微生物学报  2022, Vol. 62 Issue (6): 2226-2248   DOI: 10.13343/j.cnki.wsxb.20220194.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220194
中国科学院微生物研究所,中国微生物学会

文章信息

李晓翠, 李秀颖, 宋玉芳, 严俊, 杨毅. 2022
LI Xiaocui, LI Xiuying, SONG Yufang, YAN Jun, YANG Yi.
有机卤呼吸微生物菌群营养交互的作用机制
Mechanisms of metabolic interactions in microbial communities harboring organohalide-respiring bacteria
微生物学报, 62(6): 2226-2248
Acta Microbiologica Sinica, 62(6): 2226-2248

文章历史

收稿日期:2022-03-24
修回日期:2022-05-09
网络出版日期:2022-05-18
有机卤呼吸微生物菌群营养交互的作用机制
李晓翠 , 李秀颖 , 宋玉芳 , 严俊 , 杨毅     
1. 中国科学院沈阳应用生态研究所, 污染生态与环境工程重点实验室, 辽宁 沈阳 110016;
2. 中国科学院大学, 北京 100049
摘要:有机卤呼吸细菌(organohalide-respiring bacteria,OHRB)是污染场地土壤与地下水中厌氧降解及生物修复有机卤代污染物的主力军。微生物种群间的资源竞争、生长抑制、代谢交叉喂养(cross feeding,即营养的动态交换,包括碳源、氮源、氨基酸、维生素、核苷酸、电子供体、电子受体和其他生长因子等)、水平基因转移及其他交互作用机制是群落结构稳定平衡的基础,有利于促进有机卤代污染物消减效率的最大化。本文围绕OHRB种群及与其他微生物种群间的互作机制(如交叉喂养机制、竞争机制及抑制机制等)进行了概述,并对未来互作机制的研究进行了探讨与展望,旨在为有机卤代物污染场地生物修复效率的提高提供科学理论和技术参考依据。
关键词有机卤呼吸细菌    还原脱卤    互作    交叉喂养    竞争    微生物群落    
Mechanisms of metabolic interactions in microbial communities harboring organohalide-respiring bacteria
LI Xiaocui , LI Xiuying , SONG Yufang , YAN Jun , YANG Yi     
1. Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Organohalide-respiring bacteria (OHRB) are key players involved in the bioremediation of the soil and groundwater contaminated with halogenated compounds. Substrate competition, growth inhibition, cross-feeding interaction (dynamic exchange of nutrients, such as carbon source, nitrogen source, amino acids, vitamins, nucleotides, electron donors, electron acceptors, and other growth factors), horizontal gene transfer, and other interaction mechanisms are contributing to the stability and balance of microbial community structure, which is critical to maintaining the optimal dechlorination efficiency of halogenated contaminants. This review summarized the interaction mechanisms (e.g., cross-feeding, competition, inhibition) in microbial communities harboring OHRB and non-dechlorinating populations. In addition, we highlighted and discussed key scientific questions arising from the current state of OHRB-driven microbial ecology. This review aimed to provide scientific theory and technical reference for enhanced bioremediation at halogenated compounds-contaminated sites.
Keywords: organohalide-respiring bacteria    reductive dehalogenation    interaction    cross-feeding    competition    microbial communities    

原始自然环境中,有机卤代物是卤素生物地球化学循环的重要组成部分,由生物有机体(如细菌、真菌和植物)、生物量燃烧、火山活动和其他地热过程等形成[12]。缺氧条件下,有机卤呼吸微生物依靠有机卤代物的自主“呼吸”是其在漫长而古老的进化过程中衍生出来的一种能量代谢和生存方式。随着现代社会工农业的迅猛发展,化学工业过程中三废(废水、废渣和废气)的大量排放和不合理处置,导致陆地、海洋及地下深部(如地下水和深层污泥)等环境中有机卤代物污染日益严重。这些有机卤代物随后通过食物网的生物积累和生物放大作用对人类健康和生态系统功能产生不同程度的潜在风险危害[34]。传统的物理和化学修复法成本高且可能造成环境的二次污染。相比较之下,生物修复技术由于其经济、绿色和环境友好等特点成为了污染场地中消减有机卤代污染物的优选方案之一。

由于许多受有机卤代物污染的含水层、沉积层等属于厌氧、缺氧环境,因此厌氧条件下的微生物还原脱卤过程显得尤为重要。然而,有机卤代物的脱卤一直以来都是个难题,在好氧条件下难以进行,在厌氧条件下更是在相当长的一段时间内被认为不可能发生。直至1990年,第一株可厌氧降解有机卤代物的菌株Desulfomonile tiedjei DCB-1[5]被发现与分离,这一“魔咒”才被打破。基于Desulfomonile tiedjei的研究也颠覆了人们对有机卤代物的脱卤机制主要依靠共代谢作用的片面认识。随后,又有脱卤拟球菌属(Dehalococcoides)[67]、脱亚硫酸菌属(Desulfitobacterium)[8]、硫化螺旋菌属(Sulfurospirillum)[9]、脱卤杆菌属(Dehalobacter)[10]、脱卤单胞菌属(Dehalogenimonas)[1112]、地杆菌属(Geobacter)[13]等脱卤细菌被陆续报道。这类脱卤细菌的共同特点是可以利用有机卤代物作为电子受体,H2或甲酸、乙酸等小分子有机酸作为电子供体,通过电子传递进行还原脱卤反应(氢原子取代卤素基团)并获得生长所需的能量。这一过程被称为“有机卤呼吸” (organohalide respiration,OHR),参与此过程的脱卤细菌又被称为有机卤呼吸细菌(organohalide-respiring bacteria,OHRB)。还原性脱卤酶(reductive dehalogenases,RDases)作为有机卤呼吸的末端电子受体还原酶,在脱卤过程中起着关键作用[1416]。不同OHRB所拥有的还原脱卤酶的功能、数量和序列相似度等存在着差异,从而导致不同OHRB参与不同有机卤代物的脱卤过程。图 1总结了常见氯代脂肪族和芳香族有机氯代物的主要脱氯途径和相关OHRB[1727]

图 1 已报道的一些有机氯化物脱氯途径和起作用的OHRB[1727] Figure 1 Several reported chlorinated organic compounds dechlorination pathways and associated OHRB[1727].

从分类上看,OHRB分为专性OHRB和兼性OHRB,主要是依据OHRB是否以有机卤呼吸作为唯一的能量代谢方式[28]。专性OHRB的特点是,它们只能利用有机卤代物作为电子受体,氢气(H2)作为电子供体(Dehalobacter sp. TCA1和Dehalogenimonas例外,还可利用甲酸作电子供体),如绿弯菌门中的DehalogenimonasDehalococcoides和“Candidatus Dehalobium”以及厚壁菌门的Dehalobacter均属于专性OHRB。兼性OHRB的特点是具有多条呼吸电子传递链,可利用多种电子受体和电子供体维持自身的生长与能量代谢(例如GeobacterSulfurospirillum等)。

基于16S rRNA基因系统进化分析,发现OHRB主要分布于3个门14个属中(图 2)。值得注意的是专性OHRB的DehalogenimonasDehalococcoides亲缘关系较近,同属脱卤球菌纲(Dehalococcoidia)[6, 29]。此外,DehalogenimonasDehalococcoides基因组高度精简,缺失一些代谢途径中的关键基因,导致二者均为营养(例如钴胺素)缺陷型微生物。因此,在含DehalogenimonasDehalococcoides的有机卤代物脱卤菌群中,二者需要与群落中其他微生物(兼性OHRB或非脱卤微生物)形成共代谢网络,从其他微生物获取钴胺素、碳源和电子供体等营养物质支持自身有机卤呼吸的能量代谢。研究表明,相比Dehalococcoides的纯培养物,包含Dehalococcoides与发酵菌、产乙酸菌或产甲烷菌的脱氯微生物群落具有更高的生长速率和脱氯速率[3039]。例如,基于共培养和宏基因组学的研究发现,DesulfovibiroMethanosarcina可以分别为Dehalococcoides提供碳源(乙酸)和电子供体(H2)来支持Dehalococcoides进行三氯乙烯(trichloroethylene,TCE)还原脱氯;相比Dehalococcoides纯培养,三者共培养的脱氯速率明显较快[35]

图 2 基于16S rRNA基因序列的OHRB系统发育树 Figure 2 Phylogenetic tree of OHRB based on 16S rRNA gene sequences from phyla Firmicutes, Chloroflexi and Proteobacteria. ★ indicate the OHRB isolated by Chinese researchers. Of note, Nitratireductor pacificus pht-3B isolated by Lai et al.[42] contains a non-respiratory RDase (RdhANP) catalyzing the dehalogenation of ortho-halogenated phenolic compounds through the formation of a cobalamin-halide complex via oxidative addition to the Co ion, a mechanism different from characterized respiratory RDases[43].

