalos J, Carmen Limón M. Biological roles of fungal carotenoids. Current Genetics, 2015, 61(3): 309-324. DOI:10.1007/s00294-014-0454-x
[24] Rodríguez-Sáiz M, Paz B, De La Fuente JL, López-Nieto MJ, Cabri W, Barredo JL. Blakeslea trispora genes for carotene biosynthesis. Applied and Environmental Microbiology, 2004, 70(9): 5589-5594. DOI:10.1128/AEM.70.9.5589-5594.2004
[25] Álvarez V, Rodríguez-Sáiz M, De La Fuente JL, Gudiña EJ, Godio RP, Martín JF, Barredo JL. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genetics and Biology, 2006, 43(4): 261-272. DOI:10.1016/j.fgb.2005.12.004
[26] Ambrico M. Special issue: melanin, a long lasting history bridging natural pigments and organic bioelectronics. Polymer International, 2016, 65(11): 1249-1250. DOI:10.1002/pi.5239
[27] Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cellular Microbiology, 2003, 5(4): 203-223. DOI:10.1046/j.1462-5814.2003.00268.x
[28] Bell AA, Puhalla JE, Tolmsoff WJ, Stipanovic RD. Use of mutants to establish (+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae. Canadian Journal of Microbiology, 1976, 22(6): 787-799. DOI:10.1139/m76-115
[29] Gessler NN, Egorova AS, Belozerskaia TA. Melanin pigments of fungi under extreme environmental conditions (review). Applied Biochemistry and Microbiology, 2014, 50(2): 105-113. DOI:10.1134/S0003683814020094
[30] Gessler NN, Egorova AS, Belozerskaya TA. Fungal anthraquinones. Applied Biochemistry and Microbiology, 2013, 49(2): 85-99. DOI:10.1134/S000368381302004X
[31] Lin L, Xu JP. Fungal pigments and their roles associated with human health. Journal of Fungi: Basel, Switzerland, 2020, 6(4): 280.
[32] Medentsev AG, Akimenko VK. Naphthoquinone metabolites of the fungi. Phytochemistry, 1998, 47(6): 935-959.
[33] Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 2004, 7(4): 249-260.
[34] Pavesi C, Flon V, Mann S, Leleu S, Prado S, Franck X. Biosynthesis of azaphilones: a review. Natural Product Reports, 2021, 38(6): 1058-1071. DOI:10.1039/D0NP00080A
[35] Pang G, Sun TT, Yu ZZ, Yuan T, Liu W, Zhu H, Gao Q, Yang DQ, Kubicek CP, Zhang J, Shen QR. Azaphilones biosynthesis complements the defence mechanism of Trichoderma guizhouense against oxidative stress. Environmental Microbiology, 2020, 22(11): 4808-4824. DOI:10.1111/1462-2920.15246
[36] Venil CK, Aruldass CA, Dufossé L, Zakaria ZA, Ahmad WA. Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry–an incisive evaluation. RSC Advances, 2014, 4(74): 39523. DOI:10.1039/C4RA06162D
[37] Yabuzaki J. Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database, 2017, 2017(10.1093): database.
[38] Tian B, Hua YJ. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends in Microbiology, 2010, 18(11): 512-520. DOI:10.1016/j.tim.2010.07.007
[39] Dieser M, Greenwood M, Foreman CM. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research, 2010, 42(4): 396-405. DOI:10.1657/1938-4246-42.4.396
[40] Zhang L, Yang Q, Luo XS, Fang CX, Zhang QJ, Tang YL. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Archives of Microbiology, 2007, 188(4): 411-419. DOI:10.1007/s00203-007-0262-5
[41] Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Applied Microbiology and Biotechnology, 2020, 104(4): 1357-1370. DOI:10.1007/s00253-019-10245-y
[42] Borthakur D, Lamb JW, Johnston AW. Identification of two classes of Rhizobium phaseoli genes required for melanin synthesis, one of which is required for nitrogen fixation and activates the transcription of the other. Molecular & General Genetics, 1987, 207(1): 155-160.
[43] Gowri PM, Srivastava S. Encapsulation as a response of Azospirillum brasilense sp7 to zinc stress. World Journal of Microbiology & Biotechnology, 1996, 12(4): 319-322.
