微生物学报  2022, Vol. 62 Issue (6): 2165-2187   DOI: 10.13343/j.cnki.wsxb.20210715.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210715
中国科学院微生物研究所,中国微生物学会

文章信息

赵卓丽, 李冰, 蒋宏忱. 2022
ZHAO Zhuoli, LI Bing, JIANG Hongchen.
南极冰下水生态系统微生物与生源元素循环研究进展
Research progress of microbes and related biogenic element cycle in Antarctic subglacial ecosystems
微生物学报, 62(6): 2165-2187
Acta Microbiologica Sinica, 62(6): 2165-2187

文章历史

收稿日期:2021-11-21
修回日期:2022-02-25
网络出版日期:2022-04-11
南极冰下水生态系统微生物与生源元素循环研究进展
赵卓丽1 , 李冰2 , 蒋宏忱1     
1. 中国地质大学(北京)海洋学院,北京 100083;
2. 中国地质大学(北京)工程技术学院,北京 100083
摘要:南极大陆冰盖下存在液态水,形成了由冰下湖、冰下河/溪、冰封湖和冰架下水体等组成的冰下水生态系统,具有低温、黑暗和寡营养等极端的环境条件特征。微生物主导了南极冰下水生态系统,其具有丰富多样的种群构成、功能形式和独特的适应机制,在生源元素生物地球化学循环过程中起了重要作用。研究南极冰下微生物群落的生态特征及其参与的生源元素地球化学循环过程,可为揭示地球生命演化和探索外星生命提供指示,具有重要的科学意义。本文综述了南极冰下水生态系统的极端环境条件、冰下微生物的多样性、冰下微生物参与的生物地球化学循环以及冰下微生物的适极机理,最后基于研究现状展望了南极冰下微生物的未来研究方向。
关键词南极    冰下环境    微生物    群落构成    生物地球化学循环    
Research progress of microbes and related biogenic element cycle in Antarctic subglacial ecosystems
ZHAO Zhuoli1 , LI Bing2 , JIANG Hongchen1     
1. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
2. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
Abstract: The liquid water under the ice sheet of Antarctic continent consists of subglacial lakes, subglacial rivers/streams, ice-covered lakes, and water bodies under ice shelf. The subglacial aquatic ecosystems are featured with low temperature, darkness, and oligotrophy, and are dominated by microbes characteristic of complex community composition, diverse functions, and unique adaptation mechanisms. These microbes play important roles in biogeochemical cycling of elements. Hence, it is of great significance to clarify the microbial characteristics and their roles in biogeochemical cycles of elements in the subglacial aquatic ecosystems of Antarctic, which avails to reveal the evolution of life on the early Earth and explore life in the extraterrestrial planets. This review summarized the extreme environment conditions, microbial diversity, adaptation mechanisms, and microbial functions related to biogeochemical cycles of elements in subglacial aquatic ecosystems of the Antarctic. Moreover, we summed up the future research trends on Antarctic subglacial microbes.
Keywords: Antarctic    subglacial environment    microbes    community composition    biogeochemical cycles    

南极洲被称为冰冻的荒原,包含了地球上90%的冰,相当于地球淡水供应的60%-70%[1]。南极洲约98%的面积常年被冰覆盖,只有0.4%的季节性无冰区域,在夏季经历短暂的冰融化[2]。地球物理数据显示,南极冰盖下存在广阔的沉积盆地,包含14 km厚的沉积填充,由地热能和冰盖压力形成的融化条件使南极冰盖下存在液态水,形成了地球上一系列独特的完全由微生物驱动的冰下水生态系统,包括冰下沉积物、冰下溪流、冰下河流和冰下湖泊等[3-6]。冰下湖泊之间可能引发并维持快速的冰流,不同类型的冰下水生态系统在南极冰盖下存在一定的水文联系。微生物主导着可定殖生态位的基因库和生物量,与物理和化学环境进行相互作用和反馈,在维持特有的生态系统功能方面发挥着关键作用[1]

由于冰盖的存在,南极冰下水生态系统的微生物群落可能在数千万年的时间里与地球的表面环境和生态系统隔离[7],其中微生物的群落结构、遗传进化和生态功能可为地球生命演化提供指示意义(如雪球地球时期)。遥感研究发现,地外天体如木卫二、土卫二的冰沉积物下存在液态水,南极冰下水生态系统是这些具有探索地外生命可能性天体的类比环境[8],其微生物群落的特征及适应极端环境的机理可为地外生命探索提供线索。南极冰下水生态系统中的微生物群落可能积极参与了碳、氮和其他元素的全球生物地球化学循环[9-12]。南极冰下水环境及其生物区系是生态学、微生物学、古气候学、天体生物学和生物多样性等许多领域的优秀模型。南极冰下水生态环境条件极端,生物群落组成相对简单,有利于研究微生物参与碳、氮和硫等元素循环过程对环境因子如低温的响应。南极冰下水生态系统的低温、频繁的冻融循环和寡营养等特点塑造了特殊的微生物资源库,可能产生多样的生物活性天然产物(如酶、抗生素和多糖等)[13]。因此,研究南极冰下水生态系统的微生物具有重要的科学意义和工业价值。本文将综述南极冰下水生态系统的极端环境条件、微生物多样性、微生物适极机理和微生物参与地球化学元素循环等方面的研究进展,并展望未来的研究方向。

1 南极冰下生态系统极端环境条件

南极洲绝大部分地区被千米以上厚度的冰川覆盖,由于地热能和冰的压力使液态水保持在压力熔点之上,在冰盖下形成水体; 上覆冰川移动时与底部的基岩和沉积物摩擦产生更细的含有矿质和有机碳的基底碎片,这些营养物质与冰下水体结合后形成湖泊、溪流和水饱和沉积物等生态环境,为微生物活动创造了热点[14]。由此形成的冰下湖泊生态系统是寒冷、黑暗的,其水力停留时间表明很可能属于缺氧环境[6, 15]。通过光合作用利用太阳辐射为地球上大多数生物直接或间接地提供了主要能量来源,冰下水生态系统中的微生物在没有太阳辐射的情况下必须使用化学物质为生物过程提供能量[16]。此外,季节性无冰区域的水生系统类型的地理分布和多样性相当可观,具有从淡水到高盐度、从永久性冰覆盖到常年无冰以及从混合到分层水体等不同特征的湖泊。相对于位于千米厚度冰川下的生态系统,冰封湖泊生态系统的冰盖厚度一般为几米,接收到的一定的太阳辐射是这些生态系统过程的主要驱动力[17]。综上所述,南极冰下水生态系统的微生物受到低温、黑暗、缺氧(无氧)、高压、高盐和寡营养等极端条件的影响[18-19]。下面就几种典型的冰下水生态系统环境做简单介绍。

1.1 冰下湖(subglacial lakes)

截至目前,通过遥感和实地调查研究已在南极1-4 km厚的冰盖下发现了600多个具有不同大小、体积和地理位置的冰下湖泊[20]。前人研究发现,一些冰下湖泊由冰下河流和小溪连接,证实了某些冰下湖泊之间存在水文联系[15, 21-22]。例如RES分析和数值冰原模型揭示了东南极Dome C处的冰下湖泊和Aurora冰下盆地的Totten冰川海岸之间的冰原底部持续保持湿润[22],说明它们之间存在着一定的水文联系。部分冰下湖与外界相对隔离,是孤立的水生系统(图 1),普遍具有高压、低温、永久黑暗、有限营养供应和无氧/低氧等极端环境条件[23]。如南极洲已发现的面积最大的冰下湖Vostok湖是一个孤立的水文系统,上覆冰层约4 km厚,水温约为-3 ℃,已与外界环境隔绝了约14-15百万年[24-26]。上层冰盖阻挡了所有光线进入湖泊,湖泊受到约3.5×107 Pa的压力[15]。有证据表明,Vostok湖西南角的浅水区可能有热液活动[27-29]; 低温、高压、寡营养、黑暗和可能的热液活动结合在一起,给Vostok湖的生命带来了极端的挑战[15]。有的冰下湖则表现出一系列的动态行为,是活跃的水生系统(图 1),常存在于冰盖的边缘地区,周期性地排出和充入部分或全部的水,填充排水周期可达数月至数年[30]。这些水可以流动数百公里,并与其他水文系统连接。如Whillans湖,上覆800 m厚的冰层,是一个寒冷、缺氧且相对较小(约0.13 km3)的淡水湖泊生态系统,接受来自上游Whillans冰流和邻近Kamb冰流的周期性输入,溶质来源以硅酸盐矿物风化产物为主,海水影响较小。流出的水经过约100 km的冰下通道最终流入Ross冰架下的海洋洞穴,在2003-2016年经历了3次排水再充盈的循环[24, 31-34]。厚厚的冰层将冰下湖泊与大气交换、太阳辐射和地表融水输入相隔离,支持生物活动所需的化学能和营养物主要来自于溶质、气体、矿物、基底融水释放出的颗粒物质以及储存在底层沉积物中的物质[35]

图 1 南极冰下水生态系统示意图(修改自文献[14, 20]) Figure 1 Sketch map of Antarctic subglacial ecosystems, modified from literature[14, 20]

1.2 冰封湖(ice-covered lakes)

