微生物学报  2022, Vol. 62 Issue (6): 2403-2416   DOI: 10.13343/j.cnki.wsxb.20210667.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210667
中国科学院微生物研究所,中国微生物学会

文章信息

曾维爱, 杨昭玥, 黄洋, 谷亚冰, 陶界锰, 刘勇军, 谢鹏飞, 蔡海林, 尹华群. 2022
ZENG Weiai, YANG Zhaoyue, HUANG Yang, GU Yabing, TAO Jiemeng, LIU Yongjun, XIE Pengfei, CAI Hailin, YIN Huaqun.
长期连作农田土壤细菌群落结构和共现网络拓扑性质对土壤理化性质的响应
Response of soil bacterial community structure and co-occurrence network topology properties to soil physicochemical properties in long-term continuous cropping farmland
微生物学报, 62(6): 2403-2416
Acta Microbiologica Sinica, 62(6): 2403-2416

文章历史

收稿日期:2021-11-02
修回日期:2022-02-23
网络出版日期:2022-03-31
长期连作农田土壤细菌群落结构和共现网络拓扑性质对土壤理化性质的响应
曾维爱1 , 杨昭玥2 , 黄洋3 , 谷亚冰2 , 陶界锰4 , 刘勇军5 , 谢鹏飞1 , 蔡海林1 , 尹华群2     
1. 湖南省烟草公司长沙市公司, 湖南 长沙 410021;
2. 中南大学资源加工与生物工程学院, 湖南 长沙 410083;
3. 中国烟草四川中烟工业有限责任公司技术中心, 四川 成都 610000;
4. 中国烟草总公司郑州烟草研究院国家烟草基因研究中心, 河南 郑州 450001;
5. 湖南烟草研究院, 湖南 长沙 410010
摘要[目的] 为探究长期连作土壤细菌群落结构和分子生态网络与土壤环境演化的关联性。[方法] 本研究利用16S rRNA基因高通量测序技术,解析了湖南省浏阳市两块连作十二年农田(表现连作障碍的GD和健康的YA)土壤微生物群落组成结构和分子生态网络拓扑性质与土壤理化性质的关系。[结果] GD土壤总氮和有效磷含量显著高于YA,而土壤硝态氮和速效钾含量显著低于YA (P < 0.05)。GD土壤细菌群落多样性高于YA,两地土壤细菌群落结构存在显著差异(P < 0.01),且与土壤pH和有效磷含量相关。进一步分析表明,GD土壤细菌群落之间比YA具有更复杂的生态网络,主要体现在能量代谢、碳循环和氮循环功能模块。[结论] 综上所述,连作会引起土壤细菌群落多样性、组成结构和生态网络变化,这可能与土壤理化性质恶化、土壤肥力下降密切相关,进而影响作物生长发育。
关键词长期连作    土壤微生物    细菌群落结构    分子生态网络    生物地球化学循环    
Response of soil bacterial community structure and co-occurrence network topology properties to soil physicochemical properties in long-term continuous cropping farmland
ZENG Weiai1 , YANG Zhaoyue2 , HUANG Yang3 , GU Yabing2 , TAO Jiemeng4 , LIU Yongjun5 , XIE Pengfei1 , CAI Hailin1 , YIN Huaqun2     
1. Hunan Tobacco Company Changsha Branch, Changsha 410021, Hunan, China;
2. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China;
3. China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610000, Sichuan, China;
4. China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, Henan, China;
5. Hunan Tobacco Science Institute, Changsha 410010, Hunan, China
Abstract: [Objective] To explore the relationship of soil bacterial community structure and molecular ecological network with soil environment in farmland with long-term continuous cropping. [Methods] In this study, high-throughput sequencing of 16S rRNA gene was performed to reveal the correlation of soil microbial community structure and topological properties of molecular ecological network with soil physicochemical properties of two 12-year continuous cropping fields (GD with continuous cropping obstacle and healthy YA) in Liuyang, Hunan province. [Results] The content of total nitrogen and available phosphorus in GD soil was significantly higher than that in YA soil, while the content of nitrate nitrogen and available potassium was significantly lower than that in YA soil (P < 0.05). The bacterial diversity of GD soil was higher than that in YA soil, and the soil bacterial community structure was significantly different between GD and YA (P < 0.01), which was related to soil pH and available phosphorus content. Soil bacterial community in GD had a more complex ecological network than that in YA, as manifested in the functional modules of energy metabolism, carbon cycle, and nitrogen cycle. [Conclusion] Continuous cropping can cause changes in soil bacterial community diversity, structure, and ecological network, which may be closely related to the deterioration of soil physicochemical properties and soil fertility, and affects crop growth and development.
Keywords: long-term continuous cropping    soil microorganisms    bacterial community structure    molecular ecological network    biogeochemical cycle    