[44] Liu N, Zhang T, Wang YJ, Huang YP, Ou JH, Shen P. A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Letters in Applied Microbiology, 2004, 39(5): 407-412. DOI:10.1111/j.1472-765X.2004.01599.x
[45] Lucas-Elı́o P, Solano F, Sanchez-Amat A. Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology, 2002, 148(8): 2457-2466. DOI:10.1099/00221287-148-8-2457
[46] Jiang PX, Wang HS, Zhang C, Lou K, Xing XH. Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Applied Microbiology and Biotechnology, 2010, 86(4): 1077-1088. DOI:10.1007/s00253-009-2375-z
[47] August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS. Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. Journal of Molecular Microbiology and Biotechnology, 2000, 2(4): 513-519.
[48] Sánchez C, Braña AF, Méndez C, Salas JA. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis. Chembiochem: a European Journal of Chemical Biology, 2006, 7(8): 1231-1240. DOI:10.1002/cbic.200600029
[49] Cauz ACG, Carretero GPB, Saraiva GKV, Park P, Mortara L, Cuccovia IM, Brocchi M, Gueiros-Filho FJ. Violacein targets the cytoplasmic membrane of bacteria. ACS Infectious Diseases, 2019, 5(4): 539-549. DOI:10.1021/acsinfecdis.8b00245
[50] Darshan N, Manonmani HK. Prodigiosin and its potential applications. Journal of Food Science and Technology, 2015, 52(9): 5393-5407. DOI:10.1007/s13197-015-1740-4
[51] Sakai-Kawada FE, Ip CG, Hagiwara KA, Awaya JD. Biosynthesis and bioactivity of prodiginine analogs in marine bacteria, Pseudoalteromonas: a mini review. Frontiers in Microbiology, 2019, 10: 1715. DOI:10.3389/fmicb.2019.01715
[52] Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 2004, 150(11): 3547-3560. DOI:10.1099/mic.0.27222-0
[53] Kamble KD, Hiwarale VD. Prodigiosin production from Serratia marcescens strains obtained from farm soil. International Journal of Environmental Sciences, 2013, 3(1): 631-638.
[54] Franks A, Egan S, Holmström C, James S, Lappin-Scott H, Kjelleberg S. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Applied and Environmental Microbiology, 2006, 72(9): 6079-6087. DOI:10.1128/AEM.00559-06
[55] Sterritt OW, Lang EJM, Kessans SA, Ryan TM, Demeler B, Jameson GB, Parker EJ. Structural and functional characterisation of the entry point to pyocyanin biosynthesis in Pseudomonas aeruginosa defines a new 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase subclass. Bioscience Reports, 2018, 38(5): BSR20181605. DOI:10.1042/BSR20181605
[56] Al-Shabib NA, Husain FM, Khan RA, Khan MS, Alam MZ, Ansari FA, Laeeq S, Zubair M, Shahzad SA, Khan JM, Alsalme A, Ahmad I. Interference of phosphane copper (Ⅰ) complexes of β-carboline with quorum sensing regulated virulence functions and biofilm in foodborne pathogenic bacteria: a first report. Saudi Journal of Biological Sciences, 2019, 26(2): 308-316. DOI:10.1016/j.sjbs.2018.04.013
[57] Jayaseelan S, Ramaswamy D, Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World Journal of Microbiology & Biotechnology, 2014, 30(4): 1159-1168.
[58] Baron SS, Terranova G, Rowe JJ. Molecular mechanism of the antimicrobial action of pyocyanin. Current Microbiology, 1989, 18(4): 223-230. DOI:10.1007/BF01570296
[59] Gonçalves T, Vasconcelos U. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules: Basel, Switzerland, 2021, 26(4): 927. DOI:10.3390/molecules26040927
[60] Mak S, Nodwell JR. Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. Molecular Microbiology, 2017, 106(4): 597-613. DOI:10.1111/mmi.13837
[61] Malpartida F, Hopwood DA. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature, 1984, 309(5967): 462-464. DOI:10.1038/309462a0
[62] Yu JJ, Tao MF. Effect of inorganic salts on the conjugation and heterologous expression of actinorhodin in Streptomyces avermitilis. Acta Microbiologica Sinica, 2010, 50(11): 1556-1561. (in Chinese)
余姣姣, 陶美凤. 无机盐对阿维链霉菌接合转移及异源表达放线紫红素的影响. 微生物学报, 2010, 50(11): 1556-1561.