微生物群落并不是微生物个体的简单聚集,而是微生物菌种之间通过多种方式的相互作用形成的复杂网络生态系统,包括资源竞争、生长抑制、交叉喂养(代谢物的转移和消耗)、群体感应和基因水平转移等机制。例如,H2是微生物群落中重要的一种通用电子载体,它通常由小分子有机酸发酵生成,然后被氢型(hydrogenotroph)原核生物利用。当微生物群落中的氢分压累积较高时,产氢微生物(如发酵细菌)自身生长会受到抑制,这时,氢型细菌(硫酸还原菌、硝酸还原菌、OHRB等)对H2的消耗会将氢分压维持在相对较低的水平,从而促使产氢反应顺利进行。因此,在微生物群落中,氢型细菌和产氢细菌在生理上相互依赖[4041]。例如,共培养实验发现,发酵乳酸的脱硫弧菌(Desulfovibrio desulfuricans)和还原TCE的Dehalococcoides之间存在着种间H2转移[44]。另外,以Dehalococcoides参与四氯乙烯(tetrachloroethene,PCE)还原脱氯为例,在含有Dehalococcoides的微生物群落中,发酵细菌与Dehalococcoides之间的H2转移互作促进了四氯乙烯被完全还原至无毒乙烯(ethene)[26, 4547]。一些发酵细菌除了产氢,还可利用乳酸或丁酸发酵产生乙酸和钴胺素(例如维生素B12)等营养物质供给OHRB生长[30, 33, 35]。例如,产乙酸菌Sporomusa ovata和脱硫弧菌(Desulfovibrio)可以产生不同类型的钴胺素供给Dehalococcoides脱氯[4849]。但并不是所有产钴胺素微生物均能支持脱氯微生物的生长。例如,Methanosarcina barkeri菌株Fusaro、Sporomusa ovataSporomusa sp.菌株KB-1所产生的特定类型的钴胺素不能支持Dehalococcoides脱氯,它们需要在外加二甲基苯并咪唑(dimethyl benzimidazole,DMB)条件下对其加以修饰,合成Dehalococcoides脱氯所能利用的钴胺素[38]

近年来,关于有机卤呼吸微生物菌群营养交互作用机制的研究不断增多,为揭示微生物互作及生态机制提供了很多新见解。本文围绕OHRB,从微生物间的交叉喂养、竞争、抑制、水平基因转移和互作研究方法等方面,概述OHRB间和OHRB与其他微生物间的互作机制,从而为开发更为有效的有机卤污染场地生物修复技术提供科学依据和理论参考。

1 OHRB之间的交互作用机制

在自然环境中,许多兼性OHRB的共同特点是具有多条呼吸电子传递链和多样化的能量代谢模式[13, 5053]。如厚壁菌门(Firmicutes)的Desulfitobacterium、变形菌门(Proteobacteria)的GeobacterSulfurospirillumDesulfuromonasDesulfoluna和厌氧粘细菌(Anaeromyxobacter)等均有着多样化的代谢特征和生态位。脱氯微生物Sulfurospirillum multivorans菌株DSM 12446T可以通过脱氢酶、丙酮酸氧化酶、NADH脱氢酶(Nuo)等氧化还原酶,分别从多种电子供体(如H2、甲酸、丙酮酸或NADH)中获得电子来支持有机卤呼吸能量代谢,同时将PCE还原为顺式二氯乙烯(cis-dichloroethene,cDCE)[50, 5455]Desulfitobacterium hafniense菌株DCB-2除了能够利用PCE和氯苯酚类化合物进行有机卤呼吸外,还可以利用其他电子受体,包括硝酸盐、亚硫酸盐、磺酸盐、硫代硫酸盐、富马酸盐、Fe(Ⅲ)和Mn(Ⅳ)等,同时可耦合多种电子供体(如H2、甲酸、乳酸、丙酮酸等)来获取能量[56]。相比较之下,专性有机卤呼吸细菌DehalogenimonasDehalococcoides具有相似的代谢特性,且同属营养缺陷型微生物。已有研究表明,一些具有多样化能量代谢模式的兼性OHRB可为营养缺陷的专性OHRB提供其能量代谢和生长所必需的碳源、电子供体和钴胺素等营养因子,它们之间可能存在某种依赖底物的相互作用,包括交叉喂养、抑制和竞争等。

1.1 不同OHRB之间的交叉喂养机制

营养交叉喂养是指一种细菌所分泌的产物被另一种细菌利用和分解代谢。这是微生物群落中广泛存在的一种现象,影响到微生物群落组成、结构、进化、毒力和抗生素敏感性等。例如,寡营养环境可以促进物种间的合作交叉喂养,从而提高群落的稳定性[57]。微生物菌群中交叉喂养机制已有不少研究报道[5759],但是有机卤呼吸微生物菌群中同时存在的专性和兼性OHRB之间的交叉喂养代谢物类型(碳源、电子受体、电子供体、生长因子等)及代谢物转移机制研究相对较少。

事实上,专性和兼性OHRB的共存和相互作用往往会为微生物群落提供功能冗余和群落稳定性,同时确保了有机卤污染物的逐步无毒化转化和更快的脱卤速率[6062]。多项研究表明,Dehalococcoides可与其他一些OHRB基于有机卤电子受体而共存相互作用,实现有机卤污染物的彻底脱氯和无毒化。例如,兼性Desulfitobacterium和专性Dehalococcoides[61, 6364]、兼性Geobacter和专性Dehalococcoides[6566]、兼性Sulfurospirillums和专性Dehalococcoide[6768]等组合均可彻底还原氯乙烯类化合物[如PCE、cDCE或一氯乙烯(vinyl chloride,VC)等]至无毒害的乙烯;专性Dehalococcoides和专性Dehalobacter组合还可还原1, 2-二氯乙烷(1, 2-dichloroethane,1, 2-DCA)和1, 1, 2-三氯乙烷(1, 1, 2-trichloroethane,1, 1, 2-TCA)至乙烯[6970];专性Dehalogenimonas和专性Dehalobacter[25]组合可将1, 2, 4-三氯苯(1, 2, 4-trichlorobenzene,TCB)还原脱氯至苯。此外,来自于3个不同属的OHRB共存也有助于有机卤污染物的还原脱卤。例如,DehalococcoidesDesulfuromonasDesulfitobacterium组合[71]可将1, 2, 3-三氯二苯并-对-二恶英(1, 2, 3-trichlorodibenzo-p- dioxin,TrCDD)、PCE和1, 2, 3-三氯苯(1, 2, 3- trichlorobenzene,TCB)分别还原至2-氯二苯并-对-二恶英(2-momochlorodibenzo-p-dioxin,2-MCDD)、cDCE或反式二氯乙烯(trans- dichloroethene,tDCE)和1, 3-二氯苯(1, 3- dichlorobenzene,1, 3-DCB);DehalogenimonasDehalobacterDehalococcoides组合可将1, 1, 2, 2-四氯乙烷(1, 1, 2, 2-tetrachloroethane,TeCA)还原脱氯至乙烯[72]DehalococcoidesDehalobacterDesulfitobacterium组合可将六氯苯(hexachlorobenzene,HCB)还原脱氯,生成的产物为二氯苯(dichlorobenzene,DCB)或一氯苯(monochlorobenzene,MCB)[73]。同一个属内的不同OHRB组合也有益于含氯烯烃和烷烃[46, 65, 69, 7478]、氯苯[7980]及多氯联苯[8182]等污染物的还原脱氯。例如,可厌氧还原氯苯的富集培养微生物群落中包含了Dehalobacter属的多个不同菌株[80],研究发现二氯苯的3种同分异构体1, 2-DCB、1, 3-DCB和1, 4-DCB分别由Dehalobacter的3个不同菌株负责脱氯,生成的产物MCB由另一个Dehalobacter菌株继续脱氯生成苯。同样,在ACT-3富集培养菌群还原氯仿(chloroform,CF)、1, 1, 1-三氯乙烷(1, 1, 1-trichloroethane,1, 1, 1-TCA)和1, 1-二氯乙烷(1, 1-dichloroethane,1, 1-DCA)复合污染物的过程中,CF和1, 1, 1-TCA的脱氯由同一Dehalobacter菌株完成,而1, 1-DCA的脱氯则由另一株具有不同功能的Dehalobacter菌株来完成[77]。以上研究表明,多种OHRB的协同互作可实现有机卤代物的逐步脱卤过程,进而达到有机卤污染物彻底脱卤转化和无害化的目的。