耕作制度与农作物产质量密切相关[1],连作是现代集约化农业生产提高作物产量质量常见制度[23]。然而,长期连作会加速消耗某些营养元素,形成养分偏失,导致土壤理化性质恶化、土壤微生物群落变化,进而形成连作障碍。据报道,长期连作会降低农田pH和有机质、速效钾含量,增加农田总氮和有效磷含量[47],抑制碳、氮矿化[8],从而阻碍土壤养分循环。

土壤细菌具有高度多样性[9],在土壤养分和有机质转化与循环中扮演着重要生态作用[10]。土壤细菌群落组成和功能结构与碳、氮、磷等元素循环和有机物分解密切相关[1113]。由于土壤细菌对环境变化的快速响应,土壤细菌被认为是土壤肥力和土壤管理的有效生物指标[14]。土壤细菌群落多样性和结构变化被证实与植物物种、土地作用类型和土壤理化性质相关[1517]。土壤环境总体上塑造了土壤细菌的群落组成[18]、多样性[19]、相互作用模式[20]及其功能结构[2122],而土壤细菌也依靠其代谢活性营造适宜其生存的土壤环境[2324],从而改善农田土壤肥力。目前大部分关于土壤细菌的研究主要聚焦于单菌代谢功能上,而对微生物协同作用的研究较少。

细菌在土壤中存在复杂的相互作用,并参与形成生态网络和维持系统功能[25]。生态相互作用网络为解析土壤细菌群落间的相互作用提供了新见解,可以更全面地了解细菌群落结构和指导群落组装的生态规则[20]。据报道,土壤细菌群落的分子生态网络会随着植物生长逐渐变得复杂,模块性及模块数量升高[26],与细菌氮循环功能团的形成密切相关[27],表明土壤细菌可在短期快速参与土壤环境的形成。尽管大量研究表明了不同土壤理化性质会影响细菌群落结构,但目前对长期连作土壤理化性质与细菌群落的生态网络拓扑特征关联性的研究仍较少。

湖南省浏阳市两块长期定位试验烟田GD和YA,连续12年种植烤烟G80,采用相同栽培管理技术,但相比YA,GD烟田的烟株生长发育减慢、产量品质下降。本文以这2块烟田土壤系统为研究对象,利用16S rRNA基因高通量测序技术,研究长期连作农田土壤细菌群落对连作土壤理化性质差异的响应,探究连作土壤细菌群落的多样性、结构组成及分子生态网络拓扑性质与土壤理化性质差异的关联性,对揭示农田土壤细菌群落演替规律及其在土壤生物地球化学循环中的生态功能具有重要意义,还可为开发菌剂进行土壤改良、微生物调控等提供理论依据。

1 材料与方法 1.1 样品采集和处理

样品采集自湖南省浏阳市两块长期定位试验烟田GD (28°21′N,113°52′E)和YA (28°10′N,113°23′E)。2020年4月29日,烟草现蕾期,分别采集试验烟田GD和YA 25个土壤样品进行土壤理化性质测定和高通量测序分析。取样方法和土壤理化性质测定采用之前研究描述的方法[28]

1.2 核酸提取和扩增子测序

利用强力土壤DNA提取试剂盒(MoBio)按说明书从1.0 g土壤样品中提取DNA。利用引物338F (5′-ACTCCTACGGGAGGCAGCA-3′)和806R (5′-GGACTACHVGGGTWTCTAAT-3′)扩增细菌16S rRNA基因的V3–V4区。PCR扩增反应体系含有1.0 μL DNA模板(约25 ng DNA)、12.5 μL Taq Master Mix (Vazyme)、0.5 μL引物,DNase-free去离子水调节体系体积至25 μL。PCR扩增程序设置如下:98 ℃ 30 s;98 ℃ 10 s,54 ℃ 30 s,72 ℃ 45 s,32次循环;72 ℃ 10 min,4 ℃保存。利用gel extraction kit (OMEGA Bio-Tek Inc.)纯化PCR产物。利用Qubit 2.0 Fluorometer (Invitrogen)对其定量,等摩尔浓度混库后,在Illumina NovaSeq PE250平台上进行高通量测序(LC-Bio Technology Co.,Ltd),得到已去接头FASTQ格式原始数据。