地球上大部分被冰覆盖的湖泊位于南极洲大陆的岛屿和麦克默多干谷(McMurdo Dry Valleys,MDV)、Vestfold hills、Larsemann hills、Bunger hills和Schirmacher的沿海地带[19]。麦克默多干谷是南极洲最大的无冰区(2 500 km2),主要由Victoria、Wright和Taylor谷组成,拥有大量长年冰封的盆地湖泊以及许多海冰覆盖季节性变化的沿海湖泊[36-37]。南极常年被冰覆盖的冰封湖泊包括淡水和高盐环境(最高可达海水盐度的7倍)[37],冰盖厚度约为3-6 m,具有强烈的季节性光照周期,太阳辐射是南极冰封湖表层生态系统生物过程的主要驱动因素[17, 38]。与冰下湖不同的是,冰封湖表层水体的微生物可进行光合作用,这些光合微生物包括细菌(有氧的蓝细菌和无氧的光合细菌),许多形式的真核藻类和其他含叶绿体的原生生物(如纤毛虫),有显著的固碳功能[39]。在极地沙漠中,这些湖泊被认为是生命的绿洲,多年生的冰盖阻止了南极冰封湖受到大量异源输入或季节性混合的影响,从而产生了数百年稳定的生物地球化学作用。低季节性光合有效辐射(photosynthetically active radiation,PAR)、低温和寡营养等极端条件使得冰封湖水体食物网中较高营养水平的生物无法存活。由于不同的溶质输入和湖泊演化历史,不同冰封湖的物理化学参数有所不同,其微生物群落结构和动态在很大程度上受到环境条件的控制[40]。微生物研究揭示了湖泊冰盖、湖水、沉积物和微生物席中的典型截断食物网,包括多样化和数量丰富(105-106 cells/mL)的细菌、古菌、真核生物和病毒; 不同的微生物群落栖息于特定的生态位,具有独特的生物地理结构[41-43]。冰封湖水体高度稳定且多有化学分层,是完全由微生物主导的生态系统。冰封湖中的微生物群落以细菌为主导,不同的生态位中具有不同的群落结构[44]。由上至下可分为3个主要层位区域,湖泊上部混合层是以光合原核微生物为主的光合产氧带; 中间的化变层区域具有稳定的优势物种和高生物量; 湖泊下层黑暗低氧/缺氧滞水层中的微生物群落[45]。例如,位于泰勒冰川(Taylor valley)的化学分层的Fryxell湖,是一个长5 km、宽1.5 km、最大深度约为20 m的寡营养生境。Fryxell湖的环境条件受上方常年存在的4-5 m厚冰盖的强烈影响。在南半球夏季,冰盖传递了大约1%的入射辐照度,这提供了湖泊的主要能量输入[46]。光线和溶解氧随着湖水深度增加而下降,在夏季月份可以支持10.4 m深度下缺氧水体的表层光合作用[47]。冰盖阻碍了风的混合以及湖水和大气之间的气体平衡,分层限制了湖泊营养物质的输送和氧化还原反应的扩散,在水体中形成了稳定的氧化还原和营养梯度,生活在这种环境中的微生物积极地参与了湖泊中碳、氮和硫等元素的生物地球化学循环[48-49]

1.3 冰架水体

南极冰盖通过浮动冰架和注出冰川将冰排入海洋,占南极海岸线的74%[50-51]。流动的冰川在接地线(the grounding line,GL)处从下面的基底层中分离出来,经过千米级接地区域(the grounding zone,GZ)后排入海洋,形成100-1 500 m厚的处于静力平衡且自由浮动的冰架[52-53],向外延伸数百公里,漂浮在水面上。在远离南极大陆的浮动冰架末端,冰山从冰架上释放到海洋中(图 1)。南极大陆的冰下水环境不仅彼此相互联系,而且与海洋环境相互联系,冰下水体在盆地之间活跃地流动,并从冰下盆地流向大陆边缘,与被冰架覆盖的沿海地区的海水混合。冰架下的水体具有寒冷、黑暗和寡营养等特征,与冰架组成了特殊的冰下水生态系统。如西南极的Gould-Siple海岸的淡水通过冰下通道到达沿海后排入Ross冰架南端的海水中[31, 54]。同时大面积的海水被厚冰架覆盖[55],阻碍了光合作用的主要生产并有效地限制了溶质和颗粒物的大气输入。冰下流出物可能将储存在南极大陆上的溶质和颗粒生物元素(如C、N、P和Fe)输送到周围的海洋中[56],类似的冰下溶质和颗粒物在南极洲沿海地区可能具有特殊的生物地球化学重要性。

1.4 其他冰下环境

南极冰盖下还存在冰川下径流、饱和沉积物以及冰与覆盖的岩石/土壤之间的界面等冰下微生物系统。冰川的移动会粉碎所经过的基岩、矿物和沉积物,形成更精细、更大反应表面积和体积比的基底沉积物,从而增加水岩相互作用或生物活动进一步增强风化速率,最终加快矿物的风化速率。由冰川粉碎形成的新暴露的矿物表面是支持微生物新陈代谢的关键; 此外,基底沉积物碎屑含有矿物质和有机碳,与冰川下的水结合在一起为微生物生命创造了热点。地球化学和微生物证据表明,冰下微生物通过基岩矿物风化获得能量,从而影响冰下水特性[57-58]。微生物驱动的与硫、铁循环和碳转化相关的化能营养过程为冰下岩石界面的化学转化提供了基础,从而支撑了一个重要的向下游生态系统输送营养物质的机制[6]。冰流是在一层松散的、饱和的水沉积物上快速移动的冰层,沿着水文势梯度流向沿海海洋,形成了一个包含湖泊、淡水饱和沉积物和冰下排水通道的水文系统[3]。在西南极冰原Kamb冰流下收集的沉积物样品中首次发现了微生物,细胞数量丰富(约107 cells/g)但多样性低[59]。Blood Falls冰流是Taylor冰川定期通过深层冰川下蓄水层中的导管排出的富含铁的高盐度水体,具有引人注目的红色表面特征,在冰川末端的北端沉淀[60]。Blood Falls是富铁、缺氧的冰下极端环境,其冰下盐水的化学性质与Taylor冰川冰和冰上其他水流明显不同,在活跃的冰下流出期间,具有较高的氯化物和硫酸盐浓度[61]

2 南极冰下生态系统的微生物多样性 2.1 冰下湖微生物多样性

冰下湖上覆厚冰层,深冰钻探是开展湖泊理化特性与微生物研究的前提条件。目前共有3个国家尝试在南极开展冰下湖科学钻探,分别是俄罗斯的Vostok深冰芯科学钻探及冰下湖探测计划、美国的Whillans冰下湖和Mercer冰下湖科学钻探计划和英国的Ellsworth冰下湖科学钻探计划[10, 62-65]。目前,已经通过机械钻探进入南极冰盖,其中包含了钻井液钻探和热水融化钻探[66]。使用含氯氟烃致密的煤油基钻井液对Vostok冰下湖进行机械钻井,但通过取芯回收的冰冻湖水受到了煤油基钻井液和含氯氟烃钻井液的严重污染,影响了科学解释[66]; 2013年,采用清洁热水钻进入Whillans冰下湖,能够去除钻井水中的微生物污染物,首次取得清洁的冰下湖湖水和沉积物样品[7]。采用清洁热水钻对Ellsworth冰下湖进行取样后由于技术原因失败,因而未取得湖水样品[64]。Mercer冰下湖冰盖厚度为1 067 m,2018年美国SALSA项目团队采用钻探Whillans冰下湖的同一套热水钻系统采集了湖水和沉积物样品,同时使用CTD (conductivity-temperature-depth system)和ROV (remotely operated vehicle)等仪器对湖水进行了理化参数测量及影像观测,在沉积物样品里发现了微小动物的尸体[63]

通过分子生物学手段发现,已获取的冰下湖样品中的微生物由ProteobacteriaBacteroidetesFirmicutesActinobacteria等细菌主导,样品中含有部分真核生物和较少的古菌序列(表 1)。在获取湖水冰芯样品前,Vostok冰下湖的微生物学研究对象主要以其上覆冰盖中不同深度的冰川冰(上部3 310 m的层状冰层)、基底冰(下方228 m的冰层,上部压力导致冰层变形)和积冰(基底冰下231 m的冰层,湖水在上覆冰川底部重新冻结)样品为主。通过宏基因组和宏转录组方法对Vostok湖3类样品的微生物数据进行分析,揭示了一个由细菌(约75%)、真核生物(约25%)和古菌组成的复杂生态系统。其中,超过33%的细菌物种属于适冷或嗜冷微生物以及部分耐盐或嗜盐微生物和抗干燥、嗜温、嗜热、嗜酸、耐碱或嗜碱等极端微生物; 真核生物由AlveolataAnimaliaArcheaplastidaExcavataFungiHaptophyta等成员组成; 而古菌序列较少(0.2%),仅发现Halorubrum trapanicumHalobacterium salinarum R1和Halobacterium salinarum NRC-1这3个在海洋和高盐水环境中常见的物种,具有参与还原性乙酰辅酶A代谢途径的潜在能力[67]。此外,在Vostok湖样品中发现了许多与已报道的固氮细菌相似的序列,包括AzospirillumAzotobacterBacillusBurkholderiaCyanobacteriaFrankiaKlebsiellaRhizobiumRhodobacterRhodopseudomonasSinorhizobium等类群; 属于硝化细菌MethylococcusNitrobacterNitrococcusNitrosococcusNitrosomonas的序列; 以及与在氮循环中具有重要作用的AlkaligenesClostridiumMicrococcusParacoccusProteusPseudomonasStreptomycesThiobacter相似的序列[27]。尽管在Vostok的冰盖中发现了丰富的细菌资源,但由于机械钻探所用的煤油钻井液会造成化学和微生物污染,目前通过16S rRNA基因高通量测序分析在Vostok湖水冰芯样品中只发现了1株确定无污染的细菌w123-10,与已知分类单元序列相似性低于86%[62],冰下湖中仍有大量未知微生物值得探索。此外,通过富集培养等方法在Vostok冰下湖样品中分离得到了部分细菌,包括属于Brachybacterium sp. (Actinobacteria)、Methylobacterium sp. (Proteobacteria)、Paenibacillus sp. (Firmicutes)、Sphingomonas sp. (Proteobacteria)的菌株,在系统发育上与海洋、冰川和高纬度湖泊等环境中的菌株相似[68-69]。冰下环境中的微生物群落通常与其冰下的地球化学环境相匹配,且常与在其他寒冷环境中发现的微生物有较近的系统发育关系[61] (图 2)。

表 1. 南极冰下水生态系统的微生物多样性 Table 1. Microbial diversity in Antarctic subglacial aquatic ecosystems
Subglacial lakes Bacteria Archaea Eukarya References
Glacial ice, Lake Vostok Cyanobacteria [67]
Basal ice, Lake Vostok Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes Alveolata, Animalia, Archaeplastida, Excavata, Fungi, Haptophyta
Accretion ice, Lake Vostok Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria Halorubrum trapanicum, Halobacterium salinarum Archaeplastida, Fungi
Lake Whillans Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Lentisphaerae, Planctomycetes, Verrucomicrobia Thaumarchaeota, Euryarchaeota [11, 64]
Lake Bonney Alpha, Beta, Gamma, Deltaproteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetales, Verrucomicrobia Cercozoa, Cryptophyta, Chlorophyta, Choanozoa, Dinozoa, Fungi, Haptophyta, Ochrophyta, Pirsoniomycota, Telonema [43, 70]
Lake Fryxell Alpha, Beta, Gamma, Deltaproteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Hyd24-12, OP9, Planctomycetales, Verrucomicrobia Cercozoa, Cryptophyta, Chlorophyta, Choanozoa, Dinozoa, Fungi, Ochrophyta [43]

图 2 南极冰下、冰封湖泊可培养细菌基于16S rRNA基因序列的邻接系统发育分析 Figure 2 Neighbour-joining phylogenetic tree based on almost complete 16S rRNA gene sequences showing the position of culturable bacteria of subglacial and ice-covered lakes in Antarctic and their related species. Accession numbers of the sequences are given in parentheses. The numbers at branch nodes indicate bootstrap percentages derived from 1 000 replications (only values above 50% are shown). Aquifex pyrophilus (M83548) was used as outgroup. Bar: 0.05, substitution per nucleotide position.

