微生物学报  2022, Vol. 62 Issue (4): 1247-1259   DOI: 10.13343/j.cnki.wsxb.20210476.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210476
中国科学院微生物研究所,中国微生物学会

文章信息

金亦豪, 刘子述, 胡宝兰. 2022
JIN Yihao, LIU Zishu, HU Baolan.
环境中胞内胞外抗性基因的分离检测、分布与传播研究进展
Isolation, detection, distribution, and transmission of intracellular and extracellular antibiotic resistance genes in the environment
微生物学报, 62(4): 1247-1259
Acta Microbiologica Sinica, 62(4): 1247-1259

文章历史

收稿日期:2021-08-10
修回日期:2021-09-18
网络出版日期:2021-10-27
环境中胞内胞外抗性基因的分离检测、分布与传播研究进展
金亦豪 , 刘子述 , 胡宝兰     
浙江大学环境与资源学院环境生态研究所, 浙江 杭州 310058
摘要:抗生素抗性基因(ARGs)传播对人类健康具有潜在的风险。胞内抗性基因(iARGs)和胞外抗性基因(eARGs)是抗生素抗性基因的两种存在形式,其在不同环境介质中的分布与传播过程具有截然不同的特征。本文首先基于ARGs赋存形态的差异,对染色体抗性基因、质粒抗性基因、噬菌体抗性基因等ARGs的胞内/胞外分类给予明确界定,并根据环境样品来源归纳了现有分离检测技术的应用场景,总结了iARGs和eARGs在养殖场、污水处理厂、河道、海洋、大气等环境中的分布特征,同时比较了其在传播方式和传播能力上的差异,以期为ARGs的分类阻控和健康风险评估提供理论参考。
关键词抗生素抗性基因    胞内/胞外抗性基因    分离检测方法    分布特征    传播途径    
Isolation, detection, distribution, and transmission of intracellular and extracellular antibiotic resistance genes in the environment
JIN Yihao , LIU Zishu , HU Baolan     
College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Abstract: The transmission of antibiotic resistance genes (ARGs) is a potential threat to human health. ARGs are present as both intracellular and extracellular fractions of DNA in the environment. Intracellular ARGs (iARGs) and extracellular ARGs (eARGs) have different distribution and transmission characteristics in different environments. In this paper, we first categorized chromosomal, plasmid-borne, phage-associated ARGs into iARGs and eARGs with regarding to their occurrence states, and then summarized the methods for the isolation and detection of iARGs and eARGs from soil, water, and the atmosphere. Afterwards, we described the abundance distribution of iARGs and eARGs in livestock and aquaculture farmlands, wastewater treatment plants, rivers, oceans, and the atmosphere and compared their transmission methods and ability. This paper is expected to provide a theoretical reference for the control and assessment of the health risks of ARGs in the future.
Keywords: antibiotic resistance genes    iARGs/eARGs    isolation and detection methods    distribution characteristics    transmission routes    

由抗生素滥用引发的抗生素耐药性已经成为不容忽视的全球性问题,严重威胁环境与人类健康以及社会经济的有序发展。目前每年有70万人的死亡与抗生素抗性有关,如若不采取任何措施这一数字将于2050年上升至1 000万人,并造成数以百万亿计的经济损失[1]。为此世界卫生组织(WHO)于2014年发布了“控制细菌耐药全球行动计划”,旨在呼吁全球合作遏制抗生素抗性的进一步发展。

抗生素抗性基因(antibiotic resistance genes,ARGs)是导致细菌产生抗生素耐药性的“元凶”,因其具备生物活性、迁移转化途径复杂和种类多样等特点,被视作一种新型环境污染物[2]。抗性基因是自然存在的、编码抵抗抗生素功能的基因片段[3]。受人类活动的影响,环境中抗生素选择压力持续存在,抗性基因在环境中的丰度也在不断升高[4]。为了有效阻控抗生素抗性基因在环境中的传播,国内外学者对其增殖传播机制开展了大量研究,但总体上较为宏观,对于抗生素抗性基因存在形式关注较少。直到2013年Mao等[5]和Zhang等[6]在胞内/胞外基因的基础上衍生出了胞内抗生素抗性基因(intracellular antibiotic resistance genes,iARGs)和胞外抗生素抗性基因(extracellular antibiotic resistance genes,eARGs)的概念。

环境条件和自身性质的差异使iARGs与eARGs具有截然不同的环境分布及基因转移特征[7]。iARGs在适宜微生物大量生长的养殖场、污水厂等受人类活动直接影响的环境中占主导,可以随抗生素抗性菌的增殖而扩增,并以垂直基因转移的方式从亲代传递给子代,也可以通过接合和转导两种水平基因的方式实现种内和种间传递[8]。而eARGs在土壤、沉积物、海洋等自然环境中分布更为广泛,可通过转化过程被环境中感受态细胞获取,使其具有持久性和迁移能力[5, 9]。研究表明,相较于游离态的eARGs,环境介质中吸附在介质界面的吸附态eARGs的转化能力更强[10]

