
中国科学院微生物研究所,中国微生物学会
文章信息
- 谢晓荣, 尚道涵, 沈锡辉, 张磊. 2022
- XIE Xiaorong, SHANG Daohan, SHEN Xihui, ZHANG Lei.
- AI-2通过调节c-di-GMP代谢酶DosC影响类志贺邻单胞菌生物膜形成及运动性
- AI-2 affects biofilm formation and motility of Plesiomonas shigelloides by regulating the c-di-GMP-metabolizing enzyme DosC
- 微生物学报, 62(7): 2808-2823
- Acta Microbiologica Sinica, 62(7): 2808-2823
-
文章历史
- 收稿日期:2021-11-25
- 修回日期:2022-02-07
- 网络出版日期:2022-03-11
群体感应(quorum sensing,QS)是一种细菌通过分泌可溶性信号分子来监测群体密度并协调细菌生物功能的信息交流机制[1–3],它可影响细菌的多种生命活动[4–5]。广泛存在于革兰氏阴性和革兰氏阳性菌中的autoinducer-2 (AI-2)是目前所知的唯一一种既能进行细菌种内交流又能进行种间交流的化学信号分子[6–7]。它一般由S-核糖同型半胱氨酸酶(S-ribosylhomocysteinase,LuxS)催化合成的4, 5-二羟基-2, 3-戊二酮(4, 5-dihydroxy-2, 3-pentanedione,DPD)自发衍生形成,与受体结合后可介导细菌的多种信号转导途径[4–5]。早前研究已发现两种AI-2分子的经典受体,分别是仅存在于弧菌中的LuxP蛋白与主要存在于鼠伤寒沙门氏菌、鼠疫耶尔森氏菌等肠道菌中的LsrB蛋白[8–10]。此外,本课题组最近发现胞外传感dCACHE (double calcium channels and chemotaxis receptors)结构域家族中dCache_1亚家族的部分保守结构域也是AI-2分子的特异性受体,这些感知AI-2信号的dCache_1结构域存在于包括甲基化趋化受体、组氨酸激酶、c-di-GMP合成与水解酶、丝氨酸磷酸酶、丝氨酸/苏氨酸蛋白激酶、腺苷酸/鸟苷酸环化酶等几乎所有主要类型的原核生物跨膜信号转导蛋白中[11],这为AI-2介导的群体感应调控机制提供了更广阔的研究思路。
类志贺邻单胞菌(Plesiomonas shigelloides)是一种革兰氏阴性、兼性厌氧的运动性病原菌,是肠杆菌科邻单胞菌属内唯一的种。其常见于淡水生态系统、河口等水生环境,可感染野生及家养动物,造成养殖业的巨大经济损失,同时也会导致人类感染性腹泻和食物中毒,是世界部分地区散发性和流行性传染性腹泻及食物中毒的潜在病因之一,还可能引发免疫力低下的民众患肠道外感染,例如菌血症、败血症、脑膜炎、肺炎和骨髓炎等[12–13]。近些年来,研究表明细菌生物膜和运动性与细菌的毒力及耐药性密切相关[14]。生物膜的形成能够增强细菌的耐受性,是细菌产生耐药性的主要原因。据统计,有65%的细菌感染可能涉及生物膜[14–15]。此外,相关研究已证实广泛存在于细菌胞内的第二信使分子c-di-GMP是影响细菌生物膜形成和运动性的关键因子[16],其在细菌鞭毛的功能发挥及粘附素和胞外多糖的生物合成中均发挥着重要作用[17–20]。c-di-GMP在细菌胞内的合成与降解分别受到含GGDEF结构域的二鸟苷酸环化酶(diguanylate cyclase,DGC)和含EAL或HD-GYP结构域的磷酸二酯酶(phosphodiesterase,PDE) 催化。本研究发现AI-2对类志贺邻单胞菌生物膜的形成、泳动能力等表型有显著影响。之后我们通过生物信息学分析找到了类志贺邻单胞菌中一个含dCache_1结构域的AI-2潜在受体蛋白DosC,其含有控制c-di-GMP代谢的GGDEF与EAL结构域。我们进一步对c-di-GMP代谢酶DosC响应AI-2信号调控胞内c-di-GMP水平,进而调控类志贺邻单胞菌生物膜形成及运动性的机制进行研究,以期为类志贺邻单胞菌感染的防治提供新思路。
1 材料与方法 1.1 菌株、质粒和引物Strains and plasmids | Relevant characteristics | References or sources |
Strains | ||
Plesiomonas shigelloides NCTC 10360 | Wild-type; Gmr | CGMCC |
E. coli TG1 | Host for cloning | Laboratory stock |
E. coli S17-1 λpir | λ-pir lysogen of S17-1, F– thi pro hsdR hsdM+ [RP4-2 Tc::Mu Km::Tn7] | Laboratory stock |
E. coli BL21(DE3) | Host for expression vector pET-28a | Laboratory stock |