Whillans冰下湖的湖水和沉积物样品的微生物分析揭示了一个由多种细菌和古菌组成的化学综合驱动的生态系统,其中的微生物群落与已知使用氮、硫、铁和甲烷作为能源的物种相似。微生物在低温下代谢缓慢,化能自养活性大于化能异养活性,检测到包括ThiobacillusSideroxydansMethylobacter的化能自养微生物类群的存在[10]。氨氧化和亚硝酸盐氧化过程在湖水中占主导地位,主导许多冰下淡水系统的Betaproteobacteria在Whillans冰下湖中广泛存在,在湖水和沉积物样品中分别具有超过38%和59%的序列[7, 14]; 其中湖水和表层沉积物中最丰富的细菌种类与Betaproteobacteria的亚硝酸盐氧化菌Candidatus Nitrotoga arctica密切相关[71]; 而古菌中最丰富的类群分布于Thaumarchaeota,该门中已培养的古菌均为化能自养的氨氧化微生物[72]。此外,硫氧化微生物可能为Whinllans湖的生物化学合成提供了重要能量来源[73],通过定量PCR检测到含有硫氧化相关基因aprA的原核生物是群落的重要组成部分; 且在表层沉积物中发现的约80%的aprA序列与Sideroxydans属的物种相关,目前唯一获得的Sideroxydans的培养物是专性化能自养的铁和硫氧化微生物[74]。前人研究表明,Whillans湖微生物群落具有硫酸盐还原的潜力,测量到微生物介导的低硫酸盐还原速率为1.4 pmol/(cm3·d)且获得与DesulfobacteraceaeDesulfotomaculum相关的APS还原酶和DSR基因相关的序列[73]

2.2 冰封湖微生物多样性

常年冰封湖泊的水柱和底栖地带存在一系列好氧和厌氧的微生物群落[75-80]。每个湖泊具有不同的微生物群落(包括细菌、微藻、鞭毛原生动物和纤毛原生动物),且根据光照和营养有效性在水体中呈垂直分层特征[81]。冰封湖生态系统中的微生物以细菌为主,占浮游生物总生物量的30%-60%[82]。南极麦克默多干谷的冰封湖中微生物群落的分布受到湖泊、盐度和深度等因素的影响。Bonney湖东西两侧(east lobe,ELB; west lobe,WLB)的湖水由于在13 m深处有物理隔离,具有不同的地球化学和生物地球化学特征。BacteroidetesActinobacteria在麦克默多干谷的Bonney、Fryxell、Hoare和Miers湖泊中都很丰富,而Proteobacteria是第二丰富的类群,其中大部分是Betaproteobacteria。高盐的ELB和WLB具有相似的菌群组成,而盐度相对较低的Fryxell湖和Hoare、Miers淡水湖中具有更多的共有菌群[44]。使用18S rRNA基因高通量测序对Bonney湖和Fryxell湖进行研究后发现2个湖泊的真核生物群落主要由ChlorophytaCryptophytaHaptophytaOchrophyta构成[43]。前人研究表明,Bonny和Fryxell湖泊上层混合层和下层黑暗缺氧层之间的细菌群落构成具有明显差异,在WLB中,Actinobacteria在上层中较为丰富,而在下层被Gammaproteobacteria取代,且下层中Firmicutes的丰度较高; 而在Fryxell湖中,上层由Bacteroidetes (32%±8%)和Actinobacteria (42%±8%)主导,而在下层其丰度分别下降了10%和6%[43]。细菌和真核生物的群落结构受到不同生物地球化学参数的影响,CCA (canonical correspondence analysis)分析表明Bonney湖上层细菌和真核生物的群落分布与温度、PAR、溶解氧等呈现正相关关系,真核生物还受到硝酸盐浓度的影响; 下层则与电导率、DIC和N/P比值相关,其中细菌还与NH4+浓度相关。Fryxell湖细菌群落的分布与浮游植物生物量相关,真核生物群落的分布则与浮游植物生物量和溶解性活性磷相关[43]。在Bonney湖中,微生物群落主要由BacteroidetesActinobacteria构成,但在高盐度的湖底部(30 m深处) GammaproteobacteriaFirmicutes的丰度明显增加[44],主要为AlteromonadaceaeMarinobacterAcidaminobacteraceae类群,这些类群已被证实可在其他高盐度的水环境中大量存在[83-85]。而在Fryxell湖中,BetaproteobacteriaPlanctomycetes的丰度随着湖水深度的增加而减少; 在9 m的化变层处Bacteroidetes是优势门。此外,Fryxell的深层水体含有大量的生物甲烷和硫化合物(如硫化氢和亚硫酸盐); 且属于DeltaproteobacteriaDesulfobulbaceaeGeobacteraceaeSyntrophaceae类群大量存在。Desulfobulbaceae在其他缺氧环境中广泛存在且参与甲烷或其他简单有机碳分子的氧化过程[86-87],其成员也是典型的硫酸盐还原菌,可能在Fryxell深层水体的硫循环中发挥作用。

2.3 冰架水体及其他冰下环境微生物多样性

对冰架水体生境及其支持的生命的了解多集中于从冰架钻孔中观察到的地质和冰川学研究,关于微生物多样性的研究较少。冰架下的生物群落组合类似于贫瘠的深海群落,目前利用CTD和ROV等设备观察到了冰架下鱼类、片脚类和等足类等动物以及大型底栖生物包括固着生物群落等。由于在冰架下不能进行光合作用,因此底栖生物群落必须依靠开阔水域的平流输送或冰架下的化学合成来获取食物[88]。冰层滑入水中时从冰架底部落下的碎片可能会给微生物提供食物。由于缺乏阳光和光合作用,微生物会以不同寻常的方式从碎片中获取能量[89]

化能自养群落(主要由Proteobacteria组成)主导着基底冰、冰下水体等冰下生境,也是冰下沉积物和冰下流出物等冰下环境中的优势类群。通过对Kamb冰下沉积物岩芯进行富集培养与变性凝胶梯度电泳(denatured gradient gel electrophoresis,DGGE)分析后发现,BetaproteobacteriaAlphaproteobacteriaActinobacteria属于优势类群,与ComamonasGallionellaThiobacillus相关的序列和分离得到的菌株与高山和北极的冰下系统的优势类群具有密切的相关性[59]。使用16S rRNA基因克隆文库方法对冰下水体流出物进行研究,发现Blood Falls中最丰富(46%)的序列与隶属于Proteobacteria的嗜冷海洋自养硫氧化菌Thiomicrospira arctic高度相似,其他成员属于BetaproteobacteriaDeltaproteobacteriaGammaproteobacteriaBacteroidetes,74%的克隆和来自海洋生态系统的纯培养菌株的16S rRNA基因序列具有较高的同源性[61]

在冰下沉积物和冰下水体流出物等冰下环境中,已报道了与已知的化能自养微生物菌株相似的基因序列。在Kamb冰下沉积物中发现了Comamonas sp.、Gallionella sp.和Thiobacillus sp.等化能自养硫、铁氧化的微生物组合[59]。而Blood Falls中有大量基因序列与化能自养硫氧化的基因序列具有相关性,且部分克隆序列与能够利用铁和硫化合物进行代谢的微生物种属如ThiomicrospiraDesulfocapsaGeopsychrobacter密切相关[61, 90]。微生物多样性与环境中检测到的高铁和硫酸盐浓度具有一致性,这可能是由于冰下盐水与下面富含铁的基岩的相互作用导致的[61]

3 南极冰下微生物适极机理

南极冰下水生态系统拥有极端特殊的环境条件,使得绝大部分冰下水生态系统只适合微生物生存[5]。适应寒冷的微生物在南极冰下水环境中保持着关键的生态功能,在阳光穿透冰层的地方,光能自养是复杂食物网的基础,而在黑暗的冰下栖息地,化能自养过程占据主导。

南极冰下微生物系统中的适冷和嗜冷微生物产生与细胞代谢过程有关的一系列变化来适应环境并抵御低温带来的侵害。温度是控制生命进化的关键因素。低温会影响微生物细胞各个组分的稳定性,且可以通过改变分子构件的功能来减慢细胞的反应速度,造成细胞酶活性降低、细胞膜流动性降低、细胞溶质运输受损和蛋白质变性等[1, 14]。低温引起冷冻的过程中,生长的冰晶会刺穿细胞并破坏细胞膜,对生命的生存构成威胁[14]

南极冰下微生物具有在冰点以下仍能保留足够物理韧性的脂质和酶,以支持细胞膜稳态和生化催化作用[91]。研究显示南极真菌通过改变细胞膜的脂肪酸组成以及细胞质内积累海藻糖等有效低温防护剂来抵御低温条件[92]。南极冰下微生物通过产生在低温下有较高催化活性的低温酶,在寒冷条件下催化体内的生化反应保证生命活动的进行[93]。南极环境中适冷和嗜冷微生物产生的低温酶如低温木聚糖酶、低温蛋白酶和低温脂肪酶等在食品、制药、洗涤和能源等在低温条件下要求高酶活性的工业中具有重要的潜在利用价值[94-96]

微生物催化剂在各种稳健的加工条件下具有耐受性,因此在工业应用中的使用需求日益增加。当今工业过程中使用的大多数酶都来自于中温菌。目前使用的中温酶在极端温度、pH和离子浓度下的稳定性受到限制会增加加工成本,而削减成本的关键在于降低工业过程中的加热和冷却步骤,提高酶促反应产品的回收率。因此,嗜冷微生物产生的嗜冷酶具有巨大的应用价值[97]。近年在南极环境样品如沉积物(南极普里兹湾及邻近海域、南极罗斯海)、土壤(南极乔治王岛、南极东翁古尔岛)、水体(南极乔治王岛)和沉积岩(南极南赫里蒂奇岭联合冰川)中分离得到了可产生蛋白酶、淀粉酶、脂肪酶、几丁质酶、木聚糖酶、纤维素酶、果胶酶、酯酶、明胶酶和碱性磷酸酶等低温酶的多种细菌和真菌[98-104]。例如,通过对南极乔治王岛的34个土壤和14个水体样品进行酵母培养后获得许多菌株具有酯酶和脂肪酶活性,与前人在南极洲发现的嗜冷酵母Pseudozyma antarcticaLeucosporidium antarcticumCryptococcusRhodotorula的成员相似[105-108]。南极具有胞外酶活性的微生物具有潜在的工业用途,如食品加工、发酵和制药工业中的淀粉酶; 纺织品、生物燃料加工和果汁澄清中的纤维素酶和果胶酶; 农用食品工业中的酯酶; 洗涤剂配方和环境生物修复中的脂肪酶和蛋白酶; 甲壳素废物生物防治中应用的几丁质酶以及在生物燃料和溶剂工业中用作水解剂的木聚糖酶[109-111]

