微生物学报  2022, Vol. 62 Issue (5): 1669-1687   DOI: 10.13343/j.cnki.wsxb.20210650.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210650
中国科学院微生物研究所,中国微生物学会

文章信息

丁阿强, 李朝洋, 李微薇, 卢培利. 2022
DING Aqiang, LI Chaoyang, LI Weiwei, LU Peili.
厌氧甲烷氧化微生物物质代谢与能量代谢研究进展
Advances in catabolism and energy metabolism of anaerobic methane-oxidizing microorganisms
微生物学报, 62(5): 1669-1687
Acta Microbiologica Sinica, 62(5): 1669-1687

文章历史

收稿日期:2021-10-26
修回日期:2022-01-03
网络出版日期:2022-02-14
厌氧甲烷氧化微生物物质代谢与能量代谢研究进展
丁阿强1,2,3 , 李朝洋1,3 , 李微薇1,3 , 卢培利1,2,3     
1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045;
2. 重庆大学煤矿灾害动力学与控制国家重点实验室, 重庆 400044;
3. 重庆大学环境与生态学院环境科学系, 重庆 400045
摘要:甲烷既是一种温室气体,也是一种潜在的能源物质,其源与汇的平衡对地球化学循环及工程应用均有重要意义。厌氧甲烷氧化(anaerobic oxidation of methane,AOM)过程是深海、湿地和农田等自然生境中重要的甲烷汇,在缓解温室气体排放方面发挥了巨大作用。AOM微生物的中枢代谢机制及其能量转化途径则是介导厌氧甲烷氧化耦合其他物质还原的关键所在。因此,本文从电子受体多样性的视角,主要分析了硫酸盐型,硝酸盐/亚硝酸盐型,金属还原型厌氧甲烷氧化微生物的生理生化过程及环境分布,并对近些年发现的新型厌氧甲烷氧化进行了梳理;重点总结了厌氧甲烷氧化微生物细胞内电子传递路径以及胞外电子传递方式;根据厌氧甲烷氧化微生物环境分布及反应特征,就其生态学意义及在污染治理与能源回收方面的潜在应用价值进行了展望。本综述以期深化对厌氧甲烷氧化过程的微生物学认知,并为其潜在的工程应用方向提供新的思路。
关键词厌氧甲烷氧化    电子受体    微生物分布    物质代谢    能量代谢    
Advances in catabolism and energy metabolism of anaerobic methane-oxidizing microorganisms
DING Aqiang1,2,3 , LI Chaoyang1,3 , LI Weiwei1,3 , LU Peili1,2,3     
1. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments (Ministry of Education), Chongqing University, Chongqing 400045, China;
2. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China;
3. Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
Abstract: Methane is not only a greenhouse gas but also a potential energy substance. The balance of methane source and sink is of great significance to geochemical cycle and engineering application. Anaerobic oxidation of methane (AOM) is an important methane sink in natural habitats such as deep sea, wetland, and farmland, which plays a role in mitigating greenhouse gas emissions. The central metabolic mechanism and energy conversion pathways of methane-oxidizing microorganisms are the key to AOM coupled with the reduction of other substances. Therefore, from the perspective of electron acceptor diversity, we analyzed the physiological and biochemical processes and environmental distribution of sulfate-, nitrate/nitrite-, and metal-reducing anaerobic methane-oxidizing microorganisms, and reviewed the new anaerobic methane-oxidizing microorganisms discovered in recent years. Further, we summarized the intracellular and extracellular electron transport pathways of anaerobic methane-oxidizing microorganisms. According to the environmental distribution and reaction characteristics, we prospected the ecological significance and potential application value of anaerobic methane-oxidizing microorganisms in pollution control and energy recovery. Through the review, we aim to deepen the understanding of the microbial processes of AOM and shed light on its potential engineering application.
Keywords: anaerobic oxidation of methane    electron acceptor    microorganism distribution    catabolism    energy metabolism    

甲烷所引起的温室效应是等量二氧化碳的20–30倍[1],且随着有机物分解等自然源和化石燃料使用等人为源产生的甲烷含量不断增加,其对全球变暖的贡献率已达四分之一[2]。因此,从利用微生物氧化甲烷控制自然源的产生到实施甲烷减排政策限制人为源的排放,对缓解温室效应,实现我国碳达峰与碳中和的目标至关重要。自然界中主要通过好氧甲烷氧化和厌氧甲烷氧化两种方式实现甲烷减量。前者在有氧环境中广泛存在,由好氧甲烷氧化菌将甲烷氧化为二氧化碳[3]。而厌氧甲烷氧化(anaerobic oxidation of methane,AOM)则是指在厌氧条件下,微生物以甲烷作为唯一电子供体,硫酸盐、硝酸盐/亚硝酸盐和金属氧化物等为电子受体发生的氧化还原反应。

在海洋中,产生的甲烷90%被以硫酸盐为电子受体的厌氧甲烷氧化过程所消耗[45];在硫酸盐含量极低的深海环境,铁/锰氧化物可以代替硫酸盐作为电子受体完成甲烷氧化[67];而在潮间带等生态系统中,以硝酸盐/亚硝酸盐为电子受体的AOM过程对厌氧甲烷氧化的贡献率可达65.6%–100%,是潮间带生态系统中重要的甲烷汇[8]。近年来,研究报道了以AQDS、Cr(Ⅵ)等作为新型电子受体的AOM过程[910],理论推测的电子受体不断得到证实,不断拓展了厌氧甲烷氧化的外延。电子受体的多样性也使得厌氧甲烷氧化过程更具普遍性,而不同类型的AOM微生物物质代谢和能量代谢过程则呈现出特异性。

厌氧甲烷氧化微生物将甲烷氧化为二氧化碳,还原不同电子受体的过程涉及物质分解与能量代谢,二者共同构成了AOM微生物新陈代谢的基础(表 1)。理清AOM微生物物质分解及能量转化过程有助于加深对厌氧甲烷氧化的认识,为新型电子受体AOM微生物的生理生化过程研究提供理论基础。

表 1. 不同AOM类型所对应的反应方程式及吉布斯自由能[11] Table 1. Reaction equations and standard Gibbs free energy for different AOM types[11]
The types of AOM Electron acceptor Reaction equation Gibbs free energy/(kJ/mol)
SAMO SO42– CH4+SO42–→HCO3+HS+H2O –16.6
DAMO NO3 5CH4+8NO3+8H+→5CO2+4N2+14H2O –765.0
NO2 3CH4+8NO2+8H+→3CO2+4N2+10H2O –928.0
Metal-reduced AOM Mn4+ 5CH4+8MnO4+19H+→5HCO3+8Mn2++17H2O –991.7
Fe3+ CH4+8Fe3++3H2O→HCO3+8Fe2++9H+ –418.3
Cr6+ 3CH4+4Cr2O72–+32H+→8Cr3++CO2+22H2O –878.8
Other types of AOM AQDS CH4+4AQDS+3H2O→HCO3+H++4AQH2DS –41.0
SeO42– CH4+SeO42–+8H+→4Se0+3CO2+10H2O
HAsO42– CH4+4HAsO42–+3H+→HCO3+4H2AsO3+H2O –299.6
ClO4 CH4+ClO4→HCO3+Cl+H++H2O –895.9
–: not available.