专性与兼性OHRB不仅在电子受体利用上存在互作关系,使有机卤代物的脱卤转化更为彻底,还可通过彼此之间为对方提供必要的营养物质支持生长来形成交叉喂养的互作机制。某些兼性OHRB能为专性OHRB提供必要的营养物质,这主要通过自身的生物合成功能(例如,钴胺素合成)和分解代谢功能(例如,乳酸转化为乙酸)来实现。例如,兼性OHRB的硫磺单胞菌Sulfurospirillum multivorans不仅可以将PCE还原脱氯至cDCE,还可以通过自身完整的钴胺素合成路径合成钴胺素[8385];另外,在无电子受体(例如PCE)存在的条件下,硫磺单胞菌Sulfurospirillum multivorans可以发酵丙酮酸或乳酸产生乙酸和H2[50]。基于此,研究人员成功构建了S. multivoransDehalococcoides mccartyi 195/BTF08的共培养体系:以乳酸作为电子供体,PCE作为电子受体,二者通过协同互作将PCE还原为乙烯,其脱氯速率较纯培养条件至少快了3倍;其中,S. multivorans利用乳酸作电子供体和碳源将PCE脱氯至cDCE,并将乳酸发酵产生的乙酸和H2分别作为碳源和电子供体供给Dehalococcoides mccartyi 195/BTF08进行cDCE至乙烯的还原脱氯。同时,观察发现S. multivoransDehalococcoides形成的一种团聚体将它们紧密地联系在一起[86]

近期,中山大学汪善全研究团队从一个Dehalococcoides占优势的PCB/PCE脱氯微生物群落中分离出一株兼性OHRB—Geobacter lovleyi菌株LYY[87]。通过进一步生理生化测试、基因组测序和共培养等一系列实验,揭示了DehalococcoidesGeobacter 2株脱氯菌之间存在3种互作机制。其中之一即是交叉喂养互作机制,即在添加丙酸和多氯联苯的培养基中,供体菌株利用丙酸产生电子和碳源供给受体菌株进行多氯联苯脱氯(图 3)。由此推测,类似以上GeobacterDehalococcoidesS. multivoransDehalococcoides之间的交叉喂养互作关系在自然界中可能广泛存在。一些兼性OHRB可能通过其多样的能量代谢模式为专性OHRB提供脱卤所必需的营养物质(碳源、电子供体、生长因子等),同时代谢产物的消耗又可促进兼性OHRB自身的生长和代谢,或者二者的某些中间代谢产物供彼此相互利用,这些我们尚未可知,更明确的交叉喂养机制亟待深入探索和解析。

图 3 专性和兼性OHRB间的互作模型[87] Figure 3 A conceptual model illustrating multiple interactions between obligate and non-obligate OHRB[87].

1.2 OHRB之间的相互竞争机制

OHRB之间的相互作用关系可能建立在竞争的基础上[60, 62, 88]。一些学者基于莫诺特动力学(Monod kinetic-based models)模型探究了不同OHRB属之间的竞争关系[8890]。Becker和Seagren[90]的研究发现DehalococcoidesDesulfuromonas michiganensis在对电子受体PCE的竞争过程中会出现生物活性增强的现象,从而促进细胞生长、PCE的溶解和还原转化,最终实现PCE完全脱氯及无害化。研究还发现,在地下水流速较低时,OHRB之间的相互竞争具有更好的生物活性增强潜力。Chen等[91]GeobacterDehalococcoides作为模型有机卤呼吸微生物种群的研究,也发现了增强的PCE溶解及脱氯解毒现象。Liang等[87]研究发现除了交叉喂养互作关系外,DehalococcoidesGeobacter之间还存在其他2种竞争机制:(1) 自由竞争机制,即二者对培养基中的电子供体(乙酸/H2)和电子受体(PCE)存在自由竞争关系;(2) 条件依赖竞争机制,即营养缺陷型OHRB在依赖兼性OHRB为其提供碳源(乙酸)和电子供体(H2)的条件下二者竞争电子受体促进共同生长和对有机氯化物的快速还原脱氯。例如,在添加丙酸和PCE的培养基中,Dehalococcoides需要依赖Geobacter为其提供乙酸和H2,但二者却竞争共同电子受体(PCE) (图 3)。这2种竞争机制在一定程度上促进了DehalococcoidesGeobacter的共同生长和PCE的快速脱氯。因此,OHRB间的一些竞争机制在一定程度上对有机卤呼吸代谢是有利的,并能够促进有机卤代物的脱卤或完全解毒。从指导生物修复的角度来讲,应考虑利用多个OHRB种群,通过它们之间的竞争机制,最大效率地利用添加的营养物质,以此来实现有机卤代物的消减,并达到有机卤代物完全脱毒的终极目标。

1.3 OHRB之间的相互抑制机制

由于还原性脱卤反应的阶段性特征,多卤化电子受体及其相应的中间脱卤产物几乎总是同时出现在同一环境中。此外,各种多卤代工业化学品往往通过同一生产过程或加工设施进入环境中,使得污染环境中复合污染现象十分普遍。在地下水中,最常见的卤代有机污染物包括氯代乙烯(如PCE、TCE)、氯代乙烷[如1, 1, 1-三氯乙烷/1, 1, 2-三氯乙烷(1, 1, 1-TCA/ 1, 1, 2-TCA)、1, 1-二氯乙烷/1, 2-二氯乙烷(1, 1-DCA/ 1, 2-DCA)]和氯甲烷[如氯仿(CF)和二氯甲烷(dichloromethane,DCM)]等,且在较多场地中它们是以复合污染的形式存在[92]。例如,美国环境保护署的国家优先清单显示,约20%的场地中TCE和1, 1, 1-三氯乙烷(1, 1, 1-TCA)污染物共存;氯仿(CF)是有机卤污染场地中与氯代乙烯共存最常见的污染物[93]。OHRB菌种及其脱卤酶对不同的有机卤代物有明显的专属性或特异性,即不同的OHRB有不同的底物偏好性,表达的还原脱卤酶也各有不同。脱卤酶在显示底物偏好性的同时也会受到不同有机卤污染物的抑制。例如,1, 1, 1-TCA和CF能够不同程度地抑制Dehalococcoides对VC的还原脱氯(1, 1, 1-TCA的抑制性较强),从而导致有毒中间产物cDCE和VC的积累[75, 9394]。反之亦然,VC本身也可以抑制Dehalobacter对1, 1, 1-TCA和CF的还原脱氯,且对CF的抑制较强[95]。另外一些研究发现,氯取代基越多的氯乙烯可以竞争性地抑制氯取代基少的氯乙烯的还原脱氯[9698]。1, 1, 2-TCA和1, 2-DCA在环境中共存时,高浓度的1, 1, 2-TCA会抑制Dehalogenimonas对1, 2-DCA的还原脱氯[99]。根据不同有机卤代物对特定脱卤酶作用类型的不同,将脱卤酶的抑制机制主要分为3种:竞争性抑制、非竞争性抑制和反竞争性抑制[26]。除此之外,存在于环境和受污染地点的有机卤代物的抑制效应可能还受水溶性、环境浓度等因素的影响。因此,多种有机卤代物共存产生的交叉抑制现象会使得环境中部分有机卤的脱卤效率受到影响。鉴于此,在有机卤污染场地的修复过程中,应当首先考虑共存有机卤污染物是否对目标OHRB脱卤产生抑制作用,然后有针对性地制定有效策略,例如可以考虑优先去除抑制性较强的有机卤代物等。