冰下微生物通过表达特定的化合物如冰结合蛋白或抗冻蛋白和基于碳水化合物的细胞外聚合物(extracellular polymeric substance,EPS)作为冷冻和渗透保护剂[14]。前者可以阻止细胞内冰晶的形成,防止其破坏细胞膜。例如,南极细菌产生具有抑制冰晶形成作用的蛋白质(抗冻蛋白,AFPs),防止冷冻时冰重结晶对细胞的损害,在冰封的南极湖泊中为细菌提供防冻保护[112-113]。此外,南极冰下微生物在低温胁迫下诱导表达冷休克蛋白(Csps)和冷适应蛋白(Caps),调节低温休克反应,协助RNA转录和DNA复制的进行[114]。EPS可以作为防冻剂和抵抗高盐浓度的缓冲剂,有助于微生物在寒冷环境中的生存。具有冰活性的蛋白可能被嵌入某些微生物的EPS中,从而增加其对冰的亲和力[115]

水平基因转移是由病毒、质粒和其他元素介导基因在相关和不相关生物之间的转移,研究表明水平基因转移在低温生境中普遍存在,大大增强了微生物适应进化的潜力[42]。病毒介导的水平基因转移,有助于嗜冷微生物对冰下环境的基因组适应[116]; 细菌的水平基因转移存在于目甚至域水平的物种之间,而在属之间具有高水平的交换[117-119]。水平基因转移可能是导致南极地区微生物物种多样性高于预期的原因之一[120]

4 南极冰下微生物参与地球化学元素循环

微生物代谢参与了地球上所有生源元素(如:碳、氮和硫等)的生物地球化学循环。通过光合作用利用的太阳辐射是地球上大多数生物直接或间接的主要能量来源,但由于缺乏光照,冰下微生物必须使用化学物质为生物过程提供能量。冰下湖泊微生物异养活性可能由冰川融化输入的低有机碳或冰盖下残留的海洋沉积物中储存的有机物维持[4, 121],微生物的化能自养也被证实是冰下湖泊微生物重要的能量代谢途径[10]。互养共生是极端环境条件下微生物群落中常见的种间代谢关系,各种微生物通过这种代谢关系相互协同地逐步催化多种地球化学反应,共同应对极端环境条件[122-123]。原核微生物与真核生物在生态系统中相互作用紧密联系,以互养共生的形式建立一个相互交织的代谢网络,由此有效地将碳、氮和硫循环耦合在一起[124]

4.1 碳循环

南极是地球重要的有机物和生物重要营养素的储库,可以向海洋环境输送营养物质[121, 125]。据估计,南极冰盖下方的沉积盆地储存了21 000 Pg (1 Pg=1015 g)的有机碳,这使得南极冰下环境成为全球碳储量与碳循环的重要组成部分[4, 35, 126]。例如,麦克默多干谷的湖泊缺乏陆地有机碳的输入,湖泊中的溶解性有机碳含量远大于邻近的地表水,其湖泊的相似化学特征表明碳来源于微生物[127-128]。冰下微生物可以通过产甲烷和碳固定等途径参与碳元素的地球化学循环(图 3)。在麦克默多干谷的Fryxell湖、东南极的Untersee湖及Vestfold hills的Ace湖等冰下水生态系统中已经观察到甲烷的产生[129-131]。此外,利用克隆文库测序和定量PCR技术对cbbM基因进行分析发现化能自养微生物在Bonney湖生态系统产生新碳方面发挥了关键作用[81]。冰下水生态系统支持大量的产甲烷活动,从而对全球甲烷产生做出了重大贡献。通过微生物培养和mcrA基因文库调查发现,东南极冰盖边缘Larsemann山冰下沉积物中嗜冷氢营养型产甲烷是潜在的主要产甲烷途径,MethanomicrobialesMethanosarcinalesMethanobacteriales是产甲烷的主要微生物类群,温度和底物对冰下沉积物甲烷生成存在影响[132]。在Vostok湖的积冰样品中发现与MethylophilusMethylobacillusMethylobacterium等能够以C-1化合物(如甲烷和甲醇)为能源生长的微生物密切相关的类群[28, 68],宏基因组数据显示细菌(ChlorobiCyanobacteriaProteobacteria)和古菌(Halorubrum trapanicumHalobacterium salinarum R1和Halobacterium salinarum NRC-1)类群具有参与还原戊糖磷酸循环、还原性三羧酸循环、3-羟基丙酸循环、C-1等代谢途径的潜在能力[67]Methylobacter是Whillans湖的优势类群,该类群与甲烷氧化有关[11-12]; Polarononas也普遍存在于湖泊中,该类群被证明可以降解多种碳化合物,同时是许多冰冻圈和高纬度生境中的常见类群[59, 133-135]。已从冰下环境中发现了编码卡尔文循环中的关键羧化酶的RuBisCO功能基因,分析表明Whillans湖沉积物中含有碳固定途径关键步骤的功能基因cbbMnifJacc,至少有卡尔文循环、还原性三羧酸循环、3-羟基丙酸循环这3种固碳途径可能在其中起作用[7]。其中,cbbM序列的OTUs与Betaproteobacteria的硫氧化微生物相关,nifJ序列聚集成的OTUs在氨基酸水平上与其最接近的已培养物种仅有62%-70%的同源性,并且与Chloroflexi、OP9和Chlorobi序列高度相似,acc序列则与ActinobacteriaChloroflexi成员的序列相似。在Bonney湖西侧的化变层中,发现了与化能自养微生物Proteobacteria相关的rbcL基因[136]; 而唐阳等[137]通过rbcL固碳基因研究发现第三极青藏高原湖泊的固碳微生物主要为ProteobacteriaCyanobacteriaChlorophyta,其中Proteobacteria为优势固碳微生物。这表明在南极和青藏高原的湖泊中,Proteobacteria广泛参与了固碳作用。此外,Wang等[138]通过cbbLcbbM基因研究发现,青藏高原湖泊的固碳微生物为AlphaproteobacteriaBetaproteobacteriaGammaproteobacteriaCyanobacteria,其中Ⅱ型RuBisCO功能基因cbbM序列与硫氧化细菌(sulfur oxidizing bacteria,SOB) HydrogenovibrioThiobacillus具有较高的相似性。Ⅱ型RuBisCO通过直接参与Cakvin-Benaon-Basham (CBB)循环在自养生物体中固定CO2,该基因更适应低O2和高CO2的环境[139]。而Bonney湖的cbbM基因序列与ThiobacillusEndosybiontRhodopseudomonasThiomicrospira类群具有较高的相似性; Whillans湖的cbbM基因序列则与Betaproteobacteria的硫氧化菌群Sulfuricella密切相关。Thiobacillus是化能自养菌群,通过氧化铁和硫获得固定CO2的能量。从Fryxell湖中分离得到一株耐冷菌株(与Thiobacillus thioparus相似)则可以利单质硫或H2S作为电子供体[140]。南极冰下湖泊与青藏高原湖泊的cbbM基因构成均由Proteobacteria主导,但其中的化能自养菌群组成也有不同之处,可能与湖泊的地球化学性质有关,有待进一步深入研究。

图 3 南极冰下水生态系统微生物参与碳(A)、氮循环(B)示意图 Figure 3 Sketch map of microorganisms participating in carbon (A) and nitrogen (B) cycles in Antarctic subglacial ecosystems.

4.2 氮循环

光照和温度等物理因素是许多南极冰下水生态系统生产的重要制约因素,研究表明营养限制也是大多数南极湖泊系统的一个主要特征。湖泊的化学分层与生物活性化合物有关,这些化合物是由一系列具有深度优势的生物地球化学循环分层产生的。冰下微生物可能参与了氮循环中的固氮、硝化、反硝化、硝酸盐还原与同化、有机质分解和厌氧氨氧化等过程。麦克默多干谷的许多湖泊都含有高浓度的N2O,研究表明N2O是通过硝化和氨氧化产生的。在Vanda湖的好氧水到缺氧水转换的氧跃层中,分隔了一系列与氮循环相关的微生物。硝化细菌利用深层缺氧水体中扩散出来的铵和在湖泊分层结构中积累的中间产物氧化亚氮产生硝酸盐[141]。宏基因组测序表明,Fryxell湖的固氮作用受到O2浓度的限制,氧跃层上方的硝酸盐和铵浓度低,限制了浮游微生物群落的固氮作用。生长在氧跃层以下的微生物群落通过nifH基因进行固氮作用[47]。此外,Suess冰川向Taylor谷推进期间隔开形成了Popplewell湖和Chad湖,湖泊藻类物质冻结在冰川基底冰中形成古老的藻类有机质层,稳定同位素分析表明微生物主导了厌氧条件下的古有机物质分解,参与了冰下氮循环[142]。Whillans冰下湖中存在高丰度的16S rRNA基因序列与已知氨氧化和亚硝酸盐氧化的分类单元Nitrosospira multiformis、Candidatus Jettenia asiatica和Candidatus Brocadia fulgida有关,表明硝化作用可能是该湖中微生物群落的重要代谢功能; 此外,16S rRNA基因功能预测表明在该湖中可能存在反硝化和厌氧氨氧化代谢过程[11] (图 3)。Whillans湖泊水柱和沉积物中的氨氧化古菌(ammonia oxidizing archaea,AOA)和氨氧化细菌(ammonia oxidizing bacteria,AOB)的丰度不同,通过amoA基因(ammomia monooxygenase subunit A,氨单加氧酶基因)分析发现,水体中AOA含量高于AOB,而在沉积物中,AOA的丰度随着深度的增加迅速减少,AOB的丰度变化则相反; 沉积物中丰度最高的的氨氧化细菌与Nitrosospira multiformis密切相关[11]。青藏高原湖泊水体和沉积物中的amoA基因与NitrosopumilusNitrososphaera密切相关[143-145]。在有氧湖水中,氨氧化古菌(AOA)比氨氧化细菌(AOB)更为丰富,而在缺氧沉积物中则相反,这与Whillans湖中的分布趋势一致。由于其氨单加氧酶对底物的亲和力更高,AOA在低铵浓度(< 1 µmol/L)的环境中比AOB更具竞争力[146]。南极湖泊和青藏高原湖泊氨氧化古菌和氨氧化细菌的丰度在不同生态位中的变化相似,可能是对环境中铵浓度的响应。氨氧化群落的成员组成有所差异,不同的类群在氮循环中扮演的角色仍需进一步探索。