本文以AOM过程电子受体的多样性为视角,综述了硫酸盐型、硝酸盐/亚硝酸盐型、金属还原型厌氧甲烷氧化微生物物质代谢过程及环境分布,梳理了近年来新型电子受体AOM的研究进展,重点分析了以AOM微生物胞内和胞外电子传递为基础的能量代谢途径,并探讨了AOM生态学意义及潜在的工程应用价值,以期为厌氧甲烷氧化相关研究提供参考。

1 厌氧甲烷氧化微生物物质代谢 1.1 硫酸盐型厌氧甲烷氧化(SAMO)

厌氧甲烷氧化耦合硫酸盐还原是最早发现的一类厌氧甲烷氧化过程,在厌氧条件下将甲烷氧化为CO2,同时硫酸盐被还原为HS–[1213]

目前,有3种假说支撑SAMO过程的机理(图 1),分别是反向产甲烷途径、乙酰生成途径和甲基生成途径。(1) 反向产甲烷途径。由于产甲烷过程所涉及的大部分酶促反应均可逆,该理论为反向产甲烷途径的存在提供了依据。Hoehler等通过对北卡罗莱纳州望湾角缺氧沉积物样品进行原位和实验室观测,于1994年首次提出了反向产甲烷假说,认为只要存在硫酸盐并且H2的浓度足够低,AOM是可能发生的,即甲烷在甲基辅酶M还原酶(Mcr)的作用下生成CH3-CoM,随后甲基转移至四氢喋呤形成CH3-H4MPT,并在亚甲基四氢喋呤还原酶(Mer)的催化下形成CH2=H4MPT,CH2=H4MPT经过一系列脱氢、水解及转移的酶促反应最终转化为CO2。甲烷被氧化并给出电子,H2O作为电子受体产生H2,H2又被硫酸盐还原菌(SRB)消耗[14]。目前,通过宏基因组学、蛋白组学等分析,反向产甲烷途径是SAMO过程较为公认的机制,但由于功能微生物ANME-1缺少Mer酶,CH3-CoM转化为CH2=H4MPT较传统反向产甲烷途径可能存在其他的替代途径[1718]。(2) 乙酰生成途径。由于部分微生物在氧化甲烷过程中不使用H2作为底物,而是利用乙酸或者甲基化合物,故提出了乙酰生成途径作为反向产甲烷途径的补充。该途径又包含两种反应,第一种是甲烷氧化菌从两分子CH4中产生H2和乙酸,SRB随后消耗乙酸,第二种是甲烷氧化菌通过CO2氧化CH4生成乙酸,随后被SRB消耗。这两种反应在能量上更有利,且和先前研究中脂质同位素分析结果一致[15],但在大多数环境中,低乙酸盐浓度和较快反应速度使得检测成为难点,难以进一步证实。(3) 甲基生成途径。2008年,Moran等发现甲硫醚对甲烷氧化速率存在明显抑制,并在此基础上提出甲基生成途径,即甲烷氧化菌利用甲烷和HS生成CH3SH,CH3SH被SRB利用,生成HCO3和HS,HS又可作为甲烷氧化菌的底物被循环利用[16]。随着研究深入,厌氧甲烷氧化古菌被发现可以不依赖SRB,单独完成SAMO过程,推测其是将硫酸盐还原为零价硫S0或其他硫化物,但具体酶途径有待探究[19]

图 1 硫酸盐型厌氧甲烷氧化作用途径的三种假说[1416] Figure 1 Three hypotheses of sulfate anaerobic methane oxidation[1416].

到20世纪末,研究者运用脂质分析、16S rRNA和荧光原位杂交等手段初步证实了参与SAMO过程的功能微生物[2021]。厌氧甲烷氧化古菌(ANME)负责氧化甲烷并提供电子,硫酸盐还原细菌(SRB)接收电子并还原硫酸盐[22]。系统发育分析表明,ANME属于广古菌门,可以被分为ANME-1、ANME-2 (ANME-2又可被分为ANME-2a、-2b、-2c)和ANME-3三个类群,但3个类群之间序列相似性仅为75%–92%,系统发育距离较大。SRB通常与ANME共生,主要菌属是Desulfosarcina/Desulfococcus (DSS)和Desulfobulbus (DBB)。ANME-2和ANME-3与SRB紧密聚集,而ANME-1与SRB结合较为松散[2324]。SAMO微生物主要分布在甲烷与硫酸盐共存的环境中,如深海沉积物、泥火山及甲烷渗漏过渡带等[23, 2528],在垃圾填埋场、含硫废水污水处理厂等人工环境也有分布[29]。不同环境中调控SAMO过程的功能微生物有较大差异,环境样品的复杂性成为制约探索其作用机制的重要因素之一[3031]

1.2 硝酸盐/亚硝酸盐型厌氧甲烷氧化(DAMO)

DAMO过程主要包括硝酸盐型和亚硝酸盐型厌氧甲烷氧化,前者通过反向产甲烷途径氧化甲烷并将硝酸盐还原为亚硝酸盐,后者通过内产氧途径氧化甲烷并将亚硝酸盐还原为氮气(图 2)[3235]。(1) 反向产甲烷途径。与SAMO过程的反向产甲烷途径相似,Mcr是反应启动的关键酶,能够将稳定的甲烷活化。甲烷氧化过程中释放的电子供硝酸盐还原,但由于缺少后续反硝化所需的酶,该过程只能将NO3还原为NO2。(2) 内产氧机制。该过程遵循独特的好氧甲烷氧化代谢途径,甲烷依次在甲烷单加氧酶(pMMO)、甲醇脱氢酶(MDH)作用下氧化为甲醛,甲醛通过四氢喋呤途径(MtdB)和四氢叶酸途径(FolD)脱氢生成甲酸,最终在甲酸脱氢酶(FDH)的作用下被氧化成CO2和H2O。NO2在亚硝酸盐还原酶(Nir)的作用下还原成NO,继而被未知的NO歧化酶分解为N2和O2,一部分的O2(3/4)用于甲烷氧化,剩余的氧气用于其他活动。

图 2 硝酸盐/亚硝酸盐型厌氧甲烷氧化作用途径[3233] Figure 2 The pathway of nitrate/nitrite anaerobic methane oxidation[3233].

驱动硝酸盐/亚硝酸盐型厌氧甲烷氧化的微生物为DAMO古菌和DAMO细菌[36]。DAMO古菌隶属于ANME的一个分支ANME-2d,其模式微生物为Candidatus Methanoperedens nitroreducens (M. nitroreduce)。相对而言,DAMO细菌的研究更为广泛深入,模式微生物为隶属于NC10门的Candidatus Methylomirabilis oxyfera (M. oxyfera)[35]。由于DAMO微生物生长缓慢和互营的共生关系,目前仍未获得纯培养物。在DAMO微生物的混合培养物中,DAMO细菌包裹在古菌周围。而在以亚硝酸盐为唯一电子受体的富集培养中,DAMO细菌可在没有DAMO古菌的情况下单独存在,这为单独研究亚硝酸盐型AOM提供了条件。DAMO微生物在自然生境中分布广泛[37],湿地[3839]、河流沉积物[40]、潮间带[8, 41]、农田土壤[4243]、森林土壤[44]、污水处理厂[4547]和海洋沉积物[4849]等环境均有发现,表明其对不同生境具有较好的耐受能力,对全球碳、氮循环具有重要的贡献。此外,研究者还探索了DAMO古菌与细菌的生物多样性和活性,发现在潮间带生态系统DAMO古菌的贡献可能比DAMO细菌更显著[41]。未来仍需要更多研究来探索DAMO古菌和细菌在生境中生物多样性及活性的差异,以便于评价两种功能微生物的生态学意义。