1.3 测序数据处理和统计分析

利用QIIME 2处理原始测序数据。按barcode拆分样品序列,低质量序列(QC < 20;读长 < 200 bp)和嵌合体被去除后,以97%的相似水平将序列聚类生成可操作分类单元(OTU),并构建特征表;利用OTU代表性序列构建系统进化树,并进行物种注释[29]。通过R语言中的microeco 0.5.1包进行细菌群落生态数据统计和可视化[30]。利用Venn图分析组间共有和特有OTUs;利用ggplot 2包绘制物种丰度图;利用Kruskal-Wallis秩和检验、多重比较方差分析检验组间细菌群落alpha多样性差异;利用主坐标分析(PCoA)、基于Bray-Curtis进行beta多样性分析;利用线性判别分析(LEfSe)确定组间各分类水平上具有统计学差异的生物标识[31];基于Spearman相关性构建分子生态网络(MENs),利用随机矩阵理论(RMT)找到优化相关阈值[32],利用Gephi绘制网络图;通过计算节点模块内连通度(Zi)和模块间连通度(Pi),可将网络节点划分为模块中心点(moudule hubs;Zi > 2.5且Pi < 0.62),连接节点(connectors;Zi < 2.5且Pi > 0.62)和网络中心点(network hubs;Zi > 2.5且Pi > 0.62)等3种类型的关键节点,以及外围节点(peripherals;Zi < 2.5且Pi < 0.62)[30]。利用冗余分析(RDA)反映样本和环境因子的关系,利用Mantel test检验环境变量和距离矩阵的相关性程度,进一步解析环境变量与细菌群落相关性;将分类信息与FAPROTAX数据库比对,预测网络模块的功能。

2 结果与分析 2.1 土壤理化性质

图 1所示,GD土壤总氮(TN)和有效磷含量(AP)分别为1 500.64 mg/kg和407.50 mg/kg,显著高于YA的1 267.03 mg/kg和43.90 mg/kg(P < 0.05)。GD土壤硝态氮(NO3-N)和速效钾含量(AK)分别为68.13 mg/kg和763.80 mg/kg,显著低于YA的90.48 mg/kg和953.04 mg/kg (P < 0.05)。

图 1 GD和YA土壤理化性质 Figure 1 Soil physicochemical properties of GD and YA. *: P < 0.05; **: P < 0.01; ***: P < 0.001.

2.2 土壤细菌群落组成和结构

利用16S rRNA基因高通量测序技术对GD和YA土壤细菌群落进行检测,将高质量测序序列基于97%的相似性进行聚类,共得到38 942个可操作分类单元(OTUs)。GD和YA之间共有OTUs有4 210个,仅占总OTUs的12.2%。GD特有OTUs有16 267个,高于YA (14 140) (图 2A)。所有OTUs可归类为61个门,165个纲和985个属。GD和YA共有OTUs主要属于LatescibacterotaPedosphaeraceae和subgroup_7,GD特有OTUs主要属于LatescibacterotaHaliangium和ADurb.Bin063-1,YA特有OTUs主要属于LatescibacterotaHaliangiumPedosphaeraceae (图 2B)。在门水平上,GD和YA优势菌群为ProteobacteriaAcidobacteriotaChloroflexiBacteroidotaActinobacteriaProteobacteriaAcidobacteriota相对丰度在GD较高,而ChloroflexiActinobacteriota相对丰度在YA较高,Bacteroidota相对丰度在GD和YA较为相似(图 2C);在纲水平上,ProteobacteriaGammaproteobacteriaAlphaproteobacteriaAcidobacteriotaAcidobacteriae相对丰度在GD较高,而ChloroflexiAnaerolineaeActinobacteriaActinobacteria相对丰度在YA较高(图 2D)。

图 2 GD和YA土壤细菌群落组成 Figure 2 Composition of soil bacterial community in GD and YA. A: shared and unique OTUs between groups; B: shared and unique genus between groups; C: bacterial community composition at phyla level; D: bacterial community composition at class level.