为了更好地认识抗生素抗性基因的环境行为,需要进一步开展分类研究,区分iARGs和eARGs在不同环境中的分布特性、传播特征及其对人类健康的差异化影响。因此,本文从明确iARGs和eARGs的定义出发,概述了针对不同环境样本iARGs和eARGs检测方法,总结了iARGs与eARGs在不同生境中的丰度分布特征、传播方式及影响因素,在合理分析现存问题的基础上对未来研究方向进行了前瞻性展望。

1 iARGs与eARGs的分类原则

由于基因在环境中赋存形态的复杂性以及分离方法的局限性,目前研究当中对于iARGs与eARGs的界定没有统一标准。Mao等[5]和Zhang等[6]首先依据胞内DNA(iDNA)和胞外DNA(iDNA)存在形式将ARGs分为两类,随后Wang等[11]提出了胞内、胞外抗生素抗性基因的概念即iARGs和eARGs[56, 11]。Mao等进一步将eARGs分为质粒抗性基因(plasmid-borne ARGs)和染色体抗性基因(chromosomal ARGs),并进行比较研究[5]。Zhang等考虑了eDNA的吸附性,并以其为依据进行分类研究,将eDNA细分为细胞/颗粒吸附的胞外DNA (cell- associated DNA)和游离态的胞外DNA (cell-free DNA)[12]。Yu等则根据尺寸大小将ARGs分为颗粒组分(particl-associated assemblages,>3 μm)、游离态细菌组分(free-living,0.2–3 μm)和无细胞组分(free-living,<0.2 μm)的ARGs[13]。He等则根据载体的不同将ARGs分为细菌携带的iARGs、噬菌体携带的eARGs和游离态的eARGs[14]。为了系统分析ARGs在环境中的分布与传播,本文整合上述分类依据,从赋存形态与形成过程的角度,对iARGs和eARGs给予明确的分类依据(图 1)。

图 1 iARGs和eARGs概念图 Figure 1 Scheme of iARGs and eARGs. 1: intracellular chromosomal ARGs; 2: intracellular plasmid ARGs; 3: secretion; 4: lysis; 5: free extracellular plasmid ARGs; 6: free extracellular chromosomal ARGs; 7: particles and colloids; 8: adsorbed extracellular ARGs; 9: phage-associated extracellular ARGs.

iARGs和eARGs是抗性基因存在的2种形式:(1) iARGs是指由胞内基因载体携带的ARGs,包括完整细胞个体中由染色体携带的ARGs和质粒携带的ARGs;(2) eARGs是指由胞外基因载体携带的ARGs,依据eARGs在环境介质中的赋存形态可分为游离态(f-eARGs)、吸附态(a-eARGs)和噬菌体携带(phage-associated ARGs)的染色体和质粒抗性基因[1415]

需要指出的是,环境中不同形式ARGs的相对比例是动态变化的。一方面iARGs可以通过死细胞的裂解或活细胞的分泌释放到胞外环境,以eARGs的形式存在于环境中;另一方面,环境中的eARGs也可以通过转化进入细胞内成为iARGs。因此,环境样品中iARGs与eARGs分类表征方法的建立,是ARGs分类研究的关键,是精准刻画ARGs环境分布与传播特征的基础,也是科学评估ARGs环境与健康风险的前提。

2 iARGs和eARGs的分离检测方法

环境样本中iARGs与eARGs的分类研究主要包括预处理-分离-回收-检测4个步骤。其中分离和检测方法在研究领域内已经初步统一。分离方法以过滤为核心,鉴于细菌直径通常大于0.5 μm,因此常采用0.20–0.22 μm孔径过滤区分iARGs和eARGs[5, 1617]。检测方面,基于PCR技术的基因检测是抗生素抗性基因研究的主流方法,包括基于二代测序的宏基因组分析、高通量qPCR芯片等[18]

由于环境介质的复杂性,环境样品中iARGs和eARGs分离预处理方法与分离后的高效回收是当前研究的难点(图 2)。对于固体样品中iARGs和eARGs的回收,Mao等在传统的iDNA提取的基础上进行改良,将样品与NaH2PO4和交联聚维酮(PVPP)混合、振荡、离心后,对上清液进行抽滤实现iARGs和eARGs的分离,随后采用十六烷基三甲基溴化铵(CTAB)法回收沉积物的eARGs,并以植物病原菌(Xcc8004)携带的XC2068基因和纤维素合成酶基因CESA9分别作为胞内和胞外基因的内参计算回收率[5]。CTAB法可有效去除样品中多糖和蛋白等杂质,已广泛应用于生物膜、污泥、沉积物、粪便等固体样品的iARGs和eARGs的提取[10, 1922],但是采用CTAB法对水体样品进行胞外基因提取时,由于水相生物量较小无法对DNA有效浓缩,因此提取效率较低(<10%)[15]

图 2 环境中iARGs和eARGs的分离方法 Figure 2 Separation methods of iARGs and eARGs.