1.4 OHRB之间的水平基因转移

Dehalococcoides基因组高度精简,大小为1.34–1.50 Mb,包含11–36套编码还原脱卤酶的基因,且脱卤酶复合体一般主要由一个催化亚基(RdhA)和一个小的膜锚定亚基(RdhB)组成,而RdhB的功能主要是将RdhA定位于细胞质膜外侧[100102]。比较基因组研究表明不同Dehalococcoides菌株之间有部分还原脱卤酶基因高度相似甚至完全相同,它们之间可能存在还原脱卤酶基因的交换[100, 103]。例如,Dehalococcoides mccartyi菌株195和菌株FL2所含的tceA基因在核苷酸水平上有99.4%的相似度[104],在Dehalococcoides的3个不同分支中(Cornell、Victoria和Pinellas分支)都可以找到vcrAB基因[105]Dehalococcoides mccartyi菌株RC中的1, 2-二氯丙烷(1, 2-dichloropropane)还原脱卤酶基因与Dehalogenimonas lykanthroporepellens菌株BL-DC-9的双脱卤酶dcpA基因几乎相同[106]Dehalobacter属和Dehalogenimonas属内的菌株间也可能存在还原脱卤酶基因的水平转移。例如,Dehalobacter sp.菌株UNSWDHB基因组上有17个还原脱卤酶基因,其中14个与Dehalobacter菌株CF和DCA中发现的脱卤酶基因完全相同[107]Dehalogenimonas lykanthroporepellens菌株BL-DC-9的基因组中包含一个噬菌体区域(约占染色体的4%)和一个编码74个全长或截断转座酶的插入序列元件(约占染色体的4.3%),菌株BL-DC-9所特有的一些基因位于这2个区域。Siddaramappa等由此推断,水平基因转移和基因交换可能在Dehalogenimonas的进化过程中发挥了重要作用[108]。此外,Dehalobacter restrictuspceABCT基因簇与Desulfitobacterium dichloroeliminans菌株1, 2-DCA脱卤酶基因簇也具有高度的序列保守性[109]。Duret等由此提出,这两个属之间可能由于受同一有机卤代物的选择压力发生了水平基因转移[110]。Grostern的研究也印证了这一点[95]Geobacter lovleyi菌株SZ的还原脱卤酶基因操纵子附近含有整合酶和转座酶基因的移动遗传元件,暗示着可能存在基因水平转移事件[111]Dehalobacter restrictus的操纵子与Acetobacterium woodii中存在的一个操纵子具有很强的同源性,也表明可能发生了水平基因转移[112]

2 OHRB与非脱氯微生物之间的交互作用机制 2.1 OHRB与非脱氯微生物间的竞争和抑制机制

在厌氧脱卤微生物群落中,硫酸盐还原菌、硝酸盐还原菌和铁还原菌等厌氧微生物可能与OHRB共存,它们会与OHRB在电子供体、碳源、小分子营养物质等资源的获取中产生竞争。当电子供体(例如H2)有限时,热力学计算预测电子可能更倾向于被产能较多的能量代谢过程所利用;当电子供体过量时,多个电子受体还原过程将同时发生[113114]。Aulenta等[115]在转接OHRB富集培养时,利用多种电子供体同时还原电子受体混合物[氯代乙烯、硝酸盐、硫酸盐和Fe(Ⅲ)],结果发现99%以上的电子供体被非有机卤呼吸还原过程利用(如硝酸盐还原、硫酸盐还原等)。在富营养培养条件下,大多数培养基中通常含有CO2和碳酸氢盐以及充足的电子供体,添加唯一外部电子受体——有机卤代物,会有甲烷、乙酸生成和脱氯等现象同时发生;但是如果额外添加其他末端电子受体时(如硫酸盐、硝酸盐、三价铁等),微生物群落则会发生显著变化[116]。有研究报道显示,当向培养体系内提供1 mmol/L硫酸盐时,硫酸盐还原菌竞争电子供体生成硫化物,从而导致还原脱氯效率下降——主要终产物从乙烯转变为一氯乙烯和二氯乙烯[117]。因此,OHRB与群落中的非脱卤微生物间因竞争有限的关键营养物质(图 4)而存在某些竞争或抑制效应,从而影响整个微生物群落的脱卤功能。

图 4 含有OHRB群落中的种群间代谢互作示意图[40, 129] Figure 4 Schematic of catabolic interactions between OHRB and non-dechlorinating populations[40, 129].

OHRB通常与发酵细菌、产乙酸菌和产甲烷菌在同一厌氧群落中共存,抑制脱氯的原因通常来自3个方面,分别是:(1) 酶活性水平的抑制效应,产生抑制效应的主体分别来自各种电子受体(如有机卤代物、硫酸盐、硝酸盐以及部分代谢产物等),它们对还原脱卤酶自身活性产生了抑制效应;(2) 生物体水平的抑制效应,这类抑制效应主要源于各种电子受体对还原性脱卤酶以外的细胞关键功能成分的干扰而产生,导致OHRB生长和脱卤活性受损;(3) 群落水平的抑制效应,群落中负责向OHRB提供氢、碳源、辅助因子和其他必需营养物质的关键非脱卤微生物受到各种电子受体,如有机卤代物、硫酸盐、硝酸盐以及部分代谢产物等的干扰,而在群落水平产生抑制效应[26]。除此之外,环境中的其他影响因子,如温度、碳源、氮源、pH、氧气含量等也会影响OHRB的脱氯活性。

2.2 OHRB与非脱氯微生物间的交叉喂养机制 2.2.1 OHRB与非脱氯微生物间交叉喂养涉及的常见代谢物转移

(1) 微生物群落中的氢气转移:OHRB均可利用H2作为电子供体,它们所需的H2可能来源于产乙酸菌[118]、分解乙酸的甲烷八叠球菌(Methanosarcina)[119]和乙酸氧化的地杆菌[120]等(图 4)。另外,OHRB一般可利用较低分压的H2[6]。例如,Dehalococcoides可利用小于0.3 nmol/L的H2,这意味着相比其他微生物(如硫酸盐还原菌等),OHRB可以占据一些独特的低氢分压生态位[6, 121]。在混合培养中,H2通常由发酵细菌发酵有机质产生,常见的发酵细菌包括脱硫弧菌(Desulfovibrio)、各种梭状芽孢杆菌(Clostridiales)和拟杆菌(Bacteroidetes)等[35, 79, 122125]。共培养实验表明,发酵乳酸的脱硫弧菌(Desulfovibrio desulfuricans)和还原TCE的Dehalococcoides之间就存在种间的H2转移,这类种间H2转移同时促进了发酵细菌和氢型细菌的生长[44]。乳酸、乙醇和糖即使在高水平的H2供给条件下也极易被发酵,但其他一些有机底物如丙酸和丁酸的发酵,只能在氢型细菌(例如OHRB和氢营养的产甲烷菌)将H2保持在低水平时才能被发酵[40, 126127]。微生物群落中的耗氢细菌与产H2的发酵细菌在能量代谢上相互依赖[40, 127128]

(2) 乙酸的转移和利用:同H2一样,乙酸也是厌氧发酵过程产生的一种代谢产物。除此之外,乙酸的另一个重要来源是由产乙酸菌利用H2和CO2或一碳化合物(如甲醇)生成而来(图 4)。乙酸可作为碳源被专性OHRB (例如Dehalococcoides、“Dehalobium”菌株DF1、DehalobacterDehalogenimonas等)吸收利用,供给微生物自身生物合成和生长。此外,乙酸也可作为一些兼性OHRB (例如GeobacterDesulfuromonas等)的电子供体,将PCE脱氯至cDCE[119, 130]。已商业化的厌氧修复菌剂KB-1[48]可以使用乙酸作为电子供体和碳源将三氯乙烯还原脱氯至乙烯,在此过程中,甲烷八叠球菌可以利用乙酸产生H2和甲烷[119],产生的H2进而驱动Dehalococcoides的有机卤代物呼吸。因此,发酵微生物、产乙酸菌与OHRB在能量代谢上相互依赖。

(3) 钴胺素的转移与利用:Dehalococcoides等专性OHRB需要特定的钴胺素(例如维生素B12)作为还原性脱卤酶的辅因子参与有机卤呼吸能量代谢过程[105]。然而DehalogenimonasDehalococcoidesDehalobacter等皆属于钴胺素缺陷型微生物,并不具备完整的钴胺素合成途径,因此不能从头合成钴胺素[6, 131],需要依赖其他微生物(例如Sporomusa ovataSulfurosprillumGeobacterDesulfovibrio等)为其提供钴胺素来支持自身进行有机卤呼吸[39, 4849, 8687]。例如,产乙酸菌Sporomusa ovata和脱硫弧菌Desulfovibrio可以产生不同类型的钴胺素供给Dehalococcoides脱氯[4849]。由于专性OHRB的还原性脱卤酶只能利用具有特定低位配体的钴胺素作为辅因子,并不是所有类型的钴胺素都能供给Dehalococcoides等专性OHRB进行脱氯。迄今为止,只有一些苯并咪唑类型的钴胺素可以被Dehalococcoides菌株所利用,例如5, 6-二甲基苯并咪唑钴胺酰胺(5, 6-dimethylbenzimidazolycobamide,B12),5-甲基苯并咪唑钴胺酰胺(5-methylbenzimidazolycobamide,[5-MeBza]Cba)和5-甲氧基苯并咪唑钴胺酰胺(5-methoxybenzimidazolycobamide,[5-OMeBza]Cba)。