α多样性分析表明(图 3),GD和YA细菌群落物种丰富度和多样性并无显著性差异(P > 0.05)。PCA结果显示(图 4A),GD和YA样本间明显分开并且差异性显著(P=0.001),但主成分轴PCA1和PCA2分别解释了24.9%和13.3%细菌群落结构差异,解释度较低,需要前7个主成分轴才可使其对群落的解释量达到60%,表明土壤细菌群落结构是高维复杂的。图 4B进一步表明GD β多样性高于YA。

图 3 GD和YA α多样性分析 Figure 3 Alpha analysis of GD and YA. A: observed species index; B: Chao1 index; C: Shannon index; D: Simpson index.

图 4 GD和YA菌群相似性分析 Figure 4 Community similarity analysis of GD and YA. A: PCA; B: Bray-Curtis distance analysis.

通过LEfSe分析,确定了1 250个在GD和YA之间丰度具有显著差异的物种(P < 0.01),图 5展示了丰度最高的200个差异物种,其中GD的AcidobacteriotaProteobacteriaVerrucomicrobiotaPatescibacteriaChitinophagaceaeKtedonobacterales等丰度显著高于YA,而ActinobacteriotaMyxococcotaFirmicutesAnaerolineae等丰度则显著低于YA。

图 5 GD和YA差异物种进化分支图 Figure 5 Species evolutionary branching diagram of differential taxa between GD and YA (P < 0.01).

2.3 土壤细菌群落分子生态网络结构和关键微生物

为解析土壤菌群物种间共存模式,基于随机矩阵理论构建了GD和YA的分子生态网络(图 6)。相比YA,GD分子生态网络节点数和边数较多,平均度较高,平均路径长度和网络直径较短(表 1),这表明GD分子生态网络更加复杂、物种联系更紧密。GD和YA分子生态网络正相关连接占比分别为92.29%和98.31%,表明长期连作土壤细菌间趋于合作关系而不是竞争关系。

图 6 分子生态网络 Figure 6 Molecular ecological network of GD (A) and YA (B). Different colors represent different modules.

表 1. GD和YA土壤细菌群落分子生态网络拓扑性质 Table 1. Topological properties of molecular ecological network of GD and YA soil bacterial communities
Property GD YA
Vertex 1 368 1 125
Edge 10 023 3 497
Modularity 67 80
Average degree 14.65 6.22
Average path length 5.13 7.26
Network diameter 13.00 17.00
Clustering coefficient 0.43 0.45
Density 0.01 0.01
Heterogeneity 1.23 1.10
Centralization 0.07 0.03
Positive links/% 93.22 97.75

网络节点拓扑性质分析结果表明(图 7),GD分子生态网络具有20个模块中心,主要为AcidobacteriotaBacteroidotaChloroflexiGemmatimonadotaProteobacteria,21个连接节点,主要为AcidobacteriaeAlphaproteobacteriaBacteroidiaGammaproteobacteria,和1个网络中心点,为Blastocatellia。而YA分子生态网络具有20个模块中心点,主要为ChloroflexiProteobacteria,和2个连接节点,主要为GemmatimonadotaProteobacteria

图 7 分子生态网络Zi-Pi图 Figure 7 Zi-Pi diagram of molecular ecological network. A: GD; B: YA.

2.4 土壤理化性质与细菌群落结构相关性分析

RDA结果(图 8)表明,土壤细菌群落结构与土壤pH、有效磷和氨态氮含量相关性较强,土壤pH和有效磷含量与GD细菌群落变化相关性较强,土壤硝态氮含量与YA细菌群落变化相关性较强。

图 8 GD和YA土壤理化性质与细菌群落结构相关性分析 Figure 8 Correlation analysis of soil physicochemical properties and bacterial community structure of GD and YA.