因此在水体样品回收eARGs时通常采用乙醇-醋酸钠沉淀法,利用Na+离子平衡DNA的负电荷促进DNA的富集。目前该方法也广泛应用于自来水、污水中iARGs和eARGs的提取[1213]

磁珠提取法和核酸吸附颗粒提取法则是通过特殊富集材料的使用进一步提高eARGs的回收效率[11, 15]。Yuan等利用羟基修饰的Fe3O4磁珠对核酸可逆吸附的能力,富集污水中的核酸物质,并通过磁场将核酸与磁珠分离,不受样品条件的限制,胞外DNA的提取效率大于85.3%[15]。Wang等研究制备了一种新型的核酸吸附颗粒(NAAP),依靠氢氧化铝包裹的二氧化硅颗粒与核酸间的静电吸附作用,从大体积水体中富集并分离胞内和胞外的DNA,回收率可以高达95%[11]

与土/水样品相比,空气样品中iARGs和eARGs相关研究报道较少,但考虑到人们健康需求的日益提升,抗生素抗性基因随大气传播对人类健康的潜在威胁将受到越来越多的关注。He等通过微纤维膜采集空气中样品后,经过一定时间的超声在避免细胞裂解的同时从颗粒物中分离细胞相,随后采用醋酸钠乙醇沉淀法对胞内胞外遗传物质进行分离并检测各组分抗性基因[14]

然而上述方法只是在传统胞内胞外基因检测的基础上进行了一些细节的优化,并没有解决以过滤为核心的分离方法精度较低等问题。由于eARGs组分较为复杂,仍然需要在胞外DNA的精细化分离上做针对性的研发。

3 iARGs和eARGs的环境分布与传播 3.1 iARGs和eARGs的分布特征及其影响因素

iARGs和eARGs在不同生境中的分布特征不同,其中eARGs占比(在ARGs总和丰度中的占比)在流域上游养殖场<污水处理厂<大气<城市供水系统<医院环境<流域下游生境(图 3)。集约化养殖过程中,抗生素作为抑菌剂和生长促进剂被大量使用,耐药微生物在抗生素的选择作用下不断增殖,使iARGs的绝对丰度比eARGs高2–3个数量级。例如,Dong等从猪粪中检测到的iARGs绝对丰度高达1.11× 1011 copies/g,比eARGs高160倍[10]。Yuan等调查了两个水产养殖场底泥的iARGs和eARGs,发现抗性基因主要存在于胞内,iARGs和eARGs的比值为7.9–45.5[20]。这与Zhang等在畜禽养殖废物处理池污泥中发现的iARGs和eARGs分布情况相似[6]

图 3 胞内、胞外抗性基因在环境中的分布示意图 Figure 3 Schematic distribution of iARGs & eARGs in the environment.

在污水处理厂,营养物质的持续输入为微生物提供了适宜的增殖条件,较低的抗生素选择压力使iARGs的绝对丰度比eARGs高1–2个数量级。Yu等检测并分析了污水处理厂各构筑物污水的iARGs和eARGs分布情况,总体上iARGs的绝对丰度为6.3×106–1.0×109 copies/mL,eARGs为2.8×105–7.1×108 copies/mL[13]。在污水生物处理过程中,二沉池出水的iARGs和eARGs绝对丰度相比于进水显著降低,但其相对占比无显著变化[23]。但经过紫外或氯消毒后,eARGs占比随细胞凋亡显著增加,表明污水处理厂可能是eARGs和iARGs形态转化的重要场所[2425]

大气流动是抗性基因区域传播和远距离传输的主要驱动力之一[2627]。研究表明,在空气中iARGs的绝对丰度较eARGs高约1个数量级。例如He等调查PM2.5中iARGs和eARGs丰度,发现空气中iARGs的绝对丰度为3.36×103–4.16×105 copies/m3,eARGs绝对丰度为1.35×103–3.00×104 copies/m3,而不同城市ARGs的赋存特征与气象条件和气体组分差异有关[14]

城市供水系统是抗性基因在人群暴露的重要途径,抗性基因在自来水管网中的出现对生产生活中的用水安全构成了威胁。研究表明,在城市供水系统中iARGs较eARGs高0–1个数量级。例如,天津市中心城区集中供应管网末梢水的iARGs是eARGs的3.8倍[28]。Hao等对自来水中iARGs与eARGs进行了年度监测,结果表明,iARGs和eARGs分别占总ARGs的77.4%和22.6%,且其变化规律与自来水中的余氯浓度有相关性[29]

在医院环境中,抗生素的密集使用以及病原菌的大量存在使医院环境的细菌耐药性水平不断升高,为多重耐药病原菌提供了良好的增殖条件[30]。现有研究表明,医院环境的iARGs与eARGs分布情况与自然环境不同,其中iARGs的绝对丰度较eARGs低0–1个数量级。例如,在富集了医院大量残留抗生素和病原菌的医院废水处理设施中,iARGs的绝对丰度为4.89×109 copies/mL,而eARGs的绝对丰度为1.36×1010 copies/mL[10]