虽然Dehalococcoides基因组没有完整的钴胺素合成路径[132],但研究表明Dehalococcoides可以捕获和重塑钴胺素,从而满足自身对钴胺素特异性的需求[34, 44, 133]。当给培养体系中提供DMB时,Dehalococcoides可以通过低位配体的替换,将其不能利用的钴胺素(低位配体为5-羟基苯并咪唑或7-腺嘌呤基的钴胺酰胺)转化为可利用的钴胺素[34, 133]。例如,在培养体系中加入DMB时,甲烷八叠球菌Methanosarcina barkeri菌株Fusaro与Dehalococcoides mccartyi菌株BAV1、GT和FL2之间存在种间钴胺酰胺转移[3839]。以上研究表明,钴胺素合成缺陷的OHRB可通过环境中其他微生物的合成代谢活动获取有功能的钴胺素或捕获无功能的钴胺素并进行修饰,最后得到脱氯所必需的钴胺素。

(4) 氨基酸转移与利用:氨基酸是微生物生长和蛋白质等生物合成所需的关键营养物质[134]。通常,大多数OHRB并不是氨基酸缺陷型,在富集培养和分离纯化过程中不需要额外添加氨基酸。虽然全基因组分析表明Dehalococcoides存在某些氨基酸合成路径的缺失,但培养实验验证了Dehalococcoides可以从头合成所需氨基酸[131, 135136]。此外,Dehalococcoides mccartyi菌株195还具有固氮能力,具备为微生物群落中其他微生物提供合成代谢所需的关键氨基酸的能力[137138]。相比而言,Dehalobacter菌株PER-K23和CF生长过程中需要外源精氨酸、组氨酸和苏氨酸等氨基酸,虽然菌株CF基因组中具有这些氨基酸的完整生物合成途径[139]。因此,有机卤呼吸微生物菌群中还可能存在着基于氨基酸等营养物质的交叉喂养机制。

2.2.2 OHRB与其他微生物间代谢物的转移机制

考虑到细菌生活方式的多样性以及可交换的代谢物结构和功能多样性,细菌很可能使用不同的机制将代谢物从一个细胞转移到另一个细胞。细菌间代谢物交换模式基于微生物之间是否有物理接触通常可分为接触型和非接触型[57]。非接触型代谢物转移模式通常包括被动扩散、主动运输和囊泡介导转运。接触型代谢物转移模式需要相互作用的微生物之间建立物理接触,包括细胞接触、鞭毛、菌毛等,从而将代谢物特定地在微生物之间进行交换。

微生物团聚体有助于产乙酸和产甲烷等厌氧微生物群落中的专性营养互作[140142]。例如,具有胞外电子传递功能的Geobacter metallireducens可以与Methanosarcina barkeri形成团聚体并建立良好的电子互营群落,驱动M. barkeri还原CO2产甲烷[143]。又有研究发现,G. metallireducensRhodopseudomonas palustris共培养时也会形成团聚体。其中,G. metallireducens代谢乙酸产生的电子通过胞外电子传递链传递到胞外,然后通过细胞色素C或者导电菌毛、鞭毛等结构直接传递,或者依赖核黄素等电子中介体间接传递给R. palustris。最终,R. palustris获得G. metallireducens提供的电子驱动CO2的还原固定[144]

目前,观察到的细胞团聚体大多只存在于共培养或富集培养体系中,而在纯培养体系中较难观察到团聚体生成的现象。胞外聚合物(extracellular polymeric substances,EPS)和鞭毛很可能通过辅助细胞粘附和附着来促进团聚体的稳定[140, 145]。另外,菌毛和鞭毛等附属物可能也有助于种间的直接电子转移。DehalococcoidesS. multivorans共培养时会形成团聚体,相比纯培养而言,细胞生长和脱氯速率加快[86]。其中S. multivorans在纯培养中产生鞭毛[9],但在与Dehalococcoides共培养过程中,一些结构性的鞭毛蛋白却被下调[86],可能是因为DehalococcoidesS. multivorans在共培养时不能使用鞭毛进行直接的种间电子转移。其他可能与种间的直接电子转移有关的蛋白质在DehalococcoidesS. multivorans的基因组中未被编码[86],为此二者可能通过种间氢转移进行电子传递。通过场发射扫描电镜(field emission scanning electron microscopes,FE-SEM)在共培养中观察到的微生物间距离的减小和细胞间接触的建立,可能会导致物种之间代谢物(如H2)通量的增加,最终提高生长速率和代谢速率。通过量化计算发现,Pelotomaculum thermopropiicum菌株SI和Methanothermobacter thermoautotrophicus菌株ΔH的共培养体系在进行丙酸转化过程中,细胞团聚体间的H2转移相比分散细胞之间的H2转移明显更优[146]。因此,团聚体的形成可能更有利于进行种间直接或间接代谢物或电子的转移。

3 OHRB微生物菌群营养交互作用的研究展望

相比OHRB的纯培养物,脱氯微生物群落具有更高的生长速率和脱氯速率,也能更好地适应环境的变化。它们在代谢上分工协作,可催化更为复杂的反应。尽管已有一些研究报道了OHRB不同种属间以及OHRB与非脱卤微生物(如发酵菌、产乙酸菌和产甲烷菌等)间存在一些基本的互作关系,如资源竞争、生长抑制、交叉喂养、水平基因转移等,但更加复杂体系中的互作机制尚不明晰,仍然有待于进一步深入探索和解析。例如,依据微生物间的互惠程度及生产代谢物的成本,交叉喂养可分为5种类型,分别是:单向副产物交叉喂养(unidirectional by-product cross-feeding)、双向副产物交叉喂养(bidirectional by-product cross-feeding)、副产物互惠(by-product reciprocity)、单向合作交叉喂养(unidirectional cooperative cross-feeding)和双向合作交叉喂养(bidirectional cooperative cross- feeding)[57],然而目前尚不清楚OHRB不同菌属间以及OHRB与非脱氯菌属间代谢物交叉喂养属于哪种类型,它们之间又有哪些代谢物质发生转移,代谢物转移的机制是接触依赖型还是接触非依赖型。

近年来,组学技术在揭示细菌相互作用以及解析复杂群落中多种互动机制发挥了关键作用。随着组学技术的不断进步以及测序成本的降低,包含OHRB菌群的群落生态学研究也在不断增加和深入[147]。可以预测,在未来OHRB互作代谢网络结构研究中,这些技术将发挥更显著的作用。例如,利用多组学技术来进行群落中微生物多样性评估(16S rRNA基因扩增子测序、宏基因组),功能潜力挖掘与预测(宏基因组),实时功能监测和表征(宏转录组、宏蛋白质组和代谢组)[148],从而最终阐明多物种相互作用网络和作用机制。除了这些技术,转座子插入测序(transposon-insertion sequencing,Tn-seq)也已被证明是一种研究物种间相互作用的有效高通量方法[148]

目前,对于互作网络高度复杂的微生物群落的研究思路主要可概括为2种:“自上而下”和“自下而上”[149]。使用“自下而上”的方法(例如,将不同功能已知的种群合成具有目标功能的微生物群落)以及“自上而下”的方法(例如,将自然生态系统中复杂群落解构为不同功能种群),可以让我们深入了解不同物种之间的相互作用。组学是一种“自上而下”的方法,通过网络分析来推断物种之间的相互作用。这种网络方法依赖于细菌物种共存的概率,通过正相关推断合作,通过负相关推断竞争[148]。然而,依赖组学的“自上而下”的方法缺乏相互作用的结论性证据,必须通过小规模研究进行验证。随着测序技术和多组学分析手段的出现,使得基于菌群相互作用和可培养微生物构建合成微生物群落的设计方法成为可能。近年来,合成微生物组的研究逐渐蓬勃兴起,已经成为复杂微生物群落研究的重要手段。合成微生物组是人工合成的多个物种共培养的微生物体系,具有组成明确、可操控性高等特点,在研究功能微生物群落中的相互作用和生态机制方面有着明显的优势[149]。基于合成微生物群落体系的研究,可以逐步解析微生物之间的相互作用、微生物群落的动力学性质(应对外界扰动的响应),以及在土壤和水圈等不同生态环境下的群落空间结构,从而为有机卤代物污染场地生态治理提供理论依据[150]