土壤理化性质与相对丰度最高的30个属Pearson相关性分析结果(图 9)表明,Azoarcus等属与土壤pH显著正相关(P < 0.01);TaibaicllaDyellaPandoraea等属与土壤有效磷含量显著正相关(P < 0.001),而Gaiella等属与土壤有效磷含量显著负相关(P < 0.01);Dyella等属与土壤氨态氮含量显著正相关(P < 0.001),而Anaerolinea等属与土壤氨态氮含量显著负相关(P < 0.01);此外,Parafilimonas等属与土壤总氮和有机质含量显著负相关(P < 0.05);Nitrospira属与土壤速效钾含量显著负相关(P < 0.001)。

图 9 土壤理化性质与关键菌属丰度的Pearson相关性分析 Figure 9 Pearson correlation analysis between soil physicochemical properties and the abundance of key genera. *: P < 0.05; **: P < 0.01; ***: P < 0.001.

土壤理化性质与网络模块Pearson相关性分析结果表明,GD网络模块4与土壤有效磷和铵态氮含量显著正相关,模块9与土壤总氮含量显著负相关,模块10与土壤硝态氮含量显著正相关(P < 0.001);YA网络模块9与土壤硝态氮含量显著正相关,模块4与土壤pH显著正相关(P < 0.01)。

土壤理化性质与细菌群落α多样性指数的Pearson相关性分析结果表明,土壤pH与细菌群落α多样显著正相关(P < 0.05),土壤速效钾和铵态氮含量与细菌群落α多样性显著负相关(P < 0.05)。

2.5 FAPROTAX预测土壤细菌群落生物地球化学作用

网络模块与细菌群落功能关联分析结果显示(图 10),GD网络模块主要与好氧化能异养功能相关,其模块成员主要为ProteobacteriaAcidobacteriota;YA网络模块主要与能量流动、碳和氮循环等功能相关,其模块成员主要为PatescibacteriaFirmicutes

图 10 FAPROTAX预测土壤细菌群落生物地球化学作用 Figure 10 FAPROTAX predicts the biogeochemical roles of soil bacterial communities. A: GD; B: YA.

3 讨论

土壤细菌群落在土壤生物地球化学循环中扮演着关键的生态角色,其群落结构差异与土壤理化性质及系统功能变化具有密切联系。本研究结果表明,长期连作会改变烟田细菌群落多样性和组成结构,降低土壤硝态氮和速效钾含量,增加总氮和速效磷含量。之前烟草连作障碍案例研究结果表明,微生物群落结构差异影响了土壤总氮和硝态氮含量[28];相似的,草地和混合针叶林土壤微生物群落结构差异与土壤总氮和硝态氮含量密切相关[33]。此外,本研究结果表明,烟草连作土壤细菌群落结构特征与土壤pH、有效磷和铵态氮含量相关性较强,这与西瓜、马铃薯连作土壤研究结果一致[3435]。不同的是,西瓜和马铃薯连作土壤的微生物群落结构特征还与土壤有机质含量相关性较强。这表明,长期耕作土壤理化性质可能受到微生物与作物种类的交互作用。

微生物的相互作用网络性质及其模块与耕作土壤系统功能密切相关。本研究发现,相比YA,土壤总氮和有效磷含量高的GD地区,其分子生态网络节点和连接较多,平均路径长度较短,这表明微生物相互作用网络的差异可能是引起土壤肥力变化的一个重要因素。对比健康土壤和青枯病易感土壤微生物的土壤理化性质和网络结构,结果表明土壤pH、氮和磷含量高的土壤网络节点和连接均较高[36],而这些网络拓扑性质被证实与氮循环基因丰度呈正相关关系[37]

此外,微生物相互作用网络模块被认为是相似生态角色组成的功能团。本研究发现微生物相互作用网络中各模块具有相应的功能,土壤硝态氮含量较高的YA地区,其氮循环相关网络模块数量明显高于GD,YA模块中心成员Chloroflex是氮元素的生物地球化学循环的主要参与成员[38]。土壤有效磷含量较高的GD模块中心成员Proteobacteria在生物磷循环中发挥着关键作用[39]。相似地,玉米地土壤网络关键类群ProteobacteriaAcidobacteriaActinobacteriaAscomycotaBasidiomycota主要参与土壤碳循环和氮循环,植被恢复过程中土壤有机碳、总氮含量显著增加(P < 0.05)[33]。这些结果表明,土壤微生物可能通过相互作用形成功能团进而影响土壤环境演化和改善肥力,深入剖析模块成员的组成及其相互作用将更有利于认识微生物群落在生物地球化学循环中的作用。