河口等临近水域生态系统是内陆河流和陆地与海洋交汇所形成的生态系统,接纳了大量来自河道径流和陆源排放的污染物,具有较高的抗性基因多样性和丰度[31]。以我国华北地区最大的水系——海河为例,沿线河道、入海口及近海中eARGs多样性和丰度均高于iARGs[5, 22, 32]。其中,排污口下游河道沉积物中eARGs绝对丰度高达3×1010 copies/m3[5]。长江水系也有类似规律,入海口沉积物中iARGs和eARGs分别占总ARGs的22%和78%。与之相比,近海中的eARGs丰度进一步升高至90%[32]

可见iARGs和eARGs在不同环境中的丰度与多样性受环境因素(包括营养水平、温度、pH、颗粒物胶体等)和自身性质(包括存在状态、结合形式、片段长度等)的协同影响。丰富的营养物质可以为环境中的微生物提供理想的生长条件,从而促使抗性微生物的增殖,导致iARGs相对丰度提高[6]。因此,在营养物质丰富的污泥、污水、粪便中iARGs丰度通常较高[10, 13]。土壤、沉积物和气溶胶等环境中存在着丰富的颗粒物和胶体,可以吸附胞外DNA并保护其免于脱氧核糖核酸酶的降解[33]。相较于砂土,黏土对胞外DNA的吸附能力更强,使eARGs具有更强的持久性[33]。而温度、盐度、pH等因素可以影响脱氧核糖核酸酶(DNase)的活性进而影响eARGs的环境丰度[3334]。此外,DNA的存在形式是影响iARGs和eARGs分布的另一个重要因素。eARGs(染色体携带或质粒携带)相较于iARGs (细菌个体)具有更高的比表面积和分子灵活性,更易吸附于颗粒物表面,转变为结合态抗性基因,因此在土壤和沉积物等eARGs具有更强的持久性[3536]

3.2 iARGs和eARGs的传播差异

环境中ARGs的传播方式和能力决定了其向病原菌转移和造成潜在健康风险的可能性。由于基因存在形式的差异,iARGs和eARGs在环境中具有截然不同的传播方式,有必要进一步探究不同环境中iARGs和eARGs的传播能力及其影响因素。

3.2.1 iARGs的传播方式

iARGs可以通过接合转移和转导的方式进行水平基因转移。接合转移是iARGs在细胞与细胞间传播的主要方式,也是目前研究最多的水平转移方式。iARGs通过广宿主质粒穿过细胞与细胞间的微孔实现接合转移。不同环境中接合转移发生的频率通常存在差异,活性污泥、粪便和沉积物中接合转移的频率范围分别为10–7–10–2、10–8–10–3和10–7–10–1[3742](表 1)。接合转移的发生频率的影响因素不仅包括受/供体细胞、质粒类型,也包括温度、环境中重金属、离子液体等因素的影响[4245]。研究表明温度升高可以使接合转移的频率增加2个数量级以上[42]。非营养甜味剂通过改变细胞膜的通透性可以提高iARGs结合转化的频率[46]。离子液体[BMIm][PF6]通过强化参与接合转移和调控mRNA基因的表达并抑制细胞生长,促进外膜蛋白的合成并提高膜通透性,从而提高接合转移的频率[43]。重金属铜通过诱导细胞损伤使接合转移的频率提高16倍,而重金属铜通过诱导胞外多聚物(EPS)的分泌阻碍接合转移的发生[47]

表 1. iARGs和eARGs的传播能力(水平基因转移频率) Table 1. Transfer ability of iARGs and eARGs (Frequency of horizonal gene transfer)
Type of propagation Environment Frequency References
Conjugation frequency of iARGs Activated sludge 1.7×10–2–3.4×10–2 [37]
Activated sludge 9.0×10–4–1.4×10–2 [38]
Activated sludge 3.39×10–5–5.05×10–4 [39]
Wastewater 2.0×10–2–1.0×10–1 [56]
Sediment (7.48±1.91)×10–1–(8.48±4.67)×10–7 [40]
Pig manure 2×10–8–6×10–5 [41]
Pig manure 8.1×10–5–2.4×10–3 [42]
Transduction frequency of iARGs Clinic environment 9×10–7–1.9×10–5 [53]
Ocean 5.1×10–9–1.57×10–8 [55]
Freshwater 2×10–9–(6±0.5)×10–7 [54]
Transformation frequency of eARGs Chicken manure 2×10–7–10–3 [57]
Soil 1.4×10–7–5.6×10–5 [58]
Soil 2×10–5–9×10–4 [59]