E. coli BL21(DE3) lacking luxS | ΔluxS deletion mutant in E. coli BL21(DE3) | Laboratory stock |
V. harveyi MM32 lacking luxN and luxS | luxN::cat luxS::Tn5kan | [21] |
Plasmids | ||
pET-28a | Expression vector with N-terminal hexahistidine affinity tag; Kanr | Laboratory stock |
pDM4 | Suicide vector, sacB, moobRK2, oriR6K, pir; Chlr | Laboratory stock |
pBAD33 | Expression vector; Chlr | Laboratory stock |
pBAD33-luxS | pBAD33 expressing luxS; Chlr | This study |
pBAD33-dosC | pBAD33 expressing dosC; Chlr | This study |
pBAD33-STM0385 | pBAD33 expressing DGC; Chlr | This study |
Kan: kanamycin; Chl: chloramphenicol; Gm: gentamicin. |
Primers name | Sequences (5′→3′) | Purpose |
dosC-F | CCGGAATTCCGGCCAACCTCTGCGGTCTT | Forward primer to clone dosC into pET-28a |
dosC-R | CCCAAGCTTGGGTTAAACGGCAACTTTCCAATT | Reverse primer to clone dosC into pET-28a |
dosC-LBD-F | CCGGAATTCCGGATGTCCTTGTCTGCAAAGCTGT | Forward primer to clone dosC-LBD into pET-28a |
dosC-LBD-R | CCCAAGCTTGGGTTATTAGCTATTCGGCAGGATGTATAG | Reverse primer to clone dosC-LBD into pET-28a |
CluxS-F | TTTTGGGCTAGCGAATTCGAGCTCGGTACCATGCCATTACTTGATAGTTTTACCG | Forward primer to clone luxS into pBAD33 |
CluxS-R | AAGCTTGCATGCCTGCAGGTCGACTCTAGATTAGCCCAACAGCGATGGA | Reverse primer to clone luxS into pBAD33 |
CdosC-F | TTTTGGGCTAGCGAATTCGAGCTCGGTACCATGTCCTTGTCTGCAAAGC | Forward primer to clone dosC into pBAD33 |
CdosC-R | AAGCTTGCATGCCTGCAGGTCGACTCTAGATTAGCTATTCGGCAGGATG | Reverse primer to clone dosC into pBAD33 |
STM0385-F | TTTTGGGCTAGCGAATTCGAGCTCGGTACCATGTTCCCAAAAATAATGAATGAT | Forward primer to clone STM0385 into pBAD33 |
STM0385-R | AAGCTTGCATGCCTGCAGGTCGACTCTAGATCATGCCGCCACTTCG | Reverse primer to clone STM0385 into pBAD33 |
ΔluxS-up-F | CAGGTTACCCGCATGCAAGATCTATCTAGAAGCGAAGGTGAGTTGCTGTG | To amplify the upstream homologous arm of luxS from strain NCTC 10360 for fusion |
ΔluxS-up-R | ACGGGTATGATCGACGGTAA | To amplify the upstream homologous arm of luxS from strain NCTC 10360 for fusion |
ΔluxS-down-F | TTACCGTCGATCATACCCGTATGACGAGCTGGCACTGGAT | To amplify the downstream homologous arm of luxS from strain NCTC 10360 for fusion |