1.3 金属还原型厌氧甲烷氧化

以Fe(Ⅲ)或Mn(Ⅳ)为电子受体耦合甲烷发生厌氧氧化,生成Fe(II)和Mn(II)的铁/锰还原型AOM是最早发现的金属还原型AOM[50]。Beal等采集Eel河的沉积物样品,分别加入硫酸盐、水钠锰矿、水铁矿等物质,发现锰的还原速率高于铁,但二者均低于硫酸盐还原速率。虽然从吉布斯自由能角度,铁/锰比硫酸盐更适合作为AOM的电子受体,有利于反应的发生,但可能因为铁、锰氧化物均为固体,较难被微生物利用[50],而且反应涉及气、液、固三相之间的转换,其诱导反应的微生物代谢过程比其他类型的AOM过程更为复杂。如图 3所示,Cai等和Leu等提出铁/锰还原型AOM中甲烷氧化是通过反向产甲烷途径完成的(与SAMO和DAMO过程相同),Fe(Ⅲ)还原是通过多血红素细胞色素c (multiheme c-type cytochromes,MHCs)异化Fe(Ⅲ)完成[51],Mn(Ⅳ)还原过程则依赖MHCs及S层共同作用[52]。Yan等提出由M. activorans介导的铁还原型AOM过程在氧化甲烷形成CH3-H4SPT后,代谢途径分为2条,进一步生成乙酸和二氧化碳,而MHCs和AQDS参与铁还原[53]。这些结果显示,在AOM微生物物质代谢过程中,既存在相似的代谢途径,又因为微生物种属及电子受体的差异而存在特殊代谢通路。此外,研究者利用不同反应器开展的实验,均发现Cr(Ⅵ)可以和甲烷氧化相耦合,被还原为Cr(Ⅲ),成为除铁/锰外的新型金属电子受体[10, 54]。目前,金属还原型AOM的电子受体种类不断扩展,已有研究表明与铁、锰、铬同属过渡金属的钒以及类金属砷和锑均可作为电子受体耦合甲烷氧化[5557],相应的物质代谢过程仍需进一步验证。

图 3 金属还原型厌氧甲烷氧化作用途径[5253] Figure 3 The pathway of metal reducing anaerobic methane oxidation[5253].

金属还原型AOM通常发生在硫酸盐缺失或含量极低的深海环境中,对驱动其反应的微生物的研究较为欠缺[5859]。Beal等对ERB河流沉积物样品进行分析发现,ANME-1、ANME-3或甲烷球菌属中的某些种可能起催化甲烷氧化的关键作用,而拟杆菌Bacteroides、脱硫单胞菌Desulfuromonas、酸杆菌Acidobacteria和疣微菌Verrucomicrobia可能是其伴生微生物,并负责铁/锰还原[50]。Oni等发现JS1细菌、产甲烷古菌、ANME-3的分布与孔隙水中Fe2+的分布具有很强的相关性,推测这些种群可能是铁还原型AOM的功能微生物[60]。Chang等在对中国台湾地区东部陆地泥火山的研究中发现甲烷浓度与Mn2+/Fe2+浓度呈负相关,ANME-2a、脱硫单胞菌属和暗杆菌属等微生物可能参与了该过程[61]。总的来说,金属还原型AOM中介导甲烷氧化的功能微生物与SAMO过程甲烷氧化微生物较为接近[62],而介导金属氧化物还原的微生物则由于生境及电子受体的不同有很大差异。因此,不同研究者原位观测的结论也不尽相同,环境样本的复杂性与特殊性可能是使其微生物物质代谢以及群落结构改变的重要原因。

1.4 新型电子受体厌氧甲烷氧化

除了前三类传统的厌氧甲烷氧化,研究者们又陆续发现了以生物炭、硒酸盐、氯酸盐和电极等物质为电子受体的厌氧甲烷氧化,拓展了厌氧甲烷氧化的范围[9, 6367]。从热力学或物质本身理化性质而言,AQDS (anthraquione-2, 6- disulfonate)、生物炭、硒酸盐和氯酸盐都具有氧化还原特性,与前述三类有相似之处,而电极可以作为一个电子载体,与外电路接通即可传递电子给最终电子受体。但由于这些过程是在实验室条件(培养温度为22–37 ℃,集中在35±1 ℃)下发现的,对驱动其反应的功能微生物也研究较少[57],因此,需要进一步研究验证自然生境中二者耦合及元素循环相关的证据,从而确定新型电子受体的生态意义及应用潜力。

针对已发现的几种新型电子受体,ANME-2类群古菌可能是驱动甲烷氧化的重要微生物。研究发现,ANME-2a和ANME-2c具有耦合甲烷氧化及AQDS还原的潜力[9];ANME-2d能以生物炭、腐殖质等为电子受体进行厌氧甲烷氧化[63, 68];传统的DAMO微生物(古菌和细菌)被发现可以耦合硒酸盐还原与甲烷氧化[64]。同时,这些结果暗示了参与硝酸盐型厌氧甲烷氧化的古菌ANME-2d可能具有利用多种不同物质作为电子受体的能力[69]。此外,在实验室富集培养中已经发现含有ANME-2d和其伴生细菌能够支持金属还原型AOM的发生[7071],且在参与SAMO过程中也显示出了独特的潜力[7273]。这可能是由于ANME-2d中具有多种多血红素细胞色素c蛋白且在还原硝酸盐时并未表达[74]。因此,ANME-2d在参与硫酸盐甚至是不溶的金属氧化物和生物炭等AOM过程时就表现出了较其他ANME类群的优越性。由表 2可见,介导AOM过程中不同电子受体还原的微生物具有较大的差异,这暗示了不同类型电子受体的还原具有特异性,需要相应的功能微生物驱动反应进行,同时也从侧面说明了厌氧甲烷氧化古菌具有与多种不同种属微生物共生的潜力。