4.3 其他元素循环

在冰下湖泊和冰川下系统中,常发现与参与硫铁循环相关的细菌相似的微生物。例如,在南极冰下环境中检测到铁和硫化物氧化的自养细菌Sideroxydans lithotrophicus的化能营养活性,该细菌序列在Whillans冰下湖中也丰富存在; 在北极和南极的冰下环境中都发现了与硫氧化密切相关的Thiobacillus sp.和Thiomicrospira sp.[61, 147]。通过原位伏安法、分光光度法和铁同位素分析得到的结果以及化学反硝化作用主导的铁氧化证据发现,非生物和生物的氧化还原反应正在推动Vida湖盐水的铁循环[148]。此外,通过检测参与硫氧化、硫还原的关键基因(APSDSRrDSR)探索Whillans湖沉积物中微生物介导的硫转化过程发现,与硫氧化相关的APS基因在沉积物中广泛存在,大多数(74%) APS还原酶序列与已知的硫氧化菌(如Sideroxydans sp.和Thiobacillus sp.)的APS序列具有同源性[73]; Whillans湖沉积物中的硫酸盐还原群落与DesulfotomaculumCarboxydothermusDesulfovibrionalesDesulfobacterales等已知的硫酸盐还原菌群密切相关; Whillans湖沉积物中参与硫化合物氧化的群落与能够氧化硫化氢的无氧光合细菌Thiorhodococcus drewsiiMarichromatium purpuratum密切相关。青藏高原湖泊的硫酸盐还原菌(sulfate-reducing bacteria,SRB)归属于DesulfobacteraceaeDesulfobulbaceaePeptococaceae这3个科[149],其中DesulfobacteraceaeDesulfobulbaceaeDesulfobacterales的成员,与Whillans湖泊中的SRB构成具有相似性。基于soxB基因的系统发育分析表明,青藏高原湖泊的硫氧化菌(sulfur-oxidizing bacteria)以AlphaproteobacteriaBetaproteobacteria为主,还有少量的Gammaproteobacteria成员[150]。主导类群的分布与湖泊的盐度相关,低盐度湖泊中BetaproteobacteriasoxB基因序列占优势,高盐度湖泊中AlphaproteobacteriasoxB基因序列占优势[150]。而Whillans湖泊与青藏高原盐湖的SOB群落均由Proteobacteria组成,SRB群落则以Desulfobacterales为主,同时其分布受不同环境因子(深度、盐度等)的影响。

在Blood Falls中,与Geopsychrobacter electrodiphilusDesulfocapsa sulfoexigens相似的序列丰富[61],这些细菌使用多种代谢模式将Fe(Ⅲ)还原为可溶性Fe(Ⅱ)。Blood Falls盐水中释放出大量具有非零同位素特征(δ56Fe=−2.60%)的Fe(Ⅱ) (3.3 mmol/L),表明铁是通过细菌还原过程所致[90]。除了大气沉积和融化的冰山和海冰外,沿着海岸边缘类似于Blood Falls这样的冰下系统中释放的大量且集中的铁也是南大洋铁元素的一个来源[151]。研究表明冰下铁通量与风驱动的铁通量相当(0.06-0.17 Tg Fe/year)[152]。从南极冰下环境中流出的生物可用铁可能有助于维持铁含量有限的南部海洋的初级生产力[152]。此外,硫酸盐、水、碳酸盐和亚铁的同位素测量和腺苷5′-磷酸硫酸盐还原酶的功能基因分析表明,Blood Falls中的微生物群落促进了硫循环[90]

5 总结和展望

微生物是南极冰下水生态系统构成的主体及冰下水生态系统功能的主要维持者。南极冰下微生物群落受到其定殖环境的温度、光照和氧气浓度等条件的影响,它们产生了独特的适应机制。冰下微生物在驱动碳、氮、铁和硫等元素的地球化学循环过程中扮演了重要角色。南极作为地球早期及地外天体的类比环境,探索其中的微生物构成与功能对揭示地球早期生命与地外生命探索具有重要的指示意义。冰下水生态系统研究是当前极地研究的重点方向之一,随着钻探技术和分子生物学技术的进步,仍有许多有研究价值的技术难题与科学问题值得进一步研究和突破,例如:

(1) 钻探取样技术方面需要突破。传统机械钻的有机钻井液会对样品造成化学和微生物污染,后续改进的清洁热水钻获得了第一个冰下湖清洁样品,但其在冰架上作业时的钻井水源仍存在潜在的微生物污染的风险[66]。热水钻探取样技术有待改进与提高或需要研发新的钻探技术手段,以规避对南极环境及冰下样品的化学和微生物污染问题。

(2) 培养技术方法有待突破。传统的微生物培养是研究极端环境微生物多样性和群落结构的有效手段,目前南极冰下微生物已获得的菌群种类较少,有待探索科学高效的分离方案,如根据已有的地球化学数据,设计适用于取样生境的分离培养基,或通过高通量测序及共现网络分析等技术手段预测微生物的互作模式,从而实现冰下微生物的定向分离,以期获得更多的、独特的冰下微生物菌株资源。

(3) 研究技术手段有待突破。原来的分子手段如16S rRNA基因高通量测序和宏基因组测序等对样品DNA的浓度和质量要求较高,但许多冰下生境中微生物细胞数量较少,在高质量的DNA提取上具有技术局限性。随着现有测序技术的改进和新的测序技术如单细胞测序的广泛应用,使得对冰下微生物组成和功能代谢的进一步探索成为可能。

(4) 微生物参与元素循环的相关代谢途径有待明晰。微生物参与元素地球化学循环具有重要意义,目前的研究大多集中在证明微生物参与元素循环而没有阐明系统的微生物代谢途径。随着宏基因组、宏转录组和宏蛋白组等技术手段的不断发展,冰下系统中的微生物代谢途径有望获得解决。

(5) 微生物间的相互作用有待探索和深入。病毒在以截断食物网为特征的南极冰下水体生态系统中的作用可能很大[153]。研究表明,在低温且寡营养的冰下微生物系统中,病毒和细菌相互作用可以维持和促进生境中微生物的多样性[120]。冰下微生物系统中细菌、古菌、真核生物、病毒等群落之间的相互作用的相关研究较少,有待进一步的深入。

(6) 冰岩界面的微生物群落及功能有待探索和挖掘。南极冰川与覆盖的岩石之间的界面是一个微生物活动的热点,是良好的地外天体如火星的类比环境。目前关于冰-岩石界面微生物的研究尚属空白,有待突破。

(7) 南极湖泊与第三极青藏高原湖泊微生物群落构成与其参与元素循环的对比研究。青藏高原是世界海拔最高的高原,被称为地球第三极,分布着几千个具有显著盐度差异的湖泊。南极与青藏高原湖泊微生物的组成差异及其参与碳、氮、硫等元素循环的差异值得进一步探索。