[63] Dietrich LEP, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science, 2008, 321(5893): 1203-1206. DOI:10.1126/science.1160619
[64] Armstrong GA. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. Journal of Photochemistry and Photobiology B: Biology, 1998, 43(2): 87-100. DOI:10.1016/S1011-1344(98)00063-3
[65] Gálová E, Šalgovičová I, Demko V, Mikulová K, Ševčovičová A, Slováková Ľ, Kyselá V, Hudák J. A short overview of chlorophyll biosynthesis in algae. Biologia, 2008, 63(6): 947-951. DOI:10.2478/s11756-008-0147-3
[66] Schliep M, Cavigliasso G, Quinnell RG, Stranger R, Larkum AWD. Formyl group modification of chlorophyll a: a major evolutionary mechanism in oxygenic photosynthesis. Plant, Cell & Environment, 2013, 36(3): 521-527.
[67] Kurashov V, Ho MY, Shen GZ, Piedl K, Laremore TN, Bryant DA, Golbeck JH. Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered photosystem Ⅰ complexes. Photosynthesis Research, 2019, 141(2): 151-163. DOI:10.1007/s11120-019-00616-x
[68] Eriksen NT. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 2008, 80(1): 1-14. DOI:10.1007/s00253-008-1542-y
[69] Martelli G, Folli C, Visai L, Daglia M, Ferrari D. Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry, 2014, 49(1): 154-159. DOI:10.1016/j.procbio.2013.10.008
[70] Kuddus M, Singh P, Thomas G, Al-Hazimi A. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International, 2013, 2013: 742859.
[71] Fujita Y, Tsujimoto R, Aoki R. Evolutionary aspects and regulation of tetrapyrrole biosynthesis in cyanobacteria under aerobic and anaerobic environments. Life: Basel, Switzerland, 2015, 5(2): 1172-1203.
[72] Tyagi R, Srinivas G, Vyas D, Kumar A, Kumar HD. Differential effect of ultraviolet-B radiation on certain metabolic processes in a chromatically adapting Nostoc. Photochemistry and Photobiology, 1992, 55(3): 401-407. DOI:10.1111/j.1751-1097.1992.tb04254.x
[73] Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for beta-carotene production. Applied Microbiology and Biotechnology, 2007, 74(3): 517-523. DOI:10.1007/s00253-006-0777-8
[74] Reginald MY. Role of the micro alga Dunaliella salina in salt biotechnology. Seaweed Research and Utilisation, 2008, 30(2): 273-277.
[75] García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG. Production of Dunaliella salina biomass rich in 9-Cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 2005, 115(1): 81-90. DOI:10.1016/j.jbiotec.2004.07.010
[76] Lagashetti AC, Dufossé L, Singh SK, Singh PN. Fungal pigments and their prospects in different industries. Microorganisms, 2019, 7(12): 604. DOI:10.3390/microorganisms7120604
[77] Foreman CM, Dieser M, Greenwood M, Cory RM, Laybourn-Parry J, Lisle JT, Jaros C, Miller PL, Chin YP, McKnight DM. When a habitat freezes solid: microorganisms over-winter within the ice column of a coastal Antarctic lake. FEMS Microbiology Ecology, 2011, 76(3): 401-412. DOI:10.1111/j.1574-6941.2011.01061.x
[78] Rao MPN, Xiao M, Li WJ. Fungal and bacterial pigments: secondary metabolites with wide applications. Frontiers in Microbiology, 2017, 8: 1113. DOI:10.3389/fmicb.2017.01113
[79] Martínková L, J˚zlová P, Veselý D. Biological activity of polyketide pigments produced by the fungus Monascus. Journal of Applied Bacteriology, 1995, 79(6): 609-616. DOI:10.1111/j.1365-2672.1995.tb00944.x
[80] Sudhakar T, Karpagam S, Jayavarthanan R. Pyocyanin and its bacteriostatic effect toward common clinical pathogens. International Journal of PharmTech Research, 2013, 5(4): 1487-1492.