表 2. 参与不同类型AOM的主要微生物及其环境分布 Table 2. Main microorganisms involved in different types of AOM and their environmental distribution
The types of AOM Electron acceptor Distribution/Lab The types of microorganisms References
SAMO SO42– Marine sediment ANME-1, ANME-2, Desulfosarcina [23]
ANME-1 [28]
ANME-2 [25]
Mud volcano ANME-1a, ANME-1b, ANME-2, Desulfobacteraceae [26]
ANME-2a-2b, ANME-1, GoM Arc I [27]
ANME-3, DBB (Dsulfobulbus spp.) [31]
Continental shelf ANME-1, SRB (Desulfosarcina/Desulfococcus) [30]
ANME-1 [24]
DAMO NO2 Wetland M. oxyfera [38]
NO2 M. oxyfera [39]
NO3/NO2 Intertidal zone DAMO archaea, DAMO bacteria [41]
NO3/NO2 DAMO archaea, DAMO bacteria [8]
NO2 Lake sediment M. oxyfera [40]
NO2 Farmland NC10 (M. oxyfera) [42]
NO2 DAMO bacteria [43]
NO2 Forest M. oxyfera, Candidatus Methylomirabilis sp. [44]
NO2 WWTPs M. oxyfera [45]
NO3 DAMO archaea [46]
NO3 DAMO archaea (M. nitroreducens) [47]
NO2 Marine sediment NC10 bacteria [48]
NO2 DAMO bacteria [49]
Metal-reduced AOM Mn(Ⅳ)/Fe(Ⅲ) Marine sediment ANME-1, ANME-3, Bacteroides, Desulfuromonas, Acidobacteria, Verrucomicrobia [50]
Fe(Ⅲ) Candidate division JS1, methanogenic archaea, Methanohalobium/ANME-3 [60]
Mn/Fe Mud volcano ANME-2a, Desulfuromonas/Pelobacter [61]
Sb(V) Lab Methanosarcina [57]
V(V) Lab Methanosarcina, Methylococcus, Methylomonas [55]
As(V) Wetland ANME-1, 2a-c [56]
Cr(Ⅵ) Lab ANME-2d [10]
Other types of AOM Se(Ⅵ) Lab Methanosarcina [64]
Cl(V) Lab Candidatus Methylomirabilis, M. oxyfera [66]
Cl(VII) Lab Methanosarcina mazei, perchlorate-reducing bacteria (PRB) [67]
AQDS Lab ANME-2 [9]
Biochar Lab ANME-2d [63]
Humics Lab ANME-2d, Geobactor, anammox [68]
Electrode Lab ANME-2d, Ignavibacterium, Geobacter [65]

2 厌氧甲烷氧化微生物能量代谢

微生物的能量代谢与其电子传递过程密切相关。微生物利用电子传递过程中产生的质子动力势推动ATP酶的作用进而合成ATP。本节通过对AOM胞内/胞外两种电子传递方式的归纳整理,总结了AOM微生物在能量代谢过程中的特征。

2.1 厌氧甲烷氧化微生物胞内电子传递

AOM微生物胞内电子传递过程是基于胞内电子传递链,在胞质或周质空间完成硫酸盐、硝酸盐和亚硝酸盐等溶解性电子受体还原的过程,分为厌氧甲烷氧化古菌和细菌两种类型。Arshad等研究者对富集到的M. nitroreducens MPEBLZ (与ANME-2d的16S rRNA基因同源性为95%)进行了宏基因测序,并建立了相应的代谢模型(图 4):胞质中反向产甲烷途径将甲烷氧化产生的电子转移到辅酶因子F420、辅酶B和铁氧还蛋白上,随后还原性辅酶F420和铁氧还蛋白将电子转移到膜结合蛋白中。此外,与膜结合的异二硫还原酶(HdrDE)能够将CoM-SH和CoB-SH氧化,形成CoM-S-S-CoB异二硫化合物,释放电子用于甲萘醌的还原,而还原的醌随后又将电子传递给与膜结合的氧化还原蛋白。膜结合的蛋白能够作为电子载体接收胞质传递过来的电子并通过甲萘醌的氧化还原将电子转移。最后,细胞色素b形成的复合体通过Q循环将醌类的氧化与周质空间细胞色素c的还原以及质子的转运结合起来,电子从细胞质被传递至周质空间,并用于硝酸盐的还原[74]。膜结合蛋白电子传递的过程也伴随着质子从膜内向膜外流动,逐渐形成电势差及化学势差,由质子驱动力驱动ATP合成的同时又重新从ATP合酶进入胞质,完成能量代谢。然而,进行硫酸盐还原的厌氧甲烷氧化古菌(ANME-1、ANME-2a、-2b、-2c以及ANME-3)不能异化分解硫酸盐,胞内氧化甲烷产生的电子须通过电子传递链从胞内经周质转移到外膜,再传递至伴生细菌最终完成硫酸盐还原。

图 4 Methanoperedens电子传递的代谢途径模型[74] Figure 4 Metabolic pathway model of electron transport in Methanoperedens[74].

厌氧甲烷氧化细菌,因其不依赖古菌就可以完成甲烷氧化以及电子受体的还原,可与其他厌氧甲烷氧化古菌的伴生细菌区别开来。目前发现有隶属于NC10门的细菌,利用独特的内产氧途径进行胞内电子传递[75]。具体来说,甲烷和氧气(亚硝酸盐经亚硝酸盐还原酶和一氧化氮歧化酶的作用,最终生成氮气和氧气)在甲烷单加氧酶的作用下生成甲醇,随后在甲醇脱氢酶的作用下生成甲醛,所产生的电子供上一步反应使用。甲醛经亚甲基-四氢喋呤(和亚甲基-四氢叶酸)脱氢酶及甲酸脱氢酶转化为二氧化碳,释放的电子将NAD+及NADP+还原为NADH和NADPH。膜上一个类似质子泵的NAD(P)H脱氢酶形成的复合体NDH将甲醛氧化反应中形成的NAD(P)H氧化,产生的电子结合到醌的还原中,同时输出质子。复合体bc1继而将氢醌氧化,释放质子,电子通过细胞色素c传递至周质空间后被用于亚硝酸盐的还原。周质空间中的质子最后从ATP合酶的特定通道重新进入胞质,质子流动及电子传递过程产生的驱动力促进了ATP的合成(图 5)[76]

图 5 M. oxyfera分解代谢与能量代谢模型[76] Figure 5 Central catabolism and energy metabolism model of M. oxyfera[76].

2.2 厌氧甲烷氧化微生物胞外电子传递过程

微生物胞外电子传递为电子供体氧化后的电子转移到细胞外并还原最终电子受体的过程[77]。细胞外的电子受体包括不能进入细胞的大分子物质、不溶性物质或者接受电子的微生物等。具体的电子传递方式主要有直接接触传递、电子介体传递以及纳米导线传递等[78]。而AOM微生物胞外电子传递主要是厌氧甲烷氧化古菌氧化甲烷产生电子并传递给胞外电子受体或其他微生物的过程。

随着新型电子受体AOM过程在实验室得到验证,电极、生物炭、金属氧化物以及部分大分子物质因分子较大,无法进入细胞膜,成为AOM微生物胞外电子受体,暗示了AOM微生物含有潜在的胞外电子传递能力[9, 63, 68, 71]。Wegener等通过富集培养深海沉积物得到以ANME-1和SRB Hot Seep-1为主的嗜热厌氧甲烷氧化微生物富集物,并发现只有H2的添加可以促进硫还原并得到Hot Seep-1的单独富集物,而抑制甲烷氧化试验表明ANME-1产生的H2不足以维持Hot Seep-1的生长,ANME-1和Hot Seep-1之间可能存在着比H2更有效的种间电子传递方式。透射电镜的观察显示:共培养时Hot Seep-1产生大量与地杆菌类似的菌毛结构,而只用H2进行单独培养的Hot Seep-1未观察到菌毛的产生。以上结果均表明ANME-1和Hot Seep-1之间可能进行了直接种间电子传递,形成互营生长关系,从而共同完成单一微生物不能完成的代谢过程,具体的方式是纳米导线传递[79]