ΔluxS-down-R | GTGTATATCAAGCTTATCGATACCGTCGACCTGTACCGCGACAATTTGGA | To amplify the downstream homologous arm of luxS from strain NCTC 10360 for fusion |
ΔdosC-up-F | CAGGTTACCCGCATGCAAGATCTATCTAGAAGCTGAGGGCGTAACCAAAT | To amplify the upstream homologous arm of dosC from strain NCTC 10360 for fusion |
ΔdosC-up-R | GCCCACGTTGACGCAATAC | To amplify the upstream homologous arm of dosC from strain NCTC 10360 for fusion |
ΔdosC-down-F | GTATTGCGTCAACGTGGGCTTTCAGTCGCCCAGTTCCTC | To amplify the downstream homologous arm of dosC from strain NCTC 10360 for fusion |
ΔdosC-down-R | GAGAGCTCAGGTTACCCGCATGCAAGATCTGGTGTACTACCGTTGGCTCGA | To amplify the downstream homologous arm of dosC from strain NCTC 10360 for fusion |
1.2 主要试剂和仪器
DNA回收试剂盒与质粒提取试剂盒购自北京天根生化科技有限公司;泳动培养基使用的琼脂粉,蛋白胨购自BD公司;Pfu高保真酶和限制性核酸内切酶购自TaKaRa公司;DPD/AI-2购自Omm Scientific公司;GTP,pGpG,c-di-GMP标准品均购自Sigma公司;抗生素购自北京索莱宝科技有限公司,卡那霉素,氯霉素,庆大霉素使用终浓度分别为50、20、10 μg/mL。
PBS缓冲液(g/L):称取NaCl 8.0,KCl 0.2,Na2HPO4 1.42,KH2PO4 0.27溶于800 mL去离子水中,用浓盐酸调pH 7.4,最后定容至1 L。
Tris-HCl缓冲液(g/L):称取6.05 g Tris、8.775 g NaCl溶于800 mL去离子水中,用浓盐酸调pH 7.5,最后定容至1 L。
透析缓冲液:含终浓度为10% (V/V)甘油的Tris-HCl缓冲液。
c-di-GMP提取液(mL/L):乙腈400,甲醇400,水200。
多功能酶标仪Victor X3,PerkinElmer公司;等温滴定量热仪,TA仪器公司;超微量分光光度计,DeNovix公司。核酸电泳及蛋白电泳系统,凝胶图像分析系统,电转化仪,Tanon公司。超高速冷冻离心机Optima XPN-100,Beckman Coulter公司。全自动高效液相色谱仪分析型1525+2424,Waters公司。Symmetry C18高效液相色谱柱购自Waters公司。
1.3 培养基与菌株培养条件LB培养基(g/L):分别称取10.0 g NaCl,10.0 g蛋白胨,5.0 g酵母浸出物溶于去离子水中,固体培养基补加琼脂粉15.0 g。
TSB液体培养基(g/L):胰酪大豆胨液体培养基(TSB) 30.0。
泳动培养基(g/L):NaCl 5.0,胰蛋白胨10.0,琼脂粉3.0。
M9培养基(g/L):称取Na2HPO4·12H2O 17.9 g,KH2PO4 3.0 g,NH4Cl 1.0 g,NaCl 0.5 g溶于去离子水中;使用时补加终浓度CaCl2为0.1 mmol/L,MgSO4为2 mmol/L,葡萄糖为2.0 mmol/L。
AB培养基参照文献[22]的方法配置。
将类志贺邻单胞菌NCTC 10360野生型菌株、相关突变体及回补菌株接种于新鲜的TSB液体培养基,于37 ℃振荡培养,大肠杆菌接种于新鲜LB液体培养基,在37 ℃振荡培养,哈维氏弧菌MM32接种于新鲜的AB液体培养基,在30 ℃振荡培养。所有菌株均可在LB固体培养基培养。
1.4 相关基因敲除菌株的获取参照文献[13]的方法,利用同源重组的原理获得相关敲除菌株,本实验使用pDM4自杀载体。以类志贺邻单胞菌NCTC 10360为模板,利用相关敲除引物扩增出基因的上、下游片段。利用重叠PCR将上下游片段连接,并通过无缝克隆连至线性化载体pDM4,然后将连接产物热激转化至E. coli S17-1 λpir感受态细胞中,PCR验证得到带有符合预期连接产物的菌株。将携带重组质粒的E. coli S17-1 λpir和类志贺邻单胞菌NCTC 10360野生型菌株以3:1的比例进行接合转移,48 h后将2种菌体混合物稀释并涂布在庆大霉素、氯霉素双重抗性的LB固体培养基上。37 ℃培养箱培养至长出单菌落,挑取单菌落PCR验证正确后,得到发生同源单交换的菌株。将筛选到的单交换菌株液体培养后涂布在含有20% (W/V)蔗糖的LB固体培养基上,利用sacB基因的蔗糖致死效应筛选消除掉质粒的菌株,并通过PCR筛选出发生双交换的基因缺失突变株。