转导是iARGs进行转移的另一种方式,是由噬菌体介导的胞内基因由感染细胞向受体细胞转移的过程。噬菌体侵入细胞后,细胞内的染色体DNA和质粒DNA被噬菌体利用,并通过同源重组成为噬菌体子代的一部分。当DNA中含有抗性基因片段时,抗性基因便会通过噬菌体的转导作用下不断复制、积累。研究表明,噬菌体是环境中重要的抗性基因储库[48]。在海洋、猪粪、土壤、污泥等环境中β-内酰胺类、磺胺类、四环素和多重耐药基因存在于噬菌体中,因此环境中的噬菌体可能在对抗性基因的转移起重要的作用[4952]。转导发生的频率通常不及接合转移,例如在临床环境中转导发生的频率为9×10–7–1.5×10–5,在海洋中为5.1×10–9– 1.57×10–8,在淡水中为2×10–9–(6±0.5)×10–7[5355] (表 1)。值得注意的是由于噬菌体病毒快速重组和变异的特征,iARGs被病毒利用后会形成新的抗性基因序列,进而导致新型抗性基因的传播[48]

3.2.2 eARGs的传播方式

转化是eARGs进行转移的主要途径,转化的发生要求环境中存在胞外DNA且受体细胞处于感受态[60]。研究已证实eARGs广泛存在于环境中(3.1中进行了描述),具有通过转化进行基因转移的潜在风险。此外,一些极端的环境条件(比如营养物质的缺乏、抗生素的胁迫)以及对基因修复的需求会诱导细菌处于感受态[8, 61]。由于自然界中80%以上的细菌是潜在的感受态细菌,因此随着抗生素污染的加剧,抗性基因通过转化进行水平转移的可能性可能会提高[62]

自然界转化发生的频率略低于接合转移,例如在土壤样品中转化发生的频率为2×10–5– 9×10–4,在动物粪便中发生的频率为2×10–7– 10–3[5759](表 1)。但是许多证据表明环境中eARGs的传播具有很高的生态风险。Naquin等将含有mecA (甲氧西林抗性基因)的污水样品过滤得到eARGs,并将甲氧西林敏感的金黄色葡萄球菌(Staphylococcus aureus)暴露于污水样品,发现随后S. aureus对甲氧西林产生了抗性,这为敏感菌株通过转化获得耐药性提供了直接证据[63]。Li等采用反向重水标记的拉曼光谱技术在培养体系中对耐药菌进行追踪,发现土壤中的eARGs可以通过转化迁移到人类致病菌中[64]。此外,许多新型污染物会促进抗性基因转化发生的频率。广泛应用于日用品的非抗生素抗菌剂三氯生,在环境检测的浓度水平下会诱导ROS产生从而增加膜的渗透性,使eARGs向大肠杆菌(Escherichia coli)转化的频率增加1.5倍[65]。纳米材料通过破坏细胞膜使eARGs转化频率提高2个数量级[66]。氯消毒及消毒副产物在造成细胞DNA损伤后,刺激具有DNA损伤修复和外源基因整合功能的recA基因表达,促进了eARGs的转移[6768]

综上所述,iARGs和eARGs通过不同的生物过程在环境介质与微生物间传播,其中iARGs接合频率>eARGs转化频率>iARGs转导频率。除此之外,污染物在环境介质中的汇聚为ARGs的传播提供了有利条件,可能会进一步提高ARGs在环境中的传播能力。

4 展望

iARGs和eARGs有明显的环境分布特征,在传播途径上存在明显的差异。在养殖场、污水厂等抗生素污染热点区域,细菌耐药性的传播及潜在健康风险很大程度上取决于主导的ARGs形式。但是,现有环境样品iARGs和eARGs分类表征方法的局限性,如区分eARGs赋存形态能力的不足,限制了ARGs的系统研究。此外,目前对iARGs和eARGs由污染场所向环境介质的转移仍然缺乏有效的阻控手段。同时,由于缺乏对ARGs的分类研究,无法实现与抗生素抗性有关的环境溯源。

本文在综述了现有iARGs和eARGs分离检测方法、环境分布和传播能力的基础上,对未来iARGs和eARGs的研究提出几点建议:(1) 根据iARGs和eARGs赋存形态,针对性建立分离检测标准方法,追踪环境中iARGs和eARGs的变化情况,例如采用密度梯度离心对不同赋存形态的eARGs进行区分;(2) 依据iARGs和eARGs分布与传播特征采取针对性阻控措施,例如改进污水处理厂污水处理工艺以应对污水处理过程中ARGs形态变化引起的传播能力变化;(3)基于不同环境中占主导的ARGs形式,分析iARGs和eARGs的人群暴露水平及其向临床病原菌转移的能力,系统评估环境中ARGs的潜在健康风险。