[81] Leon LL, Miranda CC, De Souza AO, Durán N. Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. Journal of Antimicrobial Chemotherapy, 2001, 48(3): 449-450. DOI:10.1093/jac/48.3.449
[82] Melo P. Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology, 2003, 186(3): 217-225. DOI:10.1016/S0300-483X(02)00751-5
[83] Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di Stefano E, Mattei M, Silvestri R, Schippa S, Manzari V, Modesti A, Bei R. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumor Biology, 2016, 37(3): 3705-3717. DOI:10.1007/s13277-015-4207-3
[84] Danevčič T, Borić Vezjak M, Zorec M, Stopar D. Prodigiosin-A multifaceted Escherichia coli antimicrobial agent. PLoS One, 2016, 11(9): e0162412. DOI:10.1371/journal.pone.0162412
[85] Ranković BR, Kosanić MM, Stanojković TP. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complementary and Alternative Medicine, 2011, 11: 97. DOI:10.1186/1472-6882-11-97
[86] Georgiou CD, Sun HJ, McKay CP, Grintzalis K, Papapostolou I, Zisimopoulos D, Panagiotidis K, Zhang GS, Koutsopoulou E, Christidis GE, Margiolaki I. Evidence for photochemical production of reactive oxygen species in desert soils. Nature Communications, 2015, 6: 7100. DOI:10.1038/ncomms8100
[87] Arcangeli C, Cannistraro S. In situ Raman microspectroscopic identification and localization of carotenoids: approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biopolymers, 2000, 57(3): 179-186. DOI:10.1002/(SICI)1097-0282(2000)57:3<179::AID-BIP6>3.0.CO;2-4
[88] Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1781-1790.
[89] Borić M, Danevčič T, Stopar D. Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. Microbial Ecology, 2011, 62(3): 528-536. DOI:10.1007/s00248-011-9857-0
[90] Díaz-Ruiz C, Montaner B, Pérez-Tomás R. Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histology and Histopathology, 2001, 16(2): 415-421.
[91] Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J. Nutraceutical properties of phycocyanin. Journal of Functional Foods, 2014, 11: 375-392. DOI:10.1016/j.jff.2014.10.011
[92] Zheng YQ, Xin YW, Shi XN, Guo YH. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Applied Microbiology and Biotechnology, 2010, 88(5): 1169-1177. DOI:10.1007/s00253-010-2834-6
[93] Zhan JX, Burns AM, Liu MX, Faeth SH, Gunatilaka AAL. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. Journal of Natural Products, 2007, 70(2): 227-232. DOI:10.1021/np060394t
[94] Izawa S, Harada N, Watanabe T, Kotokawa N, Yamamoto A, Hayatsu H, Arimoto-Kobayashi S. Inhibitory effects of food-coloring agents derived from Monascus on the mutagenicity of heterocyclic amines. Journal of Agricultural and Food Chemistry, 1997, 45(10): 3980-3984. DOI:10.1021/jf9703821
[95] Jeun J, Jung H, Kim JH, Kim YO, Youn SH, Shin CS. Effect of the Monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food Chemistry, 2008, 107(3): 1078-1085. DOI:10.1016/j.foodchem.2007.09.021
[96] Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM. Carotenoids and some other pigments from fungi and yeasts. Metabolites, 2021, 11(2): 92. DOI:10.3390/metabo11020092
[97] Liu XX, Wang YJ, Sun SQ, Zhu CJ, Xu W, Park Y, Zhou HM. Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Preparative Biochemistry & Biotechnology, 2013, 43(3): 271-284.
[98] Tian LQ, Xu X, Jiang L, Zhang ZD, Huang H. Optimization of fermentation conditions for carotenoid production in the radiation-resistant strain Deinococcus xibeiensis R13. Bioprocess and Biosystems Engineering, 2019, 42(4): 631-642. DOI:10.1007/s00449-018-02069-3
[99] Cassia Pereira J, Leite RSR, Prado HFA, Bocchini Martins DA, Gomes E, Silva R. Production and characterization of β-glucosidase obtained by the solid-state cultivation of the thermophilic fungus Thermomucor indicae-seudaticae N31. Applied Biochemistry and Biotechnology, 2015, 175(2): 723-732. DOI:10.1007/s12010-014-1332-1
[100] Su AP, Chi S, Li Y, Tan SY, Qiang S, Chen Z, Meng YH. Metabolic redesign of Rhodobacter sphaeroides for lycopene production. Journal of Agricultural and Food Chemistry, 2018, 66(23): 5879-5885. DOI:10.1021/acs.jafc.8b00855
微生物产色素机制及其生物活性
于雪 , 张威 , 吴玉洁 , 陈拓 , 刘光琇