1.5 基因回补菌株的构建本实验使用pBAD33质粒进行外源回补。以类志贺邻单胞菌NCTC 10360为模板,分别扩增luxS、dosC基因片段,并连接于载体pBAD33,连接产物热激转化至E. coli TG1感受态细胞中,得到转化子。PCR验证正确后,接菌提取相应质粒,并将质粒电转化至相应突变体中。同时将空质粒电转至野生型及各突变体中,用作对照。
1.6 生物膜形成能力检测参照文献[23],采用结晶紫染色法在玻璃试管中进行生物膜形成能力的检测。将类志贺邻单胞菌NCTC 10360野生型、相关突变体及回补菌株接种至TSB液体培养基中,37 ℃过夜培养至OD600为0.9左右,然后以1:100比例转接至含有2 mL M9液体培养基的玻璃试管中。37 ℃静置培养36 h后,轻柔地除去菌液,并用37 ℃预热的去离子水洗涤试管3次。自然风干后,使用0.05%结晶紫染液染色15 min,然后用去离子水洗去未结合的多余结晶紫染液。待试管自然晾干后,使用3 mL无水乙醇溶解结合的结晶紫,并测定相应OD595值。进行3次独立重复实验。
1.7 泳动能力的测定将类志贺邻单胞菌NCTC 10360野生型、相关突变体及回补菌株接种至TSB液体培养基中,37 ℃过夜培养至OD600为0.9左右。取适量菌液,4 500 r/min离心3 min,收集菌体。用新鲜M9培养基洗菌3次后,用等量新鲜M9培养基重悬,取2.5 μL菌液垂直接种于泳动培养基中央内部。30 ℃培养箱过夜培养后,记录各菌株泳动圈大小。
1.8 生长曲线的测定将类志贺邻单胞菌NCTC 10360野生型、相关突变体及回补菌株在LB固体培养基上划线培养,接单菌落于新鲜的TSB液体培养基中,37 ℃、200 r/min培养至稳定期。再转接至新鲜TSB液体培养基中,于37 ℃、200 r/min振荡培养。每次间隔2 h,取200 μL菌液测定OD600值,并用GraphPad Prism 6处理数据得到生长曲线。
1.9 AI-2潜在受体蛋白的查找与鉴定从NCBI数据库(https://www.ncbi.nlm.nih.gov/)中下载得到类志贺邻单胞菌NCTC 10360蛋白编码序列,利用HMMER网站中hmmscan程序(https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan)对各蛋白编码序列进行结构域注释,找到了含dCache_1结构域的蛋白DosC。然后通过MEGA 7软件中的ClustalW程序将该蛋白的dCache_1结构域与已知AI-2受体PctA的dCache_1结构域进行序列比对,进一步探究二者的同源关系。
1.10 哈氏弧菌生物发光实验参考文献[11]表达纯化DosC-LBD。将构建好的含有DosC-LBD基因片段的表达载体pET-28a热激转化至E. coli BL21(DE3),同时将该表达载体电转至缺失了luxS基因的E. coli BL21(DE3)中。将所得两种菌株接种于LB液体培养基中,37 ℃培养至对数前期,然后加入0.3 mmol/L IPTG,20 ℃、150 r/min条件下诱导培养8 h。4 ℃离心收集菌体,并用PBS缓冲液重悬菌体,用超声破碎仪破碎菌体,然后用低温离心机4 ℃、8 000 r/min离心60 min后,去沉淀,留上清。使上清液在4 ℃温度条件下缓慢流过镍离子亲和树脂(Ni2+-NTA)纯化蛋白。用含300 mmol/L咪唑的PBS缓冲液洗脱得到目标蛋白后,再用Sephadex-G25葡聚糖凝胶层析将其转移至含50 mmol/L NaH2PO4 (pH 8.0),300 mmol/L NaCl和1 mmol/L二硫苏糖醇(DTT)的溶液体系中。经SDS-PAGE检测后将蛋白超滤至10 mg/mL左右,70 ℃水浴10 min使结合的配体释放到上清中。最后离心收取上清,用以检测AI-2的含量。
将哈维氏弧菌MM32接种至AB培养基中振荡过夜培养至OD600为0.8左右,然后按1:500的比例稀释至无菌AB培养基中,并将稀释好的菌液以每孔90 μL加到96孔板中。再分别取10 μL变性蛋白上清液、PBS缓冲液(阴性对照)、0.1 μmol/L DPD/AI-2溶液(阳性对照)加入至相应位置。避光,30 ℃、170 r/min振荡培养10 h,使用多功能酶标仪Victor X3检测生物发光值(每秒计数)。以变性蛋白上清液诱导的发光值与PBS缓冲液对照诱导的发光值的比值表示AI-2的相对含量。