有机卤呼吸群落中的非脱氯种群通常来自广古菌门(Euryarcheaota)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和螺旋菌门(Spirocheata)[129],它们与OHRB之间可能存在一些潜在的互作机制,但由于研究技术和手段限制,关于这些非脱氯种群之间以及不同OHRB属间的互作机制目前仍有许多未解之谜,包括但不限于:

(1) OHRB与其他微生物的接触型互作机制及互作机制的多样性探究;

(2) OHRB微生物菌群中不同成员之间转移的辅助因子、营养物质和信号分子仍未被全面揭示且分子机制尚不可知;

(3) 如何利用环境因子调控有机卤呼吸合成微生物组来研制高效且抗逆性强的微生物菌剂;

(4) OHRB不同菌属间以及OHRB与非脱氯菌属间水平基因转移机制及如何从分子水平进行实验验证等。

综上所述,未来利用系统与合成生物学的方法与工具,结合厌氧微生物操作、化学分析、多组学、生物信息学和计算生物等实验技术,采取“自上而下”的微生物分离策略和“自下而上”共培养的合成微生物组策略,将会有助于从基因组水平、系统进化、表达调控和代谢等方面进一步揭示有机卤呼吸微生物与其他厌氧微生物的互作分子机制。

References
[1] Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chemical Reviews, 2017, 117(8): 5619-5674. DOI:10.1021/acs.chemrev.6b00571
[2] Atashgahi S, Haggblom MM, Smidt H. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environmental Microbiology, 2018, 20(3): 934-948. DOI:10.1111/1462-2920.14016
[3] Falandysz J, Rose M, Fernandes AR. Mixed poly-brominated/chlorinated biphenyls (PXBs): widespread food and environmental contaminants. Environment International, 2012, 44: 118-127. DOI:10.1016/j.envint.2012.03.006
[4] Zhang ZW, Pei NC, Sun YX, Li JL, Li XP, Yu S, Xu XR, Hu YX, Mai BX. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China. Environmental Research, 2019, 171: 145-152. DOI:10.1016/j.envres.2019.01.028
[5] DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM. Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Archives of Microbiology, 1990, 154(1): 23-30.
[6] Löffler FE, Yan J, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 2): 625-635.
[7] Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 1997, 276(5318): 1568-1571. DOI:10.1126/science.276.5318.1568
[8] Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. International Journal of Systematic Bacteriology, 1994, 44(4): 612-619.
[9] Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 1995, 163(1): 48-56.
[10] Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Archives of Microbiology, 1998, 169(4): 313-321.
[11] Dehalogenimonas lykanthroporepellens gen. nov., sp nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. International Journal of Systematic and Evolutionary Microbiology, 2009, 59: 2692-2697.
[12] Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1, 2, 3-trichloropropane. Environmental Microbiology, 2009, 11(4): 833-843. DOI:10.1111/j.1462-2920.2008.01804.x
[13] Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Applied and Environmental Microbiology, 2006, 72(4): 2775-2782.
[14] Organohalide respiration: microbes breathing chlorinated molecules. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120316. DOI:10.1098/rstb.2012.0316
[15] Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiology Ecology, 2018, 94(4): fiy035.
[16] Schubert T, Diekert G. Comparative biochemistry of organohalide respiration//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[17] Geobacter sp. strain IAE dihaloeliminates 1, 1, 2-trichloroethane and 1, 2-dichloroethane. Environmental Science & Technology, 2022, 56(6): 3430-3440.
[18] Isolation, characterization and bioaugmentation of an acidotolerant 1, 2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. FEMS Microbiology Ecology, 2019, 95(5): fiz055. DOI:10.1093/femsec/fiz055
[19] Genome sequence of "Candidatus Dehalogenimonas etheniformans" strain GP, a vinyl chloride-respiring anaerobe. Microbiology Resource Announcements, 2020, 9(50): e01212-e01220.
[20] Detoxification of 1, 1, 2-trichloroethane to ethene by Desulfitobacterium and identification of its functional reductase gene. PLoS One, 2015, 10(3): e0119507.
[21] Isolation and basic characterization of a novel organohalide-respiring bacterium within the genus Dehalogenimonas. Acta Microbiologica Sinica, 2021, 61(4): 1016-1029. (in Chinese)
吕燕, 李秀颖, 王晶晶, 金慧娟, 崔逸儒, 杨毅, 严俊. 一株脱卤单胞菌属有机卤呼吸细菌的分离纯化与基础特征. 微生物学报, 2021, 61(4): 1016-1029.
[22] Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. International Journal of Systematic Bacteriology, 1996, 46(4): 1010-1015.
[23] Analysis of a 2, 4, 6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Archives of Microbiology, 2001, 175(2): 133-142. DOI:10.1007/s002030000248
[24] Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1. Archives of Microbiology, 2003, 180(6): 411-416. DOI:10.1007/s00203-003-0607-7
[25] A Dehalogenimonas population respires 1, 2, 4-trichlorobenzene and dichlorobenzenes. Environmental Science & Technology, 2018, 52(22): 13391-13398.
[26] Wei K, Grostern A, Chan WWM, Richardson RE, Edwards EA. Electron acceptor interactions between organohalide-respiring bacteria: cross-feeding, competition, and inhibition//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[27] Yang MI, Previdsa M, Edwards EA, Sleep BE. Reductive dehalogenase gene biomarkers differentiate 1, 1, 1-trichloroethane from 1, 1-dichloroethane dechlorination in microcosms and at a field site treated with granular ZVI and guar gum. bioRxiv, 2019. DOI:10.1101/583229
[28] Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends in Biotechnology, 2010, 28(6): 308-316. DOI:10.1016/j.tibtech.2010.03.005
[29] Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120322. DOI:10.1098/rstb.2012.0322
[30] A Dehalococcoides- containing co-culture that dechlorinates tetrachloroethene to trans-1, 2-dichloroethene. Multidisciplinary Journal of Microbial Ecology, 2010, 4(1): 88-97.
[31] Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology, 2003, 69(2): 996-1003. DOI:10.1128/AEM.69.2.996-1003.2003
[32] Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 2003, 424(6944): 62-65. DOI:10.1038/nature01717
[33] Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei. Applied and Environmental Microbiology, 2015, 81(6): 2015-2024. DOI:10.1128/AEM.03464-14
[34] Sustainable growth of Dehalococcoides mccartyi 195 by corrinoid salvaging and remodeling in defined lactate-fermenting consortia. Applied and Environmental Microbiology, 2014, 80(7): 2133-2141. DOI:10.1128/AEM.03477-13
[35] Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. The ISME Journal, 2012, 6(2): 410-421. DOI:10.1038/ismej.2011.111
[36] Impact of iron- and/or sulfate-reduction on a cis-1, 2-dichloroethene and vinyl chloride respiring bacterial consortium: experiments and model-based interpretation. Environmental Science Processes & Impacts, 2020, 22(3): 740-750.
[37] Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. The Science of the Total Environment, 2019, 666: 368-376. DOI:10.1016/j.scitotenv.2019.02.283
[38] Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1616): 20120320. DOI:10.1098/rstb.2012.0320
[39] Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Applied and Environmental Microbiology, 2012, 78(18): 6630-6636.
[40] Microbial syntrophy: interaction for the common good. FEMS Microbiology Reviews, 2013, 37(3): 384-406. DOI:10.1111/1574-6976.12019
[41] Pure-culture growth of fermentative bacteria, facilitated by H2 removal: bioenergetics and H2 production. Applied and Environmental Microbiology, 2006, 72(2): 1079-1085. DOI:10.1128/AEM.72.2.1079-1085.2006
[42] Lai QL, Yu ZW, Wang JN, Zhong HZ, Sun FQ, Wang LP, Wang BJ, Shao ZZ. Nitratireductor pacificus sp. nov., isolated from a pyrene-degrading consortium. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 6): 1386-1391.
[43] Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature, 2015, 517(7535): 513-516. DOI:10.1038/nature13901
[44] Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Applied and Environmental Microbiology, 2007, 73(9): 2847-2853. DOI:10.1128/AEM.02574-06
[45] Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. FEMS Microbiology Ecology, 2010, 72(2): 297-310. DOI:10.1111/j.1574-6941.2010.00845.x
[46] Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiology Ecology, 2006, 58(3): 538-549. DOI:10.1111/j.1574-6941.2006.00191.x
[47] Organohalide respiring bacteria and reductive dehalogenases: key tools in organohalide bioremediation. Frontiers in Microbiology, 2016, 7: 249.
[48] Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1, 2-dichloroethane. Environmental Science & Technology, 2007, 41(7): 2303-2310.
[49] Guanylcobamide and hypoxanthylcobamide-corrinoids formed by Desulfovibrio vulgaris. Archives of Microbiology, 1994, 162(4): 272-276.