Welte等[80]和McGlynn等[81]基于产甲烷菌的生化耦合机制,提出ANME-2的胞外电子传递模型:甲烷氧化产生的还原性甲基吩嗪继而被膜蛋白(如细胞色素b蛋白)氧化,将电子从细胞膜转移到S层的多血红素细胞色素(MHC),最后由S层融合蛋白负责将电子转移出S层(图 6)。Wang等通过宏基因组学分析,在ANME-2a分支古菌中检测到了编码膜结合的异二硫还原酶、细胞色素c以及Rnf复合体(Rhodobacter nitrogen fixation (Rnf) complex)等与电子传递密切相关的基因,表明ANME-2a具有胞外电子传递能力[82],涉及胞质氧化还原酶、细胞色素及膜结合蛋白转移电子等过程。但ANME-1宏基因组中未见ANME-2a检测到的Hdr DE和Rnf复合物的报道[1516],这表明由于物质代谢的差异,在通用电子传递途径上ANME-1可能演化出不同的替代途径或策略。另一方面,Ettwig等在ANME-2d古菌中发现41种多血红素细胞色素c,较SAMO古菌ANME-1 (11种)、ANME-2a (16种)以及还原铁的古细菌Ferroglobus placidus (22种)和Geoglobus (15种)更多[83]。Cai等和Leu等也在金属还原型AOM中检测到了多种MHCs,且不同种属MHCs的表达存在差异可能使其具有不同的电子传递途径[5152]。这些结果均暗示了胞外电子传递在AOM微生物中广泛存在,且多血红素细胞色素c蛋白在AOM微生物胞外电子传递过程中具有非常重要的作用,可能与传统产电微生物电子传递过程中细胞色素作用相似[8485]。然而,由于目前无法获取AOM微生物纯培物,不能类比地杆菌等进行基因敲除实验或者应用电化学的手段对其进行表征[8687],所以针对厌氧甲烷氧化古菌的胞外电子传递机制仍需要更多研究进行论证。

图 6 ANME-2a能量代谢模型[8081] Figure 6 Energy metabolism model of ANME-2a[8081].

3 厌氧甲烷氧化微生物的生态学意义及潜在应用价值 3.1 生态学意义

厌氧甲烷氧化不仅是自然生境中甲烷循环的重要一环,也是地球化学中碳循环与其他元素循环耦合的重要纽带。AOM耦合硫酸盐、硝酸盐/亚硝酸盐和金属氧化物等还原过程也将硫、氮、铁/锰等元素的循环与碳循环直接关联起来,对全球地球化学具有深远影响[8889]。Egger等对深海沉积物剖面进行研究及数值模拟,发现甲烷氧化和铁还原耦合不仅影响铁循环,还可能与磷的沉积过程有关[90]。此外,新型电子受体的出现也不断拓展着研究者对厌氧甲烷氧化的认识[91],使得一些潜藏的地球化学循环过程及功能微生物被揭示[92],这些研究成果对重新评价AOM对甲烷汇的贡献具有重要意义。不同类型AOM微生物广泛的环境分布说明厌氧甲烷氧化过程的普遍性,对全球甲烷含量的核算提出新的认识。

3.2 潜在应用价值

从AOM微生物的生态学意义可以看出,碳、氮、硫等元素循环相耦合形成的物质迁移转化过程也为利用AOM微生物协同去除这些物质提供了途径。在工程应用中,甲烷作为最简单的碳氢化合物,也是一种潜在能源物质,对厌氧废水处理以及污泥消化池产生的甲烷加以回收利用是污水处理厂实现闭环运行,能源自给的重要途径之一,也是实现碳减排目标的举措之一[9394]。AOM微生物氧化甲烷耦合不同电子受体的代谢降解[95],是利用AOM工艺进行污染物去除的基础。

AOM工艺的优势在于厌氧处理废水及侧流污泥消化池产生的甲烷能为AOM微生物提供电子供体。提高厌氧段和消化池气体收集效率,可以为AOM提供充足的碳源,避免传统废水生物处理碳源不足而投加药剂引起的二次污染问题,同时AOM对甲烷的利用也有助于缓解由甲烷排放导致的温室效应,兼具能源与经济效益[9697]。AOM工艺的不足主要是微生物生长及基质利用较为缓慢,但与其他工艺耦合可以实现污染物去除速率的较大提升[98],例如,将DAMO-ANAMMOX作为后处理单元或可持续污水处理厂运行的核心单元已具备工程应用潜力[93, 99]。SAMO与金属还原型AOM可以利用溶解性甲烷,处理含硫和含重金属的废水[10, 29],向废水处理能源自给、闭环运行甚至能源输出的同时缓解温室气体排放做出尝试。也有研究者运用AOM降解有机物(甲基橙),进一步探索了AOM微生物的功能[100]。此外,垃圾填埋场下部厌氧环境中有机物能转化为甲烷,渗滤液成分复杂,将其初步处理后回灌至填埋场,为厌氧甲烷氧化耦合多电子受体还原提供了可能性,拓展了AOM工艺的应用范围[101102]。由于对其他电子受体还原机制及功能微生物认识的不足,在将其应用到污染控制中仍处于探索阶段。

由于AOM微生物具有潜在的胞外电子传递能力,利用微生物燃料电池培养AOM微生物或者与其他产电微生物共培养能够实现电能回收,突破了甲烷运输及储存困难的瓶颈[103104]。然而,由于受到反应器构型、微生物种类以及环境因子变化的影响,其产电性能存在较大差异[105]。Ding等首次利用微生物燃料电池培养DAMO微生物,不过体系最大电压约25 mV,仅表现出了微弱的产电能力[65]。McAnulty等[106]和Yamasaki等[107]和利用能够产生mcrA的工程菌和地杆菌形成的混合菌群使整个体系的产电性能大幅提升,不断接近利用非气体底物微生物燃料电池的功率密度。未来在AOM微生物产电性能的稳定以及最适宜条件的探索等方面仍需更深入的研究。

4 总结与展望

纵观厌氧甲烷氧化领域几十年的研究进展,在许多关键问题上均取得了重大突破:不同类型厌氧甲烷氧化微生物得到富集培养;硫酸盐型、硝酸盐/亚硝酸盐型以及金属还原型厌氧甲烷氧化过程及微生物基本被探明;利用SAMO和DAMO微生物进行废水脱硫脱氮也从实验室模拟逐步走向工程应用等。今后对于厌氧甲烷氧化及电子传递的研究可能集中在以下几个方面:

(1) 作用机理方面,关注新型电子受体AOM物质代谢途径及功能微生物分布,通过基因敲除、电化学等技术手段探索其能量代谢过程;同时,探索不同电子受体类型,拓展厌氧甲烷氧化的外延。

(2) 影响因素方面,由于许多新型污染物产生并进入环境,使得环境条件日益复杂,需进一步验证其对厌氧甲烷氧化微生物生长及工艺的影响;比较不同类型AOM的影响因素,寻找培养AOM微生物的最适条件。

(3) 工程应用方面,对研究较为成熟的硫酸盐型、硝酸盐/亚硝酸盐型及金属还原型厌氧甲烷氧化开展小试、中试等实验研究,从模拟废水向实际废水逐步过渡,从废水处理向地下水修复、土壤甲烷减排等领域拓展;对尚处于起步阶段的新型电子受体AOM微生物进行富集培养,为工程接种做准备。