1.11 等温滴定量热实验(ITC)诱导表达并纯化DosC的周质LBD结构域,利用重组烟草花叶病毒蛋白酶(TEV)去除其N端的His标签,得到无标签DosC-LBD。SDS-PAGE检测纯度后,将其用透析液透析,并用此透析液分别对蛋白样品以及DPD/AI-2标准品母液进行稀释。ITC实验进行前,先对样品进行脱气处理,然后分别将稀释好的1 mL蛋白质(50 μmol/L)和250 μL DPD/AI-2溶液(250 μmol/L)加入到样品池和滴定针中。设定滴定温度20 ℃,转速200 r/min,滴定次数25,滴定间隔时间300 s。进行3次独立重复实验。同时,将用相同浓度的DPD/AI-2溶液(250 μmol/L)滴定透析缓冲液,作为阴性对照。获得的实验数据使用NanoAnalyze 3.4软件进行分析和拟合。数据分析需扣除阴性对照。
1.12 DosC全长蛋白的表达纯化参考文献[24]进行膜蛋白的提取。将dosC基因克隆到pET-28a载体上,并电转入E. coli BL21(DE3)的ΔluxS突变体中表达。将该表达菌株接种于LB培养基中37 ℃培养至OD600为0.8,然后加入终浓度为0.3 mmol/L的IPTG,20 ℃、150 r/min条件下诱导培养12 h。收菌后,菌体重悬于高盐缓冲液(20 mmol/L Na3PO4,pH 7.0;2 mol/L KCl;10%甘油;5 mmol/L EDTA;5 mmol/L DTT;1 mmol/L PMSF),再通过超声破碎细胞,8 000 r/min离心60 min,取上清。将包含全长蛋白的上清用超高速低温离心机4 ℃、200 000×g离心60 min,收集沉淀并将含有膜组分的沉淀重悬于高盐缓冲液中,4 ℃旋转过夜使其充分溶解。再次使用超高速离心机4 ℃、200 000×g离心60 min,收集上清,通过Ni2+-NTA亲和层析进一步纯化。纯化的膜蛋白用透析液透析,存于–80 ℃冰箱待用。
1.13 体外蛋白酶活的测定参考文献[25]方法,采用高效液相色谱法测定DosC的酶活性。向含有50 mmol/L Tris-HCl (pH 7.5),5 mmol/L MgCl2,0或300 μmol/L DPD/AI-2的200 μL反应体系中加入70 mg DosC蛋白,并在两种反应体系中分别添加20 μmol/L c-di-GMP或50 μmol/L GTP。30 ℃反应0、60 min后,于相应时间点取100 μL等量溶液,100 ℃加热10 min,离心除去变性蛋白,上清经0.22 μm滤膜过滤。过滤后样品经高效液相色谱(Agilent 1260 infinity Ⅱ)系统注入,用98%的A溶液(150 mmol/L Na2HPO4,pH 5.2)和2%的B溶液(乙腈)在30 min内以1 mL/min的流速等温洗脱各组分,在252 nm波长下检测。以GTP、pGpG和c-di-GMP作为标准品对照。
1.14 胞内c-di-GMP的提取及含量测定参照文献[26]方法,提取野生型及各突变体菌株胞内c-di-GMP。培养细菌至对数末期,收取15 mL菌液,4 ℃、5 000×g离心20 min,弃上清。再用1.5 mL新鲜培养基重悬菌体并转移至2 mL EP管中,4 ℃、5 000×g离心20 min,弃上清。加入300 μL提取液重悬,冰浴15 min,95 ℃加热10 min,冰浴15 min。4 ℃、20 800×g离心10 min,收取上清。再向沉淀中加入200 μL提取液,重复提取2次(无需加热)。将3次提取上清液混合,4 ℃、20 800×g离心10 min,收取上清,干燥处理后保存于–80 ℃冰箱备用。含量测定采用液质联用的方法,测定前先加入200 μL高效液相色谱级水溶解样品,并经0.22 μm滤膜过滤。以c-di-GMP标准品作为对照。样品中c-di-GMP的浓度由已知浓度的c-di-GMP标准品溶液建立的标准曲线确定。
2 结果与分析 2.1 群体感应信号AI-2调控类志贺邻单胞菌的生物膜形成及泳动能力luxS是群体感应信号分子AI-2合成的关键基因,在细菌中广泛存在且高度保守[27]。为探究AI-2对类志贺邻单胞菌生物膜形成水平和泳动能力的影响,我们构建了luxS基因缺失的突变体菌株ΔluxS (vector)以及回补菌株ΔluxS (luxS),并对WT (vector)、ΔluxS (vector)及ΔluxS (luxS)菌株进行了生物膜形成水平和泳动能力的检测。发现与野生型相比,ΔluxS (vector)菌株的生物膜形成水平及泳动能力均有极显著的下降(P < 0.001),ΔluxS (luxS)菌株基本恢复至野生型水平(图 1A–B)。为分析生物膜形成及泳动能力差异是否是由于野生株与突变菌株生长状态的不同引起,我们测定了各菌株的生长曲线,发现3种菌株生长曲线基本一致(图 1C),说明生物膜及泳动表型的差异并不是由于菌株生长状态的不同引起。此结果表明,群体感应信号分子AI-2正调控类志贺邻单胞菌的生物膜形成水平及泳动能力。
![]() |