[50] Hydrogen production by Sulfurospirillum species enables syntrophic interactions of Epsilonproteobacteria. Nature Communications, 2018, 9(1): 4872. DOI:10.1038/s41467-018-07342-3
[51] Organohalide-respiring Desulfoluna species isolated from marine environments. Multidisciplinary Journal of Microbial Ecology, 2020, 14(3): 815-827.
[52] Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Applied and Environmental Microbiology, 2003, 69(5): 2964-2974. DOI:10.1128/AEM.69.5.2964-2974.2003
[53] Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnology Advances, 2018, 36(4): 1194-1206. DOI:10.1016/j.biotechadv.2018.03.018
[54] Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Scientific Reports, 2015, 5: 13794. DOI:10.1038/srep13794
[55] Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. Environmental Microbiology, 2014, 16(11): 3562-3580. DOI:10.1111/1462-2920.12589
[56] Futagami T, Furukawa K. The genus Desulfitobacterium//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[57] Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports, 2018, 35(5): 455-488. DOI:10.1039/C8NP00009C
[58] Obligate cross-feeding expands the metabolic niche of bacteria. Nature Ecology and Evolution, 2021, 5(9): 1224-1232. DOI:10.1038/s41559-021-01505-0
[59] Sharing vitamins: cobamides unveil microbial interactions. Science, 2020, 369(6499): eaba0165. DOI:10.1126/science.aba0165
[60] Atashgahi S, Lu Y, Smidt H. Overview of known organohalide-respiring bacteria—phylogenetic diversity and environmental distribution//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[61] Frequent concomitant presence of Desulfitobacterium spp. and "Dehalococcoides" spp. in chloroethene-dechlorinating microbial communities. Applied Microbiology and Biotechnology, 2011, 90(1): 361-368.
[62] Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. Environmental Science & Technology, 2013, 47(18): 10526-10534.
[63] Microbial diversity and changes in the distribution of dehalogenase genes during dechlorination with different concentrations of cis-DCE. Environmental Science & Technology, 2011, 45(12): 5339-5345.
[64] Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Research, 2005, 39(16): 3954-3966. DOI:10.1016/j.watres.2005.07.010
[65] Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology, 2006, 72(4): 2765-2774. DOI:10.1128/AEM.72.4.2765-2774.2006
[66] Using electron balances and molecular techniques to assess trichoroethene-induced shifts to a dechlorinating microbial community. Biotechnology and Bioengineering, 2012, 109(9): 2230-2239. DOI:10.1002/bit.24504
[67] Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environmental Science & Technology, 2006, 40(14): 4429-4434.
[68] Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation, 2011, 22(5): 949-960. DOI:10.1007/s10532-011-9454-4
[69] Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy. Environmental Science & Technology, 2007, 41(7): 2261-2269.
[70] Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Applied and Environmental Microbiology, 2006, 72(1): 428-436.
[71] Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiology Ecology, 2004, 47(2): 223-234. DOI:10.1016/S0168-6496(03)00282-4
[72] Discovery of a trans-dichloroethene-respiring Dehalogenimonas species in the 1, 1, 2, 2-tetrachloroethane-dechlorinating WBC-2 consortium. Applied and Environmental Microbiology, 2012, 78(15): 5280-5287. DOI:10.1128/AEM.00384-12
[73] Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation, 2014, 25(5): 757-776. DOI:10.1007/s10532-014-9697-y
[74] Metagenomic analysis of a stable trichloroethene-degrading microbial community. The ISME Journal, 2012, 6(9): 1702-1714. DOI:10.1038/ismej.2012.15
[75] Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Research, 2002, 36(17): 4193-4202. DOI:10.1016/S0043-1354(02)00151-3
[76] Enrichment and characterization of a trichloroethene-dechlorinating consortium containing multiple "Dehalococcoides" strains. Bioscience, Biotechnology, and Biochemistry, 2011, 75(7): 1268-1274. DOI:10.1271/bbb.110028
[77] Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1, 1, 1-trichloroethane and 1, 1-dichloroethane. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616): 20120318. DOI:10.1098/rstb.2012.0318
[78] Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. Journal of Industrial Microbiology and Biotechnology, 2009, 36(9): 1189-1197. DOI:10.1007/s10295-009-0600-5
[79] A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environmental Science & Technology, 2011, 45(16): 6806-6813.
[80] Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environmental Science & Technology, 2014, 48(7): 3776-3782.
[81] Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Applied and Environmental Microbiology, 2005, 71(12): 8085-8090. DOI:10.1128/AEM.71.12.8085-8090.2005
[82] Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environmental Microbiology, 2001, 3(11): 710-719. DOI:10.1046/j.1462-2920.2001.00247.x
[83] The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillum multivorans is norpseudo-B12, a new type of a natural corrinoid. Helvetica Chimica Acta, 2003, 86(11): 3698-3716. DOI:10.1002/hlca.200390313
[84] Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. Journal of Biological Chemistry, 1996, 271(28): 16515-16519. DOI:10.1074/jbc.271.28.16515
[85] The organohalide-respiring bacterium Sulfurospirillum multivorans: a natural source for unusual cobamides. World Journal of Microbiology and Biotechnology, 2017, 33(5): 1-10.
[86] Inter species metabolite transfer and aggregate formation in a co-culture of Dehalococcoides and Sulfurospirillum dehalogenating tetrachloroethene to ethene. The ISME Journal, 2021, 15(6): 1794-1809. DOI:10.1038/s41396-020-00887-6
[87] Substrate-dependent competition and cooperation relationships between Geobacter and Dehalococcoides for their organohalide respiration. ISME Communications, 2021, 1(1): 23. DOI:10.1038/s43705-021-00025-z
[88] Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a Dehalococcoides- Dehalobacter coculture. Environmental Science & Technology, 2013, 47(3): 1518-1525.
[89] A modeling study and implications of competition between Dehalococcoides ethenogenes and other tetrachloroethene-respiring bacteria. Environmental Science & Technology, 2006, 40(14): 4473-4480.
[90] Modeling the effects of microbial competition and hydrodynamics on the dissolution and detoxification of dense nonaqueous phase liquid contaminants. Environmental Science & Technology, 2009, 43(3): 870-877.
[91] Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis. Journal of Contaminant Hydrology, 2013, 151: 117-130. DOI:10.1016/j.jconhyd.2013.05.005
[92] Investigation and research on volatile halogenated hydrocarbon contamination from groundwater in 69 cities of China. Journal of Earth Sciences and Environment, 2012, 34(1): 66-71. (in Chinese)
高存荣, 王俊桃. 中国69个城市地下水挥发性卤代烃污染检测与特征研究. 地球科学与环境学报, 2012, 34(1): 66-71. DOI:10.3969/j.issn.1672-6561.2012.01.009
[93] Natural and enhanced anaerobic degradation of 1, 1, 1-trichloroethane and its degradation products in the subsurface—a critical review. Water Research, 2011, 45(9): 2701-2723. DOI:10.1016/j.watres.2011.02.027
[94] Quantifying the effects of 1, 1, 1-trichloroethane and 1, 1-dichloroethane on chlorinated ethene reductive dehalogenases. Environmental Science & Technology, 2011, 45(22): 9693-9702.
[95] 1, 1, 1-trichloroethane and 1, 1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environmental Science & Technology, 2009, 43(17): 6799-6807.
[96] Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environmental Science & Technology, 2004, 38(18): 4768-4774.
[97] Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Biotechnology and Bioengineering, 2004, 88(4): 451-464. DOI:10.1002/bit.20260
[98] Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environmental Science & Technology, 2005, 39(1): 195-205.
[99] Substrate interactions in dehalogenation of 1, 2-dichloroethane, 1, 2-dichloropropane, and 1, 1, 2- trichloroethane mixtures by Dehalogenimonas spp. Biodegradation, 2014, 25(2): 301-312. DOI:10.1007/s10532-013-9661-2