References
[1] Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther JG. Introduction in: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[2] Hmiel B, Petrenko VV, Dyonisius MN, Buizert C, Smith AM, Place PF, Harth C, Beaudette R, Hua Q, Yang B, Vimont I, Michel SE, Severinghaus JP, Etheridge D, Bromley T, Schmitt J, Faïn X, Weiss RF, Dlugokencky E. Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 2020, 578(7795): 409-412. DOI:10.1038/s41586-020-1991-8
[3] Cai CY, He ZF, Hu BL. Progresses in the classification and mechanism of methane-oxidizing bacteria. Journal of Zhejiang University: Agriculture and Life Sciences, 2016, 42(3): 273-281. (in Chinese)
蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展. 浙江大学学报: 农业与生命科学版, 2016, 42(3): 273-281.
[4] Reeburgh WS. Oceanic methane biogeochemistry. Chemical Reviews, 2007, 107(2): 486-513. DOI:10.1021/cr050362v
[5] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 2009, 63: 311-334. DOI:10.1146/annurev.micro.61.080706.093130
[6] Beal EJ, Claire MW, House CH. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology, 2011, 9(2): 131-139.
[7] Treude T, Krause S, Maltby J, Dale AW, Coffin R, Hamdan LJ. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: implications for deep sulfur cycling. Geochimica et Cosmochimica Acta, 2014, 144: 217-237. DOI:10.1016/j.gca.2014.08.018
[8] Wang JQ, Cai CY, Li YF, Hua ML, Wang JR, Yang HR, Zheng P, Hu BL. Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone. Environmental Science & Technology, 2019, 53(1): 203-212.
[9] Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016, 351(6274): 703-707. DOI:10.1126/science.aad7154
[10] Lu YZ, Fu L, Ding J, Ding ZW, Li N, Zeng RJ. Cr(Ⅵ) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Research, 2016, 102: 445-452. DOI:10.1016/j.watres.2016.06.065
[11] Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science & Technology, 2008, 42(18): 6791-6799.
[12] Reeburgh WS. Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters, 1976, 28(3): 337-344. DOI:10.1016/0012-821X(76)90195-3
[13] Alperin MJ, Reeburgh WS. Inhibition experiments on anaerobic methane oxidation. Applied and Environmental Microbiology, 1985, 50(4): 940-945. DOI:10.1128/aem.50.4.940-945.1985
[14] Hoehler TM, Alperin MJ, Albert DB, Martens CS. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 1994, 8(4): 451-463. DOI:10.1029/94GB01800
[15] Valentine DL, Reeburgh WS. New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2000, 2(5): 477-484. DOI:10.1046/j.1462-2920.2000.00135.x
[16] Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 2008, 10(1): 162-173.
[17] Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environmental Microbiology, 2012, 14(5): 1333-1346. DOI:10.1111/j.1462-2920.2012.02716.x
[18] Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environmental Microbiology, 2010, 12(2): 422-439. DOI:10.1111/j.1462-2920.2009.02083.x
[19] Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 2012, 491(7425): 541-546. DOI:10.1038/nature11656
[20] Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398(6730): 802-805. DOI:10.1038/19751
[21] Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407(6804): 623-626. DOI:10.1038/35036572
[22] Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea, 2017: 1654237.
[23] Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. PNAS, 2002, 99(11): 7663-7668. DOI:10.1073/pnas.072210299
[24] Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic black sea. Applied and Environmental Microbiology, 2007, 73(7): 2271-2283. DOI:10.1128/AEM.02685-06
[25] Treude T, Krüger M, Boetius A, Jørgensen BB. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnology and Oceanography, 2005, 50(6): 1771-1786. DOI:10.4319/lo.2005.50.6.1771
[26] Bhattarai S, Cassarini C, Rene ER, Zhang Y, Esposito G, Lens PNL. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter. Bioresource Technology, 2018, 259: 433-441. DOI:10.1016/j.biortech.2018.03.018
[27] Wrede C, Brady S, Rockstroh S, Dreier A, Kokoschka S, Heinzelmann SM, Heller C, Reitner J, Taviani M, Daniel R, Hoppert M. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines. Sedimentary Geology, 2012, 263/264: 210-219. DOI:10.1016/j.sedgeo.2011.06.004
[28] Lever MA, Rouxel O, Alt JC, Shimizu N, Ono S, Coggon RM, Shanks WC 3rd, Lapham L, Elvert M, Prieto-Mollar X, Hinrichs KU, Inagaki F, Teske A. Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt. Science, 2013, 339(6125): 1305-1308. DOI:10.1126/science.1229240
[29] Li L, Xue S, Xi JR. Anaerobic oxidation of methane coupled to sulfate reduction: consortium characteristics and application in co-removal of H2S and methane. Journal of Environmental Sciences, 2019, 76: 238-248. DOI:10.1016/j.jes.2018.05.006
[30] Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB. Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science, 2002, 297(5583): 1013-1015. DOI:10.1126/science.1072502
[31] Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 2006, 443(7113): 854-858. DOI:10.1038/nature05227
[32] Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 2013, 500(7464): 567-570. DOI:10.1038/nature12375
[33] Ettwig KF, Van Alen T, Van De Pas-Schoonen KT, Jetten MSM, Strous M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Applied and Environmental Microbiology, 2009, 75(11): 3656-3662. DOI:10.1128/AEM.00067-09
[34] Ettwig KF, Shima S, Van De Pas-Schoonen KT, Kahnt J, Medema MH, Op Den Camp HJM, Jetten MSM, Strous M. Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environmental Microbiology, 2008, 10(11): 3164-3173. DOI:10.1111/j.1462-2920.2008.01724.x
[35] Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op Den Camp HJM, Jetten MSM, Lüke C, Reimann J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environmental Microbiology Reports, 2016, 8(6): 941-955. DOI:10.1111/1758-2229.12487
[36] Raghoebarsing AA, Pol A, Van De Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, Op Den Camp HJM, Jetten MSM, Strous M. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006, 440(7086): 918-921. DOI:10.1038/nature04617
[37] Ding J, Zeng RJ. Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. Science of the Total Environment, 2021, 757: 143928. DOI:10.1016/j.scitotenv.2020.143928
[38] Zhu GB, Zhou LL, Wang Y, Wang SY, Guo JH, Long XE, Sun XB, Jiang B, Hou QY, Jetten MSM, Yin CQ. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environmental Microbiology Reports, 2015, 7(1): 128-138. DOI:10.1111/1758-2229.12214
[39] Zhang MP, Luo Y, Lin LA, Lin XL, Hetharua B, Zhao WJ, Zhou MK, Zhan Q, Xu H, Zheng TL, Tian Y. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China. Applied Microbiology and Biotechnology, 2018, 102(5): 2441-2454. DOI:10.1007/s00253-017-8718-2