References
[1] O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. London: Government of the United Kingdom, 2016.
[2] Pruden A, Pei RT, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology, 2006, 40(23): 7445-7450.
[3] D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. Antibiotic resistance is ancient. Nature, 2011, 477(7365): 457-461. DOI:10.1038/nature10388
[4] Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environmental Health Perspectives, 2012, 120(8): 1100-1106. DOI:10.1289/ehp.1104650
[5] Mao DQ, Luo Y, Mathieu J, Wang Q, Feng L, Mu QH, Feng CY, Alvarez PJJ. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environmental Science & Technology, 2014, 48(1): 71-78.
[6] Zhang YP, Snow DD, Parker D, Zhou Z, Li X. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environmental Science & Technology, 2013, 47(18): 10206-10213.
[7] Zarei-Baygi A, Smith AL. Intracellular versus extracellular antibiotic resistance genes in the environment: prevalence, horizontal transfer, and mitigation strategies. Bioresource Technology, 2021, 319: 124181. DOI:10.1016/j.biortech.2020.124181
[8] Von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, Savelkoul PHM, Wolffs PFG. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 2016, 7: 173.
[9] Poté J, Ceccherini MT, Van VT, Rosselli W, Wildi W, Simonet P, Vogel TM. Fate and transport of antibiotic resistance genes in saturated soil columns. European Journal of Soil Biology, 2003, 39(2): 65-71. DOI:10.1016/S1164-5563(03)00003-7
[10] Dong PY, Wang H, Fang TT, Wang Y, Ye QH. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG. Environment International, 2019, 125: 90-96. DOI:10.1016/j.envint.2019.01.050
[11] Wang DN, Liu L, Qiu ZG, Shen ZQ, Guo X, Yang D, Li J, Liu WL, Jin M, Li JW. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water. Water Research, 2016, 92: 188-198. DOI:10.1016/j.watres.2016.01.035
[12] Zhang Y, Li AL, Dai TJ, Li FF, Xie H, Chen LJ, Wen DH. Cell-free DNA: a neglected source for antibiotic resistance genes spreading from WWTPs. Environmental Science & Technology, 2018, 52(1): 248-257.
[13] Yu KF, Li P, He YL, Zhang B, Chen YH, Yang JH. Unveiling dynamics of size-dependent antibiotic resistome associated with microbial communities in full-scale wastewater treatment plants. Water Research, 2020, 187: 116450. DOI:10.1016/j.watres.2020.116450
[14] He TT, Jin L, Xie JW, Yue SY, Fu PQ, Li XD. Intracellular and extracellular antibiotic resistance genes in airborne PM2. 5 for respiratory exposure in urban areas. Environmental Science & Technology Letters, 2021, 8(2): 128-134.
[15] Yuan QB, Huang YM, Wu WB, Zuo PX, Hu N, Zhou YZ, Alvarez PJJ. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads. Environment International, 2019, 131: 104986. DOI:10.1016/j.envint.2019.104986
[16] Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Applied and Environmental Microbiology, 2005, 71(1): 46-50. DOI:10.1128/AEM.71.1.46-50.2005
[17] Prescott LM. 微生物学: 中文版. 北京: 高等教育出版社, 2003.
[18] Wu N, Yang JH, Zhang WY, Yang F, Zeng M. Progress in detection methods of antibiotic resistance in different environmental matrices. Microbiology China, 2016, 43(12): 2720-2729. (in Chinese)
吴楠, 杨静慧, 张伟玉, 杨帆, 曾明. 不同环境介质中抗生素耐药性的检测方法研究进展. 微生物学通报, 2016, 43(12): 2720-2729.
[19] Guo XP, Yang Y, Lu DP, Niu ZS, Feng JN, Chen YR, Tou FY, Garner E, Xu J, Liu M, Hochella MF Jr. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Research, 2018, 129: 277-286. DOI:10.1016/j.watres.2017.11.029
[20] Yuan K, Wang XW, Chen X, Zhao ZQ, Fang L, Chen BY, Jiang J, Luan TG, Chen BW. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere, 2019, 234: 520-527. DOI:10.1016/j.chemosphere.2019.06.085
[21] Zhou S, Zhu YJ, Yan Y, Wang WG, Wang YY. Deciphering extracellular antibiotic resistance genes (eARGs) in activated sludge by metagenome. Water Research, 2019, 161: 610-620. DOI:10.1016/j.watres.2019.06.048
[22] Zhao Z, Zhang K, Wu N, Li WJ, Xu WA, Zhang Y, Niu ZG. Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes: a high-throughput analysis in Haihe Estuary in China. Environment International, 2020, 135: 105385. DOI:10.1016/j.envint.2019.105385
[23] Sui QW, Chen YL, Yu DW, Wang T, Hai YL, Zhang JY, Chen MX, Wei YS. Fates of intracellular and extracellular antibiotic resistance genes and microbial community structures in typical swine wastewater treatment processes. Environment International, 2019, 133: 105183. DOI:10.1016/j.envint.2019.105183
[24] Liu SS, Qu HM, Yang D, Hu H, Liu WL, Qiu ZG, Hou AM, Guo JH, Li JW, Shen ZQ, Jin M. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research, 2018, 136: 131-136. DOI:10.1016/j.watres.2018.02.036