[100] Localized plasticity in the streamlined genomes of vinyl chloride respiring Dehalococcoides. PLoS Genetics, 2009, 5(11): e1000714. DOI:10.1371/journal.pgen.1000714
[101] The complexome of Dehalococcoides mccartyi reveals its organohalide respiration-complex is modular. Frontiers in Microbiology, 2018, 9: 1130. DOI:10.3389/fmicb.2018.01130
[102] Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science, 2005, 307(5706): 105-108. DOI:10.1126/science.1102226
[103] Site-specific mobilization of vinyl chloride respiration islands by a mechanism common in Dehalococcoides. BMC Genomics, 2011, 12: 287. DOI:10.1186/1471-2164-12-287
[104] Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. FEMS Microbiology Ecology, 2007, 59(1): 206-214. DOI:10.1111/j.1574-6941.2006.00243.x
[105] Zinder SH. The genus Dehalococcoides//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Heidelberg: Springer Berlin Heidelberg, 2016.
[106] Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1, 2-dichloropropane to propene in organohalide-respiring Chloroflexi. Applied and Environmental Microbiology, 2014, 80(3): 808-818. DOI:10.1128/AEM.02927-13
[107] Maillard J, Holliger C. The genus Dehalobacter// Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[108] Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9(T)) and comparison to "Dehalococcoides" strains. Standards in Genomic Sciences, 2012, 6(2): 251-264. DOI:10.4056/sigs.2806097
[109] A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1, 2-dichloroethane. Applied and Environmental Microbiology, 2007, 73(9): 2990-2999. DOI:10.1128/AEM.02748-06
[110] The physiological opportunism of Desulfitobacterium hafniense strain TCE1 towards organohalide respiration with tetrachloroethene. Applied and Environmental Microbiology, 2012, 78(17): 6121-6127. DOI:10.1128/AEM.01221-12
[111] Sanford RA, Chowdhary J, Löffler FE. Organohalide-respiring Deltaproteobacteria//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[112] Functional genomics of corrinoid starvation in the organohalide-respiring bacterium Dehalobacter restrictus strain PER-K23. Frontiers in Microbiology, 2015, 5: 751.
[113] Modeling the production of and competition for hydrogen in a dechlorinating culture. Environmental Science & Technology, 1998, 32(16): 2450-2460.
[114] Comment on "comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture". Environmental Science & Technology, 1997, 31(4): 1250.
[115] Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 2007, 41(1): 27-38. DOI:10.1016/j.watres.2006.09.019
[116] Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environmental Science & Technology, 2010, 44(13): 5159-5164.
[117] Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environmental Science & Technology, 2013, 47(4): 1879-1886.
[118] Metabolism of homoacetogens. Antonie Van Leeuwenhoek, 1994, 66(1/2/3): 209-221.
[119] Methanosarcina spp. drive vinyl chloride dechlorination via interspecies hydrogen transfer. Applied and Environmental Microbiology, 2006, 72(4): 2942-2949.
[120] Analysis of trace hydrogen metabolism. Methods in Enzymology, 2005, 397: 222-237.
[121] Roles of organohalide-respiring Dehalococcoidia in carbon cycling. mSystems, 2020, 5(3): e00757-e00019.
[122] A 1, 1, 1-trichloroethane- degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Applied and Environmental Microbiology, 2006, 72(12): 7849-7856. DOI:10.1128/AEM.01269-06
[123] Characterization of a Dehalobacter coculture that dechlorinates 1, 2-dichloroethane to ethene and identification of the putative reductive dehalogenase gene. Applied and Environmental Microbiology, 2009, 75(9): 2684-2693. DOI:10.1128/AEM.02037-08
[124] Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of Dehalococcoides and Desulfovibrio species. Environmental Science & Technology, 2011, 45(19): 8475-8482.
[125] Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS One, 2012, 7(12): e52038. DOI:10.1371/journal.pone.0052038
[126] Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments. Microbiology: Reading, England, 2015, 161(6): 1189-1197. DOI:10.1099/mic.0.000085
[127] Schink B, Stams AJM. Syntrophism among prokaryotes//Rosenberg E, De Long EF, Lory S, Stackebrandt E, Thompson F. The Prokaryotes: Prokaryotic Communities and Ecophysiology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
[128] Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 2009, 7(8): 568-577. DOI:10.1038/nrmicro2166
[129] Richardson RE. Organohalide-respiring bacteria as members of microbial communities: catabolic food webs and biochemical interactions//Adrian L, Löffler FE. Organohalide-Respiring Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.
[130] Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environmental Science & Technology, 2002, 36(18): 3945-3952.
[131] Organic cofactors in the metabolism of Dehalococcoides mccartyi strains. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1616): 20120321. DOI:10.1098/rstb.2012.0321
[132] An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiology Ecology, 2018, 94(3): fiy013.
[133] Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Applied and Environmental Microbiology, 2012, 78(21): 7745-7752. DOI:10.1128/AEM.02150-12
[134] Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009, 37(1): 1-17. DOI:10.1007/s00726-009-0269-0
[135] Stable isotope peptide mass spectrometry to decipher amino acid metabolism in Dehalococcoides strain CBDB1. Journal of Bacteriology, 2012, 194(16): 4169-4177. DOI:10.1128/JB.00049-12
[136] Investigation of carbon metabolism in "Dehalococcoides ethenogenes" strain 195 by use of isotopomer and transcriptomic analyses. Journal of Bacteriology, 2009, 191(16): 5224-5231. DOI:10.1128/JB.00085-09
[137] Global transcriptomic and proteomic responses of Dehalococcoides ethenogenes strain 195 to fixed nitrogen limitation. Applied and Environmental Microbiology, 2012, 78(5): 1424-1436. DOI:10.1128/AEM.06792-11
[138] Evidence for nitrogen fixation by "Dehalococcoides ethenogenes" strain 195. Applied and Environmental Microbiology, 2009, 75(23): 7551-7555. DOI:10.1128/AEM.01886-09
[139] Refined experimental annotation reveals conserved corrinoid autotrophy in chloroform-respiring Dehalobacter isolates. Multidisciplinary Journal of Microbial Ecology, 2017, 11(3): 626-640.
[140] Anaerobic sludge granulation. Water Research, 2004, 38(6): 1376-1389. DOI:10.1016/j.watres.2003.12.002
[141] Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Applied and Environmental Microbiology, 2005, 71(12): 7838-7845. DOI:10.1128/AEM.71.12.7838-7845.2005
[142] Stams AJM, Worm P, Sousa DZ, Alves MM, Plugge CM. Syntrophic degradation of fatty acids by methanogenic communities//Hallenbeck PC. Microbial Technologies in Advanced Biofuels Production. Boston, MA: Springer US, 2012.
[143] Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605. DOI:10.1128/AEM.00895-14
[144] Syntrophic interspecies electron transfer drives carbon fixation and growth by Rhodopseudomonas palustris under dark, anoxic conditions. Science Advances, 2021, 7(27): eabh1852. DOI:10.1126/sciadv.abh1852
[145] Localization and quantification of extracellular polymers in methanogenic granular sludge. Applied Microbiology and Biotechnology, 1991, 36(1): 115-119. DOI:10.1007/BF00164710
[146] Simulating the contribution of coaggregation to inter species hydrogen fluxes in syntrophic methanogenic consortia. Applied and Environmental Microbiology, 2006, 72(7): 5093-5096. DOI:10.1128/AEM.00333-06
[147] Molecular eco-systems biology: towards an understanding of community function. Nature Reviews Microbiology, 2008, 6(9): 693-699. DOI:10.1038/nrmicro1935
[148] Ignoring social distancing: advances in understanding multi-species bacterial interactions. Faculty Reviews, 2020, 9: 23.
[149] Design and application of synthetic microbial communities. Chinese Science Bulletin, 2021, 66(3): 273-283. (in Chinese)
陈沫先, 韦中, 田亮, 谭扬, 黄建东, 戴磊. 合成微生物群落的构建与应用. 科学通报, 2021, 66(3): 273-283.
[150] Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Frontiers in Microbiology, 2011, 2: 153.
有机卤呼吸微生物菌群营养交互的作用机制
李晓翠 , 李秀颖 , 宋玉芳 , 严俊 , 杨毅