[40] Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M. Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Systematic and Applied Microbiology, 2012, 35(4): 233-238. DOI:10.1016/j.syapm.2012.03.005
[41] Chen FY, Zheng YL, Hou LJ, Zhou J, Yin GY, Liu M. Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat. Marine Pollution Bulletin, 2020, 150: 110681. DOI:10.1016/j.marpolbul.2019.110681
[42] Shen LD, Wu HS, Gao ZQ, Li J, Liu X. Presence of diverse Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in agricultural soils. Journal of Applied Microbiology, 2016, 120(6): 1552-1560. DOI:10.1111/jam.13119
[43] Hatamoto M, Kimura M, Sato T, Koizumi M, Takahashi M, Kawakami S, Araki N, Yamaguchi T. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures. PLoS One, 2014, 9(12): e115823. DOI:10.1371/journal.pone.0115823
[44] Meng H, Wang YF, Chan HW, Wu RN, Gu JD. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils. Applied Microbiology and Biotechnology, 2016, 100(17): 7727-7739. DOI:10.1007/s00253-016-7585-6
[45] Luesken FA, Van Alen TA, Van Der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TLG, Zeeman G, Temmink H, Strous M, Op Den Camp HJM, Jetten MSM. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Applied Microbiology and Biotechnology, 2011, 92(4): 845-854. DOI:10.1007/s00253-011-3361-9
[46] Vaksmaa A, Jetten MSM, Ettwig KF, Lüke C. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph 'Candidatus methanoperedens nitroreducens'. Applied Microbiology and Biotechnology, 2017, 101(4): 1631-1641. DOI:10.1007/s00253-016-8065-8
[47] Xu S, Lu W, Mustafa MF, Liu Y, Wang H. Presence of diverse nitrate-dependent anaerobic methane oxidizing archaea in sewage sludge. Journal of Applied Microbiology, 2020, 128(3): 775-783. DOI:10.1111/jam.14502
[48] Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B, Stewart FJ. NC10 bacteria in marine oxygen minimum zones. The ISME Journal, 2016, 10(8): 2067-2071. DOI:10.1038/ismej.2015.262
[49] Chen J, Zhou ZC, Gu JD. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Applied Microbiology and Biotechnology, 2014, 98(12): 5685-5696. DOI:10.1007/s00253-014-5733-4
[50] Beal EJ, House CH, Orphan VJ. Manganese- and iron-dependent marine methane oxidation. Science, 2009, 325(5937): 184-187. DOI:10.1126/science.1169984
[51] Cai C, Leu AO, Xie GJ, Guo JH, Feng YX, Zhao JX, Tyson GW, Yuan ZG, Hu SH. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(Ⅲ) reduction. The ISME Journal, 2018, 12(8): 1929-1939. DOI:10.1038/s41396-018-0109-x
[52] Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan ZG, Hu SH, Tyson GW. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. The ISME Journal, 2020, 14(4): 1030-1041. DOI:10.1038/s41396-020-0590-x
[53] Yan Z, Joshi P, Gorski CA, Ferry JG. A biochemical framework for anaerobic oxidation of methane driven by Fe(Ⅲ)-dependent respiration. Nature Communications, 2018, 9: 1642. DOI:10.1038/s41467-018-04097-9
[54] He C, Zhang BG, Jiang YF, Liu H, Zhao HP. Microbial electrolysis cell produced biogas as sustainable electron donor for microbial chromate reduction. Chemical Engineering Journal, 2021, 403: 126429. DOI:10.1016/j.cej.2020.126429
[55] Wang Z, Shi LD, Lai CY, Zhao HP. Methane oxidation coupled to vanadate reduction in a membrane biofilm batch reactor under hypoxic condition. Biodegradation, 2019, 30(5/6): 457-466.
[56] Shi LD, Guo T, Lv PL, Niu ZF, Zhou YJ, Tang XJ, Zheng P, Zhu LZ, Zhu YG, Kappler A, Zhao HP. Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nature Geoscience, 2020, 13(12): 799-805. DOI:10.1038/s41561-020-00659-z
[57] Lai CY, Dong QY, Rittmann BE, Zhao HP. Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor. Environmental Science & Technology, 2018, 52(15): 8693-8700.
[58] Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MSM, Röckmann T, Van Der Veen C, Bândă N, Kartal B, Ettwig KF, Slomp CP. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environmental Science & Technology, 2015, 49(1): 277-283.
[59] Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology, 2014, 12(2): 172-181. DOI:10.1111/gbi.12077
[60] Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, Kulkarni A, Blumers M, Shylin SI, Ksenofontov V, Costa BFO, Klingelhöfer G, Friedrich MW. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology, 2015, 6: 365.
[61] Chang YH, Cheng TW, Lai WJ, Tsai WY, Sun CH, Lin LH, Wang PL. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environmental Microbiology, 2012, 14(4): 895-908. DOI:10.1111/j.1462-2920.2011.02658.x
[62] Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, Eickhorst T, Oni OE, Richter-Heitmann T, Schnakenberg A, Taubner H, Wunder L, Yin XR, Zhu QZ, Hinrichs KU, Kasten S, Friedrich MW. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Frontiers in Microbiology, 2020, 10: 3041. DOI:10.3389/fmicb.2019.03041
[63] Zhang XQ, Xia J, Pu JY, Cai C, Tyson GW, Yuan ZG, Hu SH. Biochar-mediated anaerobic oxidation of methane. Environmental Science & Technology, 2019, 53(12): 6660-6668.
[64] Luo JH, Chen H, Hu SH, Cai C, Yuan ZG, Guo JH. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm. Environmental Science & Technology, 2018, 52(7): 4006-4012.
[65] Ding J, Lu YZ, Fu L, Ding ZW, Mu Y, Cheng SH, Zeng RJ. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Research, 2017, 110: 112-119. DOI:10.1016/j.watres.2016.12.006
[66] Li ZY, Li X, Tan B, Lv PL, Zhao HP. NC10 bacteria promoted methane oxidation coupled to chlorate reduction. Biodegradation, 2020, 31(4/5/6): 319-329.
[67] Lv PL, Shi LD, Wang Z, Rittmann B, Zhao HP. Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor. Science of the Total Environment, 2019, 667: 9-15. DOI:10.1016/j.scitotenv.2019.02.330
[68] Bai YN, Wang XN, Wu J, Lu YZ, Fu L, Zhang F, Lau TC, Zeng RJ. Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 2019, 164: 114935. DOI:10.1016/j.watres.2019.114935
[69] He D, Zhang EY, Yu LP, Zhou SG. Advances in the anaerobic microbial oxidation of methane that is coupled with metal reduction. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 844-856. (in Chinese)
何丹, 张尔翼, 余林鹏, 周顺桂. 微生物甲烷厌氧氧化耦合金属还原研究进展. 应用与环境生物学报, 2020, 26(4): 844-856.
[70] Bar-Or I, Elvert M, Eckert W, Kushmaro A, Vigderovich H, Zhu QZ, Ben-Dov E, Sivan O. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly reactive minerals. Environmental Science & Technology, 2017, 51(21): 12293-12301.
[71] Fu L, Li SW, Ding ZW, Ding J, Lu YZ, Zeng RJ. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Research, 2016, 88: 808-815. DOI:10.1016/j.watres.2015.11.011
[72] Flynn TM, Sanford RA, Ryu H, Bethke CM, Levine AD, Ashbolt NJ, Santo Domingo JW. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiology, 2013, 13: 146. DOI:10.1186/1471-2180-13-146