References
[1] Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiology Reviews, 2013, 37(3): 303-335. DOI:10.1111/1574-6976.12007
[2] Chaya A, Kurosawa N, Kawamata A, Kosugi M, Imura S. Community structures of bacteria, archaea, and eukaryotic microbes in the freshwater glacier lake yukidori-ike in Langhovde, east Antarctica. Diversity, 2019, 11(7): 105. DOI:10.3390/d11070105
[3] Priscu JC, Tulaczyk S, Studinger M, Kennicutt Ii MC, Christner BC, Foreman CM. Antarctic subglacial water: origin, evolution and ecology// Vincent WF, Laybourn-Parry J. Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. USA: Oxford University Press, 2008: 119-136.
[4] Wadham JL, Arndt S, Tulaczyk S, Stibal M, Tranter M, Telling J, LIS GP, Lawson E, Ridgwell A, Dubnick A, Sharp MJ, Anesio AM, Butler CEH. Potential methane reservoirs beneath Antarctica. Nature, 2012, 488(7413): 633-637. DOI:10.1038/nature11374
[5] Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Applied and Environmental Microbiology, 2005, 71(11): 6986-6997. DOI:10.1128/AEM.71.11.6986-6997.2005
[6] Anesio AM, Lutz S, Chrismas NAM, Benning LG. The microbiome of glaciers and ice sheets. Npj Biofilms and Microbiomes, 2017, 3: 10. DOI:10.1038/s41522-017-0019-0
[7] Mikucki JA, Lee PA, Ghosh D, Purcell AM, Mitchell AC, Mankoff KD, Fisher AT, Tulaczyk S, Carter S, Siegfried MR, Fricker HA, Hodson T, Coenen J, Powell R, Scherer R, Vick-Majors T, Achberger AA, Christner BC, Tranter M, Team WS. Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2059): 20140290.
[8] Jones RM, Goordial JM, Orcutt BN. Low energy subsurface environments as extraterrestrial analogs. Frontiers in Microbiology, 2018, 9: 1605. DOI:10.3389/fmicb.2018.01605
[9] Wadham JL, Tranter M, Skidmore M, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P, Jackson M. Biogeochemical weathering under ice: size matters. Global Biogeochemical Cycles, 2010, 24(3): GB3025.
[10] Vick-Majors TJ, Mitchell AC, Achberger AM, Christner BC, Dore JE, Michaud AB, Mikucki JA, Purcell AM, Skidmore ML, Priscu JC, Team WS. Physiological ecology of microorganisms in subglacial Lake Whillans. Frontiers in Microbiology, 2016, 7: 1705.
[11] Achberger AM, Christner BC, Michaud AB, Priscu JC, Skidmore ML, Vick-Majors TJ, Team WS. Microbial community structure of subglacial Lake Whillans, west Antarctica. Frontiers in Microbiology, 2016, 7: 1457.
[12] Michaud AB, Dore JE, Achberger AM, Christner BC, Mitchell AC, Skidmore ML, Vick-Majors TJ, Priscu JC. Microbial oxidation as a methane sink beneath the west Antarctic ice sheet. Nature Geoscience, 2017, 10(8): 582-586. DOI:10.1038/ngeo2992
[13] Liu JT, Lu XL, Liu XY, Gao Y, Hu B, Jiao BH, Zheng H. Bioactive natural products from the Antarctic and Arctic organisms. Mini Reviews in Medicinal Chemistry, 2013, 13(4): 617-626. DOI:10.2174/1389557511313040013
[14] Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nature Reviews Microbiology, 2015, 13(11): 677-690. DOI:10.1038/nrmicro3522
[15] Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature, 2001, 414(6864): 603-609. DOI:10.1038/414603a
[16] Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature, 2001, 409(6823): 1092-1101. DOI:10.1038/35059215
[17] Priscu JC, Wolf CF, Takacs CD, Fritsen CH, Laybourn-Parry J, Roberts EC, Sattler B, Lyons WB. Carbon transformations in a perennially ice-covered Antarctic lake. BioScience, 1999, 49(12): 997-1008. DOI:10.2307/1313733
[18] Bölter M, Beyer L, Stonehouse B. Antarctic coastal landscapes: characteristics, ecology and research// Bölter M, Beyer L. Geoecology of Antarctic ice-free coastal landscapes. Berlin: Springer International Publishing, 2002.
[19] Rosa LH. Fungi of Antarctica diversity, ecology and biotechnological applications: diversity, ecology and biotechnological applications. Switzerland: Springer, 2019.
[20] Livingstone SJ, Li Y, Rutishauser A, Sanderson RJ, Winter K, Mikucki JA, Björnsson H, Bowling JS, Chu W, Dow CF, Fricker HA, Mcmillan M, Ng FSL, Ross N, Siegert MJ, Siegfried M, Sole AJ. Subglacial lakes and their changing role in a warming climate. Nature Reviews Earth & Environment, 2022, 3: 106-124.
[21] Wingham DJ, Siegert MJ, Shepherd A, Muir AS. Rapid discharge connects Antarctic subglacial lakes. Nature, 2006, 440(7087): 1033-1036. DOI:10.1038/nature04660
[22] Siegert MJ, Ross N, Le Brocq AM. Recent advances in understanding Antarctic subglacial lakes and hydrology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2059): 20140306. DOI:10.1098/rsta.2014.0306
[23] Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Berry Lyons W. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrological Processes, 2003, 17(4): 795-814. DOI:10.1002/hyp.1166
[24] Wright A, Siegert M. A fourth inventory of Antarctic subglacial lakes. Antarctic Science, 2012, 24(6): 659-664. DOI:10.1017/S095410201200048X
[25] Denton GH, Sugden DE, Marchant DR, Hall BL, Wilch TI. East Antarctic ice sheet sensitivity to Pliocene climatic change from a dry valleys perspective. Geografiska Annaler: Series A, Physical Geography, 1993, 75(4): 155-204. DOI:10.1080/04353676.1993.11880393
[26] Kapitsa AP, Ridley JK, De Q Robin G, Siegert MJ, Zotikov IA. A large deep freshwater lake beneath the ice of central east Antarctica. Nature, 1996, 381(6584): 684-686. DOI:10.1038/381684a0
[27] Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D'Elia T, Morris PF, Rogers SO. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One, 2013, 8(7): e67221. DOI:10.1371/journal.pone.0067221
[28] Christner BC, Royston-Bishop G, Foreman CM, Arnold BR, Tranter M, Welch KA, Lyons WB, Tsapin AI, Studinger M, Priscu JC. Limnological conditions in subglacial Lake Vostok, Antarctica. Limnology and Oceanography, 2006, 51(6): 2485-2501. DOI:10.4319/lo.2006.51.6.2485
[29] Bulat SA, Alekhina IA, Lipenkov VY, Lukin VV, Marie D, Petit JR. Cell concentrations of microorganisms in glacial and lake ice of the Vostok ice core, east Antarctica. Microbiology, 2009, 78(6): 808-810. DOI:10.1134/S0026261709060216
[30] Siegfried MR, Fricker HA. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Annals of Glaciology, 2018, 59(76pt1): 42-55. DOI:10.1017/aog.2017.36
[31] Fricker HA, Scambos T, Bindschadler R, Padman L. An active subglacial water system in west Antarctica mapped from space. Science, 2007, 315(5818): 1544-1548. DOI:10.1126/science.1136897
[32] Siegfried MR, Fricker HA, Carter SP, Tulaczyk S. Episodic ice velocity fluctuations triggered by a subglacial flood in west Antarctica. Geophysical Research Letters, 2016, 43(6): 2640-2648. DOI:10.1002/2016GL067758
[33] Smith BE, Fricker HA, Joughin IR, Tulaczyk S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003-2008). Journal of Glaciology, 2009, 55(192): 573-595. DOI:10.3189/002214309789470879
[34] Fricker HA, Scambos T. Connected subglacial lake activity on lower Mercer and Whillans ice streams, west Antarctica, 2003-2008. Journal of Glaciology, 2009, 55(190): 303-315. DOI:10.3189/002214309788608813
[35] Vick-Majors TJ, Michaud AB, Skidmore ML, Turetta C, Barbante C, Christner BC, Dore JE, Christianson K, Mitchell AC, Achberger AM, Mikucki JA, Priscu JC. Biogeochemical connectivity between freshwater ecosystems beneath the west Antarctic ice sheet and the sub-ice marine environment. Global Biogeochemical Cycles, 2020, 34(3): e2019GB006446.
[36] Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. Glacial ecosystems. Ecological Monographs, 2008, 78(1): 41-67. DOI:10.1890/07-0187.1
[37] Green WJ, Lyons WB. The saline lakes of the McMurdo dry valleys, Antarctica. Aquatic Geochemistry, 2009, 15(1/2): 321-348.
[38] Ellis-Evans JC. Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity & Conservation, 1996, 5(11): 1395-1431.
[39] Lawson J, Doran PT, Kenig F, Des marais DJ, Priscu JC. Stable carbon and nitrogen isotopic. Aquatic Geochemistry, 2004, 10(3/4): 269-301.
[40] Dolhi JM, Teufel AG, Kong WD, Morgan-Kiss RM. Diversity and spatial distribution of autotrophic communities within and between ice-covered Antarctic lakes (McMurdo Dry Valleys). Limnology and Oceanography, 2015, 60(3): 977-991. DOI:10.1002/lno.10071
[41] Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 2011, 162(3): 346-361. DOI:10.1016/j.resmic.2010.12.004
[42] Anesio AM, Laybourn-Parry J. Glaciers and ice sheets as a biome. Trends in Ecology & Evolution, 2012, 27(4): 219-225.
[43] Li W, Morgan-Kiss RM. Influence of environmental drivers and potential interactions on the distribution of microbial communities from three permanently stratified Antarctic lakes. Frontiers in Microbiology, 2019, 10: 1067. DOI:10.3389/fmicb.2019.01067
[44] Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim OS. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environmental Microbiology, 2017, 19(6): 2258-2271. DOI:10.1111/1462-2920.13721
[45] Roberts EC, Laybourn-Parry J, McKnight DM, Novarino G. Stratification and dynamics of microbial loop communities in Lake Fryxell, Antarctica. Freshwater Biology, 2000, 44(4): 649-661. DOI:10.1046/j.1365-2427.2000.00612.x
[46] Jungblut AD, Hawes I, MacKey TJ, Krusor M, Doran PT, Sumner DY, Eisen JA, Hillman C, Goroncy AK. Microbial mat communities along an oxygen gradient in a perennially ice-covered Antarctic lake. Applied and Environmental Microbiology, 2015, 82(2): 620-630.
[47] Dillon ML, Hawes I, Jungblut AD, MacKey TJ, Eisen JA, Doran PT, Sumner DY. Environmental control on the distribution of metabolic strategies of benthic microbial mats in Lake Fryxell, Antarctica. PLoS One, 2020, 15(4): e0231053. DOI:10.1371/journal.pone.0231053
[48] Lee PA, Priscu JC, DiTullio GR, Riseman SF, Tursich N, De Mora SJ. Elevated levels of dimethylated-sulfur compounds in Lake Bonney, a poorly ventilated Antarctic lake. Limnology and Oceanography, 2004, 49(4): 1044-1055. DOI:10.4319/lo.2004.49.4.1044
[49] Lee PA, Mikucki JA, Foreman CM, Priscu JC, DiTullio GR, Riseman SF, Mora SJ, Wolf CF, Kester L. Thermodynamic constraints on microbially mediated processes in lakes of the McMurdo Dry Valleys, Antarctica. Geomicrobiology Journal, 2004, 21(3): 221-237. DOI:10.1080/01490450490275884
[50] Bindschadler R, Choi H, Wichlacz A, Bingham R, Bohlander J, Brunt K, Corr H, Drews R, Fricker H, Hall M, Hindmarsh R, Kohler J, Padman L, Rack W, Rotschky G, Urbini S, Vornberger P, Young N. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year. The Cryosphere, 2011, 5(15): 569-588.
[51] Rignot E, Mouginot J, Scheuchl B. Antarctic grounding line mapping from differential satellite radar interferometry. Geophysical Research Letters, 2011, 38(10): L10504.