4 总结

本研究解析了GD和YA两块长期连作农田土壤理化性质差异与土壤细菌群落结构及分子生态网络拓扑性质的关联性。研究结果发现,土壤细菌群落中的关键物种及其分子生态网络特性与土壤理化性质密切相关。例如,AzoarcusPandoraea、4-29-1、DyellaAnaerolinea等丰度与土壤pH和有效磷、铵态氮含量变化显著相关(P < 0.01)。连作土壤的分子生态网络模块可能主要执行系统能量代谢和碳氮循环功能,但总氮和有效磷含量较高的土壤以ProteobacteriaAcidobacteriota为功能模块的主要成员,而硝态氮和速效钾含量较高的土壤则以PatescibacteriaFirmicutes为主要成员。本研究结果为长期连作土壤理化性质变化与微生物群落差异联系的理解提供了新视角,同时为开发菌剂进行土壤改良,进而缓解连作障碍提供理论依据。

References
[1] Liu WX, Wang QL, Wang BZ, Wang XB, Franks AE, Teng Y, Li ZG, Luo YM. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil, 2015, 395(1/2): 415-427.
[2] Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812-818. DOI:10.1126/science.1185383
[3] Smith P. Delivering food security without increasing pressure on land. Global Food Security, 2013, 2(1): 18-23. DOI:10.1016/j.gfs.2012.11.008
[4] Bai YX, Wang G, Cheng YD, Shi PY, Yang CC, Yang HW, Xu ZL. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 2019, 9(1): 12499. DOI:10.1038/s41598-019-48611-5
[5] Yan L, Zhang WY, Duan WJ, Zhang YZ, Zheng W, Lai XJ. Temporal bacterial community diversity in the Nicotiana tabacum rhizosphere over years of continuous monocropping. Frontiers in Microbiology, 2021, 12: 641643. DOI:10.3389/fmicb.2021.641643
[6] Chen P, Wang YZ, Liu QZ, Zhang YT, Li XY, Li HQ, Li WH. Phase changes of continuous cropping obstacles in strawberry (Fragaria×ananassa Duch. ) production. Applied Soil Ecology, 2020, 155: 103626. DOI:10.1016/j.apsoil.2020.103626
[7] Xiong W, Li ZG, Liu HJ, Xue C, Zhang RF, Wu HS, Li R, Shen QR. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS One, 2015, 10(8): e0136946. DOI:10.1371/journal.pone.0136946
[8] Mahal NK, Osterholz WR, Miguez FE, Poffenbarger HJ, Sawyer JE, Olk DC, Archontoulis SV, Castellano MJ. Nitrogen fertilizer suppresses mineralization of soil organic matter in maize agroecosystems. Frontiers in Ecology and Evolution, 2019, 7: 59. DOI:10.3389/fevo.2019.00059
[9] Torsvik V, Øvreås L. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 2002, 5(3): 240-245. DOI:10.1016/S1369-5274(02)00324-7
[10] Brussaard L, de Ruiter PC, Brown GG. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems & Environment, 2007, 121(3): 233-244.
[11] De Graaff MA, Classen AT, Castro HF, Schadt CW. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 2010, 188(4): 1055-1064. DOI:10.1111/j.1469-8137.2010.03427.x
[12] Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 2010, 466(7307): 752-755. DOI:10.1038/nature09273
[13] Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84: 53-64. DOI:10.1016/j.soilbio.2015.02.011
[14] Avidano L, Gamalero E, Cossa GP, Carraro E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 2005, 30(1): 21-33. DOI:10.1016/j.apsoil.2005.01.003
[15] Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 2008, 40(9): 2407-2415. DOI:10.1016/j.soilbio.2008.05.021
[16] Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM. The ecological engineering impact of a single tree species on the soil microbial community. Journal of Ecology, 2010, 98(1): 50-61. DOI:10.1111/j.1365-2745.2009.01601.x
[17] Bell TH, Yergeau E, Maynard C, Juck D, Whyte LG, Greer CW. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. The ISME Journal, 2013, 7(6): 1200-1210. DOI:10.1038/ismej.2013.1
[18] Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 2010, 76(4): 999-1007. DOI:10.1128/AEM.02874-09
[19] Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez JR, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang DL, Woods NN, Yuan X, Zaady E, Singh BK. Increasing aridity reduces soil microbial diversity and abundance in global drylands. PNAS, 2015, 112(51): 15684-15689. DOI:10.1073/pnas.1516684112