[73] Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiology Ecology, 2011, 76(1): 26-38. DOI:10.1111/j.1574-6941.2010.01036.x
[74] Arshad A, Speth DR, De Graaf RM, Op Den Camp HJM, Jetten MSM, Welte CU. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by methanoperedens-like archaea. Frontiers in Microbiology, 2015, 6: 1423.
[75] Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJCT, Van Alen T, Luesken F, Wu ML, Van De Pas-Schoonen KT, Op Den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464(7288): 543-548. DOI:10.1038/nature08883
[76] Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, Van Niftrik L. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'. Biochemical Society Transactions, 2011, 39(1): 243-248. DOI:10.1042/BST0390243
[77] Lovley DR. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology, 2008, 6(3): 225-231. DOI:10.1111/j.1472-4669.2008.00148.x
[78] Ma C, Zhou SG, Zhuang L, Wu CY. Electron transfer mechanism of extracellular respiration: a review. Acta Ecologica Sinica, 2011, 31(7): 2008-2018. (in Chinese)
马晨, 周顺桂, 庄莉, 武春媛. 微生物胞外呼吸电子传递机制研究进展. 生态学报, 2011, 31(7): 2008-2018.
[79] Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 2015, 526(7574): 587-590. DOI:10.1038/nature15733
[80] Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochimica et Biophysica Acta: BBA-Bioenergetics, 2014, 1837(7): 1130-1147. DOI:10.1016/j.bbabio.2013.12.002
[81] McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 2015, 526(7574): 531-535. DOI:10.1038/nature15512
[82] Wang FP, Zhang Y, Chen Y, He Y, Qi J, Hinrichs KU, Zhang XX, Xiao X, Boon N. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. The ISME Journal, 2014, 8(5): 1069-1078. DOI:10.1038/ismej.2013.212
[83] Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. PNAS, 2016, 113(45): 12792-12796. DOI:10.1073/pnas.1609534113
[84] Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Molecular Microbiology, 2007, 65(1): 12-20. DOI:10.1111/j.1365-2958.2007.05783.x
[85] Kletzin A, Heimerl T, Flechsler J, Van Niftrik L, Rachel R, Klingl A. Cytochromes c in archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Frontiers in Microbiology, 2015, 6: 439.
[86] Voordeckers JW, Kim BC, Izallalen M, Lovley DR. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2, 6-disulfonate. Applied and Environmental Microbiology, 2010, 76(7): 2371-2375. DOI:10.1128/AEM.02250-09
[87] Liu X, Zhan J, Liu L, Gan FT, Ye J, Nealson KH, Rensing C, Zhou SG. In situ spectroelectrochemical characterization reveals cytochrome-mediated electric syntrophy in Geobacter coculture. Environmental Science & Technology, 2021, 55(14): 10142-10151.
[88] Tan WB, Jia YF, Huang CH, Zhang H, Li D, Zhao XY, Wang GA, Jiang J, Xi BD. Increased suppression of methane production by humic substances in response to warming in anoxic environments. Journal of Environmental Management, 2018, 206: 602-606.
[89] Valenzuela EI, Avendaño KA, Balagurusamy N, Arriaga S, Nieto-Delgado C, Thalasso F, Cervantes FJ. Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments. Science of the Total Environment, 2019, 650: 2674-2684. DOI:10.1016/j.scitotenv.2018.09.388
[90] Egger M, Hagens M, Sapart CJ, Dijkstra N, Van Helmond NAGM, Mogollón JM, Risgaard-Petersen N, Van Der Veen C, Kasten S, Riedinger N, Böttcher ME, Röckmann T, Jørgensen BB, Slomp CP. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. DOI:10.1016/j.gca.2017.03.019
[91] Liu JX, Chen H, Xue D, Gao YH, Liu JL, Yang J. Advances in microbial mediated anaerobic oxidation of methane and its influencing factors. Chinese Journal of Ecology, 2020, 39(3): 1033-1044. (in Chinese)
刘俊霞, 陈槐, 薛丹, 高永恒, 刘建亮, 杨军. 微生物介导的甲烷厌氧氧化过程及其影响因子研究进展. 生态学杂志, 2020, 39(3): 1033-1044.
[92] Li WW, Cai C, Song YR, Ni GF, Zhang XQ, Lu PL. The role of crystalline iron oxides in methane mitigation through anaerobic oxidation of methane. ACS ES & T Water, 2021, 1(5): 1153-1160.
[93] Wang DB, Wang YL, Liu YW, Ngo HH, Lian Y, Zhao JW, Chen F, Yang Q, Zeng GM, Li XM. Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?. Bioresource Technology, 2017, 234: 456-465.
[94] Li WW, Lu PL, Zhang LL, Ding AQ, Wang XW, Yang H, Zhang DJ. Long-term performance of denitrifying anaerobic methane oxidation under stepwise cooling and ambient temperature conditions. Science of the Total Environment, 2020, 713: 136739. DOI:10.1016/j.scitotenv.2020.136739
[95] Zhong W, Jiang YG, Shi L. Direct electron transfer between bacteria and archaea. Acta Microbiologica Sinica, 2020, 60(9): 2030-2038. (in Chinese)
钟雯, 蒋永光, 石良. 细菌与古菌之间的直接电子传递. 微生物学报, 2020, 60(9): 2030-2038.
[96] Yeo H, An J, Reid R, Rittmann BE, Lee HS. Contribution of liquid/gas mass-transfer limitations to dissolved methane oversaturation in anaerobic treatment of dilute wastewater. Environmental Science & Technology, 2015, 49(17): 10366-10372.
[97] Lee HS, Tang YN, Rittmann BE, Zhao HP. Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Critical Reviews in Environmental Science and Technology, 2018, 48(19/20/21): 1067-1093.
[98] Lim ZK, Liu T, Zheng M, Yuan ZG, Guo JH, Hu SH. Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): first demonstration with real wastewater. Water Research, 2021, 194: 116912. DOI:10.1016/j.watres.2021.116912
[99] Wang YL, Wang DB, Yang Q, Zeng GM, Li XM. Wastewater opportunities for denitrifying anaerobic methane oxidation. Trends in Biotechnology, 2017, 35(9): 799-802. DOI:10.1016/j.tibtech.2017.02.010
[100] Fu L, Bai YN, Lu YZ, Ding J, Zhou DD, Zeng RJ. Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. Journal of Hazardous Materials, 2019, 364: 264-271. DOI:10.1016/j.jhazmat.2018.10.036
[101] 王旭. 填埋场甲烷厌氧氧化过程研究. 吉林大学硕士学位论文, 2016.
[102] Liu YY, Long Y, Yin H, Ye JS, He BY, Zhang N. Effects of nitrate on anoxic/anaerobic oxidation of methane in the aged refuse. Environmental Science, 2013, 34(11): 4349-4355. (in Chinese)
刘妍妍, 龙焰, 尹华, 叶锦韶, 何宝燕, 张娜. 硝酸盐对矿化垃圾中兼/厌氧甲烷氧化的影响. 环境科学, 2013, 34(11): 4349-4355.
[103] Gao YH, Ryu H, Rittmann BE, Hussain A, Lee HS. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer. Bioresource Technology, 2017, 241: 979-984. DOI:10.1016/j.biortech.2017.06.053
[104] Yu LP, He D, Zhang EY, He QX, Li JB, Jason Ren Z, Zhou SG. Electricity from anaerobic methane oxidation by a single methanogenic archaeon Methanosarcina barkeri. Chemical Engineering Journal, 2021, 405: 126691. DOI:10.1016/j.cej.2020.126691
[105] 杨祖洁. 基于厌氧甲烷氧化的微生物燃料电池产电性能研究. 福建农林大学硕士学位论文, 2019.
[106] McAnulty MJ, Poosarla VG, Kim KY, Jasso-Chávez R, Logan BE, Wood TK. Electricity from methane by reversing methanogenesis. Nature Communications, 2017, 8: 15419. DOI:10.1038/ncomms15419
[107] Yamasaki R, Maeda T, Wood TK. Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. Biotechnology for Biofuels, 2018, 11: 211. DOI:10.1186/s13068-018-1208-7
厌氧甲烷氧化微生物物质代谢与能量代谢研究进展
丁阿强 , 李朝洋 , 李微薇 , 卢培利