[52] Fricker HA, Padman L. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 2006, 33(15): L15502. DOI:10.1029/2006GL026907
[53] Ingels J, Aronson RB, Smith CR, Baco A, Bik HM, Blake JA, Brandt A, Cape M, Demaster D, Dolan E, Domack E, Fire S, Geisz H, Gigliotti M, Griffiths H, Halanych KM, Havermans C, Huettmann F, Ishman S, Kranz SA, Leventer A, Mahon AR, McClintock J, McCormick ML, Mitchell BG, Murray AE, Peck L, Rogers A, Shoplock B, Smith KE, Steffel B, Stukel MR, Sweetman AK, Taylor M, Thurber AR, Truffer M, Putte A, Vanreusel A, Zamora-Duran MA. Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: science review and future research. WIREs Climate Change, 2021, 12(1): e682.
[54] Horgan HJ, Alley RB, Christianson K, Jacobel RW, Anandakrishnan S, Muto A, Beem LH, Siegfried MR. Estuaries beneath ice sheets. Geology, 2013, 41(11): 1159-1162. DOI:10.1130/G34654.1
[55] Rignot E, Jacobs S, Mouginot J, Scheuchl B. Ice-shelf melting around Antarctica. Science, 2013, 341(6143): 266-270. DOI:10.1126/science.1235798
[56] Statham PJ, Skidmore M, Tranter M. Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Global Biogeochemical Cycles, 2008, 22(3): GB3013.
[57] Skidmore M. Microbial communities in Antarctic subglacial aquatic environments. Geophysical Monograph Series. Washington, D. C.: American Geophysical Union, 2011: 61-81.
[58] Mitchell AC, Lafrenière MJ, Skidmore ML, Boyd ES. Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology, 2013, 41(8): 855-858. DOI:10.1130/G34194.1
[59] Lanoil B, Skidmore M, Priscu JC, Han S, Foo W, Vogel SW, Tulaczyk S, Engelhardt H. Bacteria beneath the west Antarctic ice sheet. Environmental Microbiology, 2009, 11(3): 609-615. DOI:10.1111/j.1462-2920.2008.01831.x
[60] Campen R, Kowalski J, Lyons WB, Tulaczyk S, Dachwald B, Pettit E, Welch KA, Mikucki JA. Microbial diversity of an Antarctic subglacial community and high-resolution replicate sampling inform hydrological connectivity in a polar desert. Environmental Microbiology, 2019, 21(7): 2290-2306. DOI:10.1111/1462-2920.14607
[61] Mikucki JA, Priscu JC. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology, 2007, 73(12): 4029-4039. DOI:10.1128/AEM.01396-06
[62] Bulat SA. Microbiology of the subglacial Lake Vostok: first results of borehole-frozen lake water analysis and prospects for searching for lake inhabitants. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2059): 20140292.
[63] Fox D. EXCLUSIVE: tiny animal carcasses found in buried Antarctic lake. Nature, 2019, 565(7740): 405-406. DOI:10.1038/d41586-019-00106-z
[64] Pearce DA, Magiopoulos I, Mowlem M, Tranter M, Holt G, Woodward J, Siegert MJ. Microbiology: lessons from a first attempt at Lake Ellsworth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2059): 20140291.
[65] Priscu JC, Achberger AM, Cahoon JE, Christner BC, Edwards RL, Jones WL, Michaud AB, Siegfried MR, Skidmore ML, Spigel RH, Switzer GW, Tulaczyk S, Vick-Majors TJ. A microbiologically clean strategy for access to the Whillans ice stream subglacial environment. Antarctic Science, 2013, 25(5): 637-647. DOI:10.1017/S0954102013000035
[66] Michaud AB, Vick-Majors TJ, Achberger AM, Skidmore ML, Christner BC, Tranter M, Priscu JC. Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Science, 2020, 32(5): 329-340. DOI:10.1017/S0954102020000231
[67] Gura C, Rogers SO. Metatranscriptomic and metagenomic analysis of biological diversity in subglacial Lake Vostok (Antarctica). Biology, 2020, 9(3): 55. DOI:10.3390/biology9030055
[68] Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology, 2001, 3(9): 570-577. DOI:10.1046/j.1462-2920.2001.00226.x
[69] D'Elia T, Veerapaneni R, Rogers SO. Isolation of microbes from Lake Vostok accretion ice. Applied and Environmental Microbiology, 2008, 74(15): 4962-4965. DOI:10.1128/AEM.02501-07
[70] Tang C, Madigan MT, Lanoil B. Bacterial and archaeal diversity in sediments of west Lake Bonney, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 2013, 79(3): 1034-1038. DOI:10.1128/AEM.02336-12
[71] Christner BC, Priscu JC, Achberger AM, Barbante C, Carter SP, Christianson K, Michaud AB, Mikucki JA, Mitchell AC, Skidmore ML, Vick-Majors TJ. A microbial ecosystem beneath the west Antarctic ice sheet. Nature, 2014, 512(7514): 310-313. DOI:10.1038/nature13667
[72] Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology, 2010, 18(8): 331-340. DOI:10.1016/j.tim.2010.06.003
[73] Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TJ, Team TWS. Microbial sulfur transformations in sediments from subglacial Lake Whillans. Frontiers in Microbiology, 2014, 5: 594.
[74] Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L, Munk C, Nolan M, Woyke T. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Frontiers in Microbiology, 2013, 4: 254.
[75] Ward BB, Priscu JC. Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia, 1997, 347(1/2/3): 57-68.
[76] Voytek MA, Priscu JC, Ward BB. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Molecular Ecology of Aquatic Communities. Dordrecht: Springer Netherlands, 1999: 113-130.
[77] Purdy KJ, Hawes I, Bryant CL, Fallick AE, Nedwell DB. Estimates of sulphate reduction rates in Lake Vanda, Antarctica support the proposed recent history of the lake. Antarctic Science, 2001, 13(4): 393-399. DOI:10.1017/S0954102001000554
[78] Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA. Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 2005, 71(10): 6353-6359. DOI:10.1128/AEM.71.10.6353-6359.2005
[79] Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA. Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 2006, 72(2): 1663-1666. DOI:10.1128/AEM.72.2.1663-1666.2006
[80] Sattley WM, Madigan MT. Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiology Letters, 2007, 272(1): 48-54. DOI:10.1111/j.1574-6968.2007.00737.x
[81] Kong WD, Dolhi JM, Chiuchiolo A, Priscu J, Morgan-Kiss RM. Evidence of form Ⅱ RubisCO (cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiology Ecology, 2012, 82(2): 491-500. DOI:10.1111/j.1574-6941.2012.01431.x
[82] Takacs CD, Priscu JC. Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasons. Microbial Ecology, 1998, 36(3): 239-250. DOI:10.1007/s002489900111
[83] Kharroub K, Aguilera M, Jiménez-Pranteda ML, González-Paredes A, Ramos-Cormenzana A, Monteoliva-Sánchez M. Marinobacter oulmenensis sp. nov., a moderately halophilic bacterium isolated from brine of a salt concentrator. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 9): 2210-2214.
[84] López-Pérez M, Rodriguez-Valera F. The family Alteromonadaceae//Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F. The prokaryotes. Berlin, Heidelberg: Springer, 2014: 69-92.
[85] Andrei AŞ, Robeson MS Ⅱ, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora CI, Podar M, Banciu HL. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. The ISME Journal, 2015, 9(12): 2642-2656. DOI:10.1038/ismej.2015.60
[86] Teske A, Hinrichs KU, Edgcomb V, De Vera Gomez A, Kysela D, Sylva SP, Sogin ML, Jannasch HW. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 2002, 68(4): 1994-2007. DOI:10.1128/AEM.68.4.1994-2007.2002
[87] Kuever J. The family Desulfobulbaceae//Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F. The prokaryotes. Berlin, Heidelberg: Springer, 2014: 75-86.
[88] Griffiths HJ, Anker P, Linse K, Maxwell J, Post AL, Stevens C, Tulaczyk S, Smith JA. Breaking all the rules: the first recorded hard substrate sessile benthic community far beneath an Antarctic ice shelf. Frontiers in Marine Science, 2021, 8: 642040. DOI:10.3389/fmars.2021.642040
[89] Fox D. Life at hell's gate. Scientific American, 2015, 313(1): 46-53. DOI:10.1038/scientificamerican0715-46
[90] Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA. A contemporary microbially maintained subglacial ferrous ocean. Science, 2009, 324(5925): 397-400. DOI:10.1126/science.1167350
[91] Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews Microbiology, 2003, 1(3): 200-208. DOI:10.1038/nrmicro773
[92] Weinstein RN, Montiel PO, Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 2000, 92(2): 222-229. DOI:10.1080/00275514.2000.12061148
[93] Bentahir M, Feller G, Aittaleb M, Lamotte-Brasseur J, Himri T, Chessa JP, Gerday C. Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACⅡ18. The Journal of Biological Chemistry, 2000, 275(15): 11147-11153. DOI:10.1074/jbc.275.15.11147
[94] Park HJ, Lee CW, Kim D, Do H, Han SJ, Kim JE, Koo BH, Lee JH, Yim JH. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS One, 2018, 13(2): e0191740. DOI:10.1371/journal.pone.0191740
[95] Park SH, Kim SJ, Park S, Kim HK. Characterization of organic solvent-tolerant lipolytic enzyme from Marinobacter lipolyticus isolated from the Antarctic Ocean. Applied Biochemistry and Biotechnology, 2019, 187(3): 1046-1060. DOI:10.1007/s12010-018-2865-5
[96] Del-Cid A, Ubilla P, Ravanal MC, Medina E, Vaca I, Levicán G, Eyzaguirre J, Chávez R. Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Applied Biochemistry and Biotechnology, 2014, 172(1): 524-532. DOI:10.1007/s12010-013-0551-1
[97] D'Amico S, Collins T, Marx JC, Feller G, Gerday C. Psychrophilic microorganisms: challenges for life. EMBO Reports, 2006, 7(4): 385-389. DOI:10.1038/sj.embor.7400662
[98] Lylloff JE, Hansen LBS, Jepsen M, Sanggaard KW, Vester JK, Enghild JJ, Sørensen SJ, Stougaard P, Glaring MA. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases. Microbial Biotechnology, 2016, 9(2): 245-256. DOI:10.1111/1751-7915.12343
[99] Lee YM, Jung YJ, Hong SG, Kim JH, Lee HK. Diversity and physiological characteristics of culturable bacteria from marine sediments of Ross Sea, Antarctica. The Korean Journal of Microbiology, 2014, 50(2): 119-127. DOI:10.7845/kjm.2014.4014
[100] Tomova I, Stoilova-Disheva M, Vasileva-Tonkova E. Characterization of heavy metals resistant heterotrophic bacteria from soils in the Windmill Islands region, Wilkes Land, east Antarctica. Polish Polar Research, 2014, 35(4): 593-607. DOI:10.2478/popore-2014-0028
[101] Tsuji M. Genetic diversity of yeasts from east Ongul Island, east Antarctica and their extracellular enzymes secretion. Polar Biology, 2018, 41(2): 249-258. DOI:10.1007/s00300-017-2185-1
[102] Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles: Life Under Extreme Conditions, 2016, 20(4): 479-491. DOI:10.1007/s00792-016-0838-6
[103] Ding XB, Cong BL, Zhang Y, Jin YX, Zhu Q, Wang NF, Huang XH. Biodiversity, physiological and biochemical characteristics of microorganisms in the sediments surface from the Prydz Bay, Antarctica. Advances in Marine Science, 2014, 32(2): 209-218. (in Chinese)
丁新彪, 丛柏林, 张扬, 靳永轩, 祝茜, 王能飞, 黄晓航. 南极普里兹湾及邻近海域沉积物微生物多样性与生理生化研究. 海洋科学进展, 2014, 32(2): 209-218. DOI:10.3969/j.issn.1671-6647.2014.02.010