[20] Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 2012, 6(2): 343-351. DOI:10.1038/ismej.2011.119
[21] Banerjee S, Schlaeppi K, Van Der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 2018, 16(9): 567-576. DOI:10.1038/s41579-018-0024-1
[22] Nunan N, Leloup J, Ruamps LS, Pouteau V, Chenu C. Effects of habitat constraints on soil microbial community function. Scientific Reports, 2017, 7: 4280. DOI:10.1038/s41598-017-04485-z
[23] Si P, Shao W, Yu HL, Yang XJ, Gao DT, Qiao XS, Wang ZQ, Wu GL. Rhizosphere microenvironments of eight common deciduous fruit trees were shaped by microbes in Northern China. Frontiers in Microbiology, 2018, 9: 3147. DOI:10.3389/fmicb.2018.03147
[24] Wu YC, Cai P, Jing XX, Niu XK, Ji DD, Ashry NM, Gao CH, Huang QY. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environment International, 2019, 132: 105116. DOI:10.1016/j.envint.2019.105116
[25] Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research, 2010, 38(12): 3857-3868. DOI:10.1093/nar/gkq118
[26] Shi SJ, Nuccio EE, Shi ZJ, He ZL, Zhou JZ, Firestone MK. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters, 2016, 19(8): 926-936. DOI:10.1111/ele.12630
[27] De Angelis KM, Lindow SE, Firestone MK. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiology Ecology, 2008, 66(2): 197-207. DOI:10.1111/j.1574-6941.2008.00550.x
[28] Tan G, Liu YJ, Peng SG, Yin HQ, Meng DL, Tao JM, Gu YB, Li J, Yang S, Xiao NW, Liu DM, Xiang XW, Zhou ZC. Soil potentials to resist continuous cropping obstacle: three field cases. Environmental Research, 2021, 200: 111319. DOI:10.1016/j.envres.2021.111319
[29] Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, Von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37(8): 852-857. DOI:10.1038/s41587-019-0209-9
[30] Liu C, Cui YM, Li XZ, Yao MJ. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 2020, 97(2): fiaa255.
[31] Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12(6): R60. DOI:10.1186/gb-2011-12-6-r60
[32] Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinformatics, 2012, 13: 113. DOI:10.1186/1471-2105-13-113
[33] Hu LN, Li Q, Yan JH, Liu C, Zhong JX. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 2022, 820: 153137. DOI:10.1016/j.scitotenv.2022.153137
[34] Wei XM, Hu YJ, Razavi BS, Zhou J, Shen JL, Nannipieri P, Wu JS, Ge TD. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biology and Biochemistry, 2019, 131: 62-70. DOI:10.1016/j.soilbio.2018.12.025
[35] Ding S, Zhou DP, Wei HW, Wu SH, Xie B. Alleviating soil degradation caused by watermelon continuous cropping obstacle: application of urban waste compost. Chemosphere, 2021, 262: 128387. DOI:10.1016/j.chemosphere.2020.128387
[36] Qi GF, Ma GQ, Chen S, Lin CC, Zhao XY. Microbial network and soil properties are changed in bacterial wilt-susceptible soil. Applied and Environmental Microbiology, 2019, 85(13): e00162-e00119.
[37] Wang F, Liang Y, Jiang Y, Yang Y, Xue K, Xiong J, Zhou J, Sun B. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. Scientific Reports, 2015, 5: 14345. DOI:10.1038/srep14345
[38] Xian WD, Zhang XT, Li WJ. Research status and prospect on bacterial phylum Chloroflexi. Acta Microbiologica Sinica, 2020, 60(9): 1801-1820. (in Chinese)
鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望. 微生物学报, 2020, 60(9): 1801-1820.
[39] Yu H, Wang FH, Shao MM, Huang L, Xie YY, Xu YX, Kong LR. Effects of rotations with legume on soil functional microbial communities involved in phosphorus transformation. Frontiers in Microbiology, 2021, 12: 661100. DOI:10.3389/fmicb.2021.661100