[25] Fu SS, Wang Y, Wang XL, Wang SJ, Cheng Y, Bian B, Zhang SB, Yuan QB. Generation of extracellular antibiotic resistance genes during municipal wastewater chlorination and UV disinfection. China Environmental Science, 2021: 1-18. (in Chinese)
付树森, 王艺, 王肖霖, 王尚杰, 程远, 卞博, 张生博, 袁青彬. 结合态和游离态胞外抗性基因在城市污水氯和紫外消毒过程中的产生特征. 中国环境科学, 2021: 1-18. DOI:10.3969/j.issn.1000-6923.2021.01.001
[26] Zhu GB, Wang XM, Yang T, Su JQ, Qin Y, Wang SY, Gillings M, Wang C, Ju F, Lan BR, Liu CL, Li H, Long XE, Wang XM, Jetten MSM, Wang ZF, Zhu YG. Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 2021, 15(1): 270-281. DOI:10.1038/s41396-020-00780-2
[27] Li J, Cao JJ, Zhu YG, Chen QL, Shen FX, Wu Y, Xu SY, Fan HQ, Da G, Huang RJ, Wang J, de Jesus AL, Morawska L, Chan CK, Peccia J, Yao MS. Global survey of antibiotic resistance genes in air. Environmental Science & Technology, 2018, 52(19): 10975-10984.
[28] Liang YB, Li HB, Cheng CY, Shi DY, Chen ZS, Yang D, Sun DL, Shao YF, Li JW, Jin M. Profile of antibiotic resistance genes in the terminal tap water from the center area of Tianjin. Asian Journal of Ecotoxicology, 2021, 16(2): 195-202. (in Chinese)
梁永兵, 李海北, 程春燕, 师丹阳, 陈郑珊, 杨栋, 孙栋良, 邵一帆, 李君文, 金敏. 天津市中心城区集中供应管网末梢水的抗生素耐药基因污染特征研究. 生态毒理学报, 2021, 16(2): 195-202.
[29] Hao H, Shi DY, Yang D, Yang ZW, Qiu ZG, Liu WL, Shen ZQ, Yin J, Wang HR, Li JW, Wang H, Jin M. Profiling of intracellular and extracellular antibiotic resistance genes in tap water. Journal of Hazardous Materials, 2019, 365: 340-345. DOI:10.1016/j.jhazmat.2018.11.004
[30] Fasugba O, Gardner A, Mitchell BG, Mnatzaganian G. Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infectious Diseases, 2015, 15(1): 545. DOI:10.1186/s12879-015-1282-4
[31] Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, Chen YS, Zhang T, Gillings MR, Su JQ. Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, 2(4): 16270. DOI:10.1038/nmicrobiol.2016.270
[32] Zhang YP, Niu ZG, Zhang Y, Zhang K. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them. Environmental Pollution, 2018, 236: 126-136. DOI:10.1016/j.envpol.2018.01.033
[33] Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research, 2007, 6(1-2): 37-53. DOI:10.1051/ebr:2007031
[34] Nagler M, Insam H, Pietramellara G, Ascher-Jenull J. Extracellular DNA in natural environments: features, relevance and applications. Applied Microbiology and Biotechnology, 2018, 102(15): 6343-6356. DOI:10.1007/s00253-018-9120-4
[35] Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM. Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science & Technology, 2014, 48(3): 1819-1827.
[36] Poly F, Chenu C, Simonet P, Rouiller J, Jocteur Monrozier L. Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir, 2000, 16(3): 1233-1238. DOI:10.1021/la990506z
[37] Li B, Qiu Y, Zhang J, Liang P, Huang X. Conjugative potential of antibiotic resistance plasmids to activated sludge bacteria from wastewater treatment plants. International Biodeterioration & Biodegradation, 2019, 138: 33-40.
[38] Qiu Y, Zhang J, Li B, Wen XH, Liang P, Huang X. A novel microfluidic system enables visualization and analysis of antibiotic resistance gene transfer to activated sludge bacteria in biofilm. Science of the Total Environment, 2018, 642: 582-590. DOI:10.1016/j.scitotenv.2018.06.012
[39] Li LG, Dechesne A, He ZM, Madsen JS, Nesme J, Sørensen SJ, Smets BF. Estimating the transfer range of plasmids encoding antimicrobial resistance in a wastewater treatment plant microbial community. Environmental Science & Technology Letters, 2018, 5(5): 260-265.
[40] Dang BJ, Mao DQ, Xu Y, Luo Y. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Research, 2017, 111: 81-91. DOI:10.1016/j.watres.2016.12.046
[41] Binh CTT, Heuer H, Kaupenjohann M, Smalla K. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecology, 2008, 66(1): 25-37. DOI:10.1111/j.1574-6941.2008.00526.x
[42] Guan J, Wasty A, Grenier C, Chan M. Influence of temperature on survival and conjugative transfer of multiple antibiotic-resistant plasmids in chicken manure and compost microcosms. Poultry Science, 2007, 86(4): 610-613. DOI:10.1093/ps/86.4.610
[43] Wang Q, Mao DQ, Luo Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4. Environmental Science & Technology, 2015, 49(14): 8731-8740.
[44] Lin WF, Li S, Zhang ST, Yu X. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Research, 2016, 91: 331-338. DOI:10.1016/j.watres.2016.01.020
[45] Zhang S, Wang Y, Song HL, Lu J, Yuan ZG, Guo JH. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environment International, 2019, 129: 478-487. DOI:10.1016/j.envint.2019.05.054