[104] Zhang LM, Zhao L, Cong BL. Diversity of culturable bacteria and fungi isolated from Ross Sea region of Antarctica separation, identification and initial screening for the ability to produce low-temperature enzymes. Acta Oceanologica Sinica, 2018, 40(8): 152-164. (in Chinese)
张丽珉, 赵琳, 丛柏林. 南极罗斯海区域可培养微生物分离鉴定及产低温酶能力初步筛选. 海洋学报, 2018, 40(8): 152-164. DOI:10.3969/j.issn.0253-4193.2018.08.015
[105] Shivaji S, Prasad GS. Antarctic yeasts: biodiversity and potential applications. // Satyanarayana T, Gotthard. K. Yeast biotechnology: diversity and applications. Dordrecht: Springer Netherlands, 2009: 3-18.
[106] Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S. A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles: Life Under Extreme Conditions, 2003, 7(6): 435-442. DOI:10.1007/s00792-003-0340-9
[107] Brizzio S, Turchetti B, De García V, Libkind D, Buzzini P, Van Broock M. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Canadian Journal of Microbiology, 2007, 53(4): 519-525. DOI:10.1139/W07-010
[108] Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiology, 2012, 12: 251. DOI:10.1186/1471-2180-12-251
[109] Buzzini P, Branda E, Goretti M, Turchetti B. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 2012, 82(2): 217-241. DOI:10.1111/j.1574-6941.2012.01348.x
[110] Aurilia V, Parracino A, D'Auria S. Microbial carbohydrate esterases in cold adapted environments. Gene, 2008, 410(2): 234-240. DOI:10.1016/j.gene.2007.12.019
[111] Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes: a review. Applied Microbiology and Biotechnology, 2006, 71(6): 773-782. DOI:10.1007/s00253-005-0183-7
[112] Raymond JA, Christner BC, Schuster SC. A bacterial ice-binding protein from the Vostok ice core. Extremophiles: Life Under Extreme Conditions, 2008, 12(5): 713-717. DOI:10.1007/s00792-008-0178-2
[113] Gilbert JA, Davies PL, Laybourn-Parry J. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiology Letters, 2005, 245(1): 67-72. DOI:10.1016/j.femsle.2005.02.022
[114] Siddiqui KS, Williams TJ, Wilkins D, Yau S, Allen MA, Brown MV, Lauro FM, Cavicchioli R. Psychrophiles. Annual Review of Earth and Planetary Sciences, 2013, 41: 87-115. DOI:10.1146/annurev-earth-040610-133514
[115] Ewert M, Deming JW. Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Annals of Glaciology, 2011, 52(57): 111-117. DOI:10.3189/172756411795931868
[116] Feng S, Powell SM, Wilson R, Bowman JP. Extensive gene acquisition in the extremely psychrophilic bacterial species Psychroflexus torquis and the link to sea-ice ecosystem specialism. Genome Biology and Evolution, 2014, 6(1): 133-148. DOI:10.1093/gbe/evt209
[117] Raymond JA, Fritsen C, Shen KT. An ice-binding protein from an Antarctic Sea ice bacterium. FEMS Microbiology Ecology, 2007, 61(2): 214-221. DOI:10.1111/j.1574-6941.2007.00345.x
[118] Collins RE, Deming JW. An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Extremophiles: Life Under Extreme Conditions, 2013, 17(4): 601-610. DOI:10.1007/s00792-013-0543-7
[119] DeMaere MZ, Williams TJ, Allen MA, Brown MV, Gibson JAE, Rich J, Lauro FM, Dyall-Smith M, Davenport KW, Woyke T, Kyrpides NC, Tringe SG, Cavicchioli R. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. PNAS, 2013, 110(42): 16939-16944. DOI:10.1073/pnas.1307090110
[120] Anesio AM, Bellas CM. Are low temperature habitats hot spots of microbial evolution driven by viruses?. Trends in Microbiology, 2011, 19(2): 52-57. DOI:10.1016/j.tim.2010.11.002
[121] Hood E, Battin TJ, Fellman J, O'Neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 2015, 8(2): 91-96. DOI:10.1038/ngeo2331
[122] Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS, Banfield JF. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 2016, 7: 13219. DOI:10.1038/ncomms13219
[123] Ino K, Hernsdorf AW, Konno U, Kouduka M, Yanagawa K, Kato S, Sunamura M, Hirota A, Togo YS, Ito K, Fukuda A, Iwatsuki T, Mizuno T, Komatsu DD, Tsunogai U, Ishimura T, Amano Y, Thomas BC, Banfield JF, Suzuki Y. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment. The ISME Journal, 2018, 12(1): 31-47. DOI:10.1038/ismej.2017.140
[124] Vick-Majors TJ, Priscu JC, A Amaral-Zettler L. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. The ISME Journal, 2014, 8(4): 778-789. DOI:10.1038/ismej.2013.190
[125] Dubnick A, Wadham J, Tranter M, Sharp M, Orwin J, Barker J, Bagshaw E, Fitzsimons S. Trickle or treat: the dynamics of nutrient export from polar glaciers. Hydrological Processes, 2017, 31(9): 1776-1789. DOI:10.1002/hyp.11149
[126] Wadham JL, Tranter M, Tulaczyk S, Sharp M. Subglacial methanogenesis: a potential climatic amplifier?. Global Biogeochemical Cycles, 2008, 22(2): GB2021.
[127] Laybourn-parry J, Madan NJ, Marshall WA, Marchant HJ, Wright SW. Carbon dynamics in an ultra-oligotrophic epishelf lake (Beaver Lake, Antarctica) in summer. Freshwater Biology, 2006, 51(6): 1116-1130. DOI:10.1111/j.1365-2427.2006.01560.x
[128] Vincent W, Laybourn-Parry J. Polar lakes and rivers- limnology of Arctic and Antarctic aquatic ecosystems. USA: Oxford University Press, 2008.
[129] Smith RL, Miller LG, Howes BL. The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, Antarctic lake. Biogeochemistry, 1993, 21(2): 95-115. DOI:10.1007/BF00000873
[130] Wand U, Samarkin VA, Nitzsche HM, Hubberten HW. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, east Antarctica. Limnology and Oceanography, 2006, 51(2): 1180-1194. DOI:10.4319/lo.2006.51.2.1180
[131] Coolen MJL, Muyzer G, Rijpstra WIC, Schouten S, Volkman JK, Sinninghe Damsté JS. Combined DNA and lipid analyses of sediments reveal changes in holocene haptophyte and diatom populations in an Antarctic lake. Earth and Planetary Science Letters, 2004, 223(1/2): 225-239.
[132] Ma HM, Yan WK, Xiao X, Shi GT, Li YS, Sun B, Dou YK, Zhang Y. Ex situ culturing experiments revealed psychrophilic hydrogentrophic methanogenesis being the potential dominant methane-producing pathway in subglacial sediment in Larsemann Hills, Antarctic. Frontiers in Microbiology, 2018, 9: 237. DOI:10.3389/fmicb.2018.00237
[133] Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ, Shock EL, Peters JW, Skidmore M. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Applied and Environmental Microbiology, 2011, 77(14): 4778-4787. DOI:10.1128/AEM.00376-11
[134] Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B. The dynamic bacterial communities of a melting high Arctic glacier snowpack. The ISME Journal, 2013, 7(9): 1814-1826. DOI:10.1038/ismej.2013.51
[135] Hodson A, Brock B, Pearce D, Laybourn-Parry J, Tranter M. Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environmental Research Letters, 2015, 10(11): 110201. DOI:10.1088/1748-9326/10/11/110201
[136] Kong WD, Ream DC, Priscu JC, Morgan-Kiss RM. Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition. Applied and Environmental Microbiology, 2012, 78(12): 4358-4366. DOI:10.1128/AEM.00029-12
[137] Tang Y, Liu YC, Yang J, Jiang HC. Gene diversity involved in Kalvin pathway of carbon fixation and its response to environmental variables in surface sediments of the northern Qinghai-Tibetan Plateau lakes. Earth Science, 2018, 43(S1): 19-30. (in Chinese)
唐阳, 刘永超, 杨渐, 蒋宏忱. 青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素. 地球科学, 2018, 43(S1): 19-30.
[138] Wang BC, Huang JR, Yang J, Jiang HC, Xiao HY, Han JB, Zhang XY. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiology Ecology, 2021, 97(4): fiab037. DOI:10.1093/femsec/fiab037
[139] Tabita FR, Hanson TE, Li HY, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiology and Molecular Biology Reviews, 2007, 71(4): 576-599. DOI:10.1128/MMBR.00015-07
[140] Sattley WM, Madigan MT. Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Applied and Environmental Microbiology, 2006, 72(8): 5562-5568. DOI:10.1128/AEM.00702-06
[141] Vincent WF, Downes MT, Vincent CL. Nitrous oxide cycling in Lake Vanda, Antarctica. Nature, 1981, 292(5824): 618-620. DOI:10.1038/292618a0
[142] Barker JD, Grottoli AG, Lyons WB. Stable isotope evidence for the biogeochemical transformation of ancient organic matter beneath Suess Glacier, Antarctica. Arctic, Antarctic, and Alpine Research, 2018, 50(1): e1448643. DOI:10.1080/15230430.2018.1448643
[143] Yang J, Jiang HC, Dong HL, Wang HY, Wu G, Hou WG, Liu WG, Zhang CL, Sun YJ, Lai ZP. amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China. Frontiers in Microbiology, 2013, 4: 329.
[144] Jiang HC, Dong HL, Yu BS, Lv G, Deng SC, Berzins N, Dai MH. Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, northwestern China. Geomicrobiology Journal, 2009, 26(3): 199-211. DOI:10.1080/01490450902744004
[145] Yang J, Jiang H, Dong H, Hou W, Li G, Wu G. Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau. Scientific Reports, 2016, 5: 18071. DOI:10.1038/srep18071
[146] Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature, 2009, 461(7266): 976-979. DOI:10.1038/nature08465
[147] Harrold ZR, Skidmore ML, Hamilton TL, Desch L, Amada K, Van Gelder W, Glover K, Roden EE, Boyd ES. Aerobic and anaerobic thiosulfate oxidation by a cold-adapted, subglacial chemoautotroph. Applied and Environmental Microbiology, 2015, 82(5): 1486-1495.
[148] Proemse BC, Murray AE, Schallenberg C, McKiernan B, Glazer BT, Young SA, Ostrom NE, Bowie AR, Wieser ME, Kenig F, Doran PT, Edwards R. Iron cycling in the anoxic cryo-ecosystem of Antarctic Lake Vida. Biogeochemistry, 2017, 134(1/2): 17-27.
[149] Yang J, Jiang HC, Sun YJ, Wu G, Hou WG, Dong HL, Lai ZP. Abundance and diversity of sulfate-reducing bacteria in Qinghai-Tibetan lakes. Journal of Salt Lake Research, 2013, 21(1): 7-13. (in Chinese)
杨渐, 蒋宏忱, 孙永娟, 吴耿, 侯卫国, 董海良, 赖忠平. 青藏高原湖泊沉积物硫酸盐还原菌种群分布. 盐湖研究, 2013, 21(1): 7-13.
[150] Yang J, Jiang HC, Dong HL, Wu G, Hou WG, Zhao WY, Sun YJ, Lai ZP. Abundance and diversity of sulfur-oxidizing bacteria along a salinity gradient in four Qinghai-Tibetan lakes, China. Geomicrobiology Journal, 2013, 30(9): 851-860. DOI:10.1080/01490451.2013.790921
[151] Mikucki JA, Auken E, Tulaczyk S, Virginia RA, Schamper C, Sørensen KI, Doran PT, Dugan H, Foley N. Deep groundwater and potential subsurface habitats beneath an Antarctic Dry Valley. Nature Communications, 2015, 6: 6831. DOI:10.1038/ncomms7831
[152] Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, Tedstone A, Nienow P, Lee K, Telling J. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 2014, 5: 3929. DOI:10.1038/ncomms4929
[153] Yau S, Seth-Pasricha M. Viruses of polar aquatic environments. Viruses, 2019, 11(2): 189. DOI:10.3390/v11020189
南极冰下水生态系统微生物与生源元素循环研究进展
赵卓丽 , 李冰 , 蒋宏忱