[46] Yu ZG, Wang Y, Lu J, Bond PL, Guo JH. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer. The ISME Journal, 2021, 15(7): 2117-2130. DOI:10.1038/s41396-021-00909-x
[47] Wang Q, Liu L, Hou ZL, Wang LT, Ma D, Yang G, Guo SY, Luo JH, Qi LY, Luo Y. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Science of the Total Environment, 2020, 717: 137055. DOI:10.1016/j.scitotenv.2020.137055
[48] Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha CJ Lee SH, Cho JC. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome, 2020, 8(1): 75. DOI:10.1186/s40168-020-00863-4
[49] Calero-Cáceres W, Melgarejo A, Colomer-Lluch M, Stoll C, Lucena F, Jofre J, Muniesa M. Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environmental Science & Technology, 2014, 48(13): 7602-7611.
[50] Wang MZ, Liu P, Zhou Q, Tao WY, Sun YX, Zeng ZL. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. Environmental Pollution, 2018, 238: 291-298. DOI:10.1016/j.envpol.2018.03.024
[51] Calero-Cáceres W, Balcázar JL. Antibiotic resistance genes in bacteriophages from diverse marine habitats. Science of the Total Environment, 2019, 654: 452-455. DOI:10.1016/j.scitotenv.2018.11.166
[52] Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, Muniesa M. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Environment International, 2018, 115: 133-141. DOI:10.1016/j.envint.2018.03.019
[53] Varga M, Kuntová L, Pantůček R, Mašlaňová I, Růžičková V, Doškař J. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiology Letters, 2012, 332(2): 146-152. DOI:10.1111/j.1574-6968.2012.02589.x
[54] Kenzaka T, Tani K, Nasu MS. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. The ISME Journal, 2010, 4(5): 648-659. DOI:10.1038/ismej.2009.145
[55] Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Applied and Environmental Microbiology, 1998, 64(8): 2780-2787. DOI:10.1128/AEM.64.8.2780-2787.1998
[56] Jacquiod S, Brejnrod A, Morberg SM, Abu Al-Soud W, Sørensen SJ, Riber L. Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Molecular Ecology, 2017, 26(13): 3556-3571. DOI:10.1111/mec.14138
[57] Yang QX, Qiang W, Zhuo KY. Effects of antibiotics and metal ions exposure on the natural transformation frequency of an antibiotic resistant plasmid. Fresenius Environmental Bulletin, 2017, 26(10): 5732-5736.
[58] Nielsen KM, Van Weerelt MD, Berg TN, Bones AM, Hagler AN, Van Elsas JD. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Applied and Environmental Microbiology, 1997, 63(5): 1945-1952. DOI:10.1128/aem.63.5.1945-1952.1997
[59] Lu NX, Zilles JL, Nguyen TH. Adsorption of extracellular chromosomal DNA and its effects on natural transformation of Azotobacter vinelandii. Applied and Environmental Microbiology, 2010, 76(13): 4179-4184. DOI:10.1128/AEM.00193-10
[60] Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 2005, 3(9): 711-721. DOI:10.1038/nrmicro1234
[61] Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiology Reviews, 2013, 37(3): 336-363. DOI:10.1111/j.1574-6976.2012.00353.x
[62] Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Research in Microbiology, 2007, 158(10): 767-778. DOI:10.1016/j.resmic.2007.09.004
[63] Naquin A, Shrestha A, Sherpa M, Nathaniel R, Boopathy R. Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. Bioresource Technology, 2015, 188: 79-83. DOI:10.1016/j.biortech.2015.01.052
[64] Li HZ, Zhang DD, Yang K, An XL, Pu Q, Lin SM, Su JQ, Cui L. Phenotypic tracking of antibiotic resistance spread via transformation from environment to clinic by reverse D2O single-cell Raman probing. Analytical Chemistry, 2020, 92(23): 15472-15479. DOI:10.1021/acs.analchem.0c03218
[65] Lu J, Wang Y, Zhang S, Bond P, Yuan ZG, Guo JH. Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Science of the Total Environment, 2020, 713: 136621. DOI:10.1016/j.scitotenv.2020.136621
[66] Ding CS, Pan J, Jin M, Yang D, Shen ZQ, Wang JF, Zhang B, Liu WL, Fu JL, Guo X, Wang DN, Chen ZL, Yin J, Qiu ZG, Li JW. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanotoxicology, 2016, 10(8): 1051-1060. DOI:10.3109/17435390.2016.1161856
[67] Mantilla-Calderon D, Plewa MJ, Michoud G, Fodelianakis S, Daffonchio D, Hong PY. Water disinfection byproducts increase natural transformation rates of environmental DNA in Acinetobacter baylyi ADP1. Environmental Science & Technology, 2019, 53(11): 6520-6528.
[68] Zhang S, Wang Y, Lu J, Yu ZG, Song HL, Bond PL, Guo JH. Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. The ISME Journal, 2021, 15: 2969-2985. DOI:10.1038/s41396-021-00980-4
环境中胞内胞外抗性基因的分离检测、分布与传播研究进展
金亦豪 , 刘子述 , 胡宝兰