图 1 群体感应信号AI-2调控类志贺邻单胞菌NCTC 10360的生物膜形成及泳动能力 Figure 1 Quorum-sensing signal AI-2 regulates biofilm formation and swimming ability of Plesiomonas shigelloides NCTC 10360. A: crystal violet quantification of biofilm formation by the wild-type (WT) Plesiomonas shigelloides NCTC 10360 (vector), ΔluxS (vector) and ΔluxS (luxS) strains. B: quantification of swimming ability by Plesiomonas shigelloides NCTC 10360 WT (vector), ΔluxS (vector) and ΔluxS (luxS) strains. The measured data were the diffusion diameters of each strain. C: growth curves of Plesiomonas shigelloides NCTC 10360 WT (vector), ΔluxS (vector) and ΔluxS (luxS) strains. Data are mean s.e.m. of three independent experiments. P values were calculated by two-tailed unpaired Student's t-test. P < 0.05 was considered to indicate a statistically significant difference. ***: P < 0.001. |
2.2 DosC是类志贺邻单胞菌NCTC 10360中AI-2的受体
为探究AI-2调控类志贺邻单胞菌生物膜形成水平与泳动能力的具体机制,我们对类志贺邻单胞菌NCTC 10360中的AI-2受体进行了挖掘。通过对类志贺邻单胞菌NCTC 10360蛋白编码序列注释发现,该菌中并不存在AI-2的经典受体LuxP/LsrB,但存在一个含dCache_1结构域的c-di-GMP代谢酶DosC,通过序列比对发现该蛋白的dCache_1结构域与铜绿假单胞菌中已知AI-2受体PctA的dCache_1结构域同源性较高,两者同源性为42.4%。DosC是类志贺邻单胞菌NCTC 10360中一个含有多结构域的跨膜蛋白,其在周质空间具有一dCACHE家族的配体结合结构域(LBD) dCache_1,在胞内还有两个与c-di-GMP代谢相关的GGDEF与EAL结构域(图 2A)。序列比对还发现PctA的dCache_1结构域中结合AI-2的5个关键位点[11],在DosC的dCache_1结构域中均保守存在(图 2B),故推测DosC的配体结合结构域(DosC-LBD) dCache_1能与AI-2结合。
![]() |
图 2 DosC-LBD是类志贺邻单胞菌NCTC 10360中AI-2的受体 Figure 2 DosC is the chemoreceptor of AI-2 in Plesiomonas shigelloides NCTC 10360. A: schematic view of secondary protein structure of DosC. B: analysis of conserved sites of dCache_1 domains in DosC and PctA. Multiple alignment analysis of dCache_1 domains in DosC and PctA was performed with ClustalW embedded in MEGA 7. Blue arrows denote the five highly conserved positions corresponding to R174, W176, Y192, D194, and D223 of DosC. C: DosC-LBD is capable of retaining AI-2. Proteins were expressed in a BL21 or BL21/luxS– E. coli strain. Light production by the AI-2 reporter Vibrio harveyi strain MM32 lacking luxN and luxS was measured following the addition of a buffer control or ligands released from the purified proteins upon denaturing by heating. 100 nmol/L DPD/AI-2 standard solution was used as a positive control. AI-2 activity was reported as fold induction of bioluminescence over background obtained in the buffer control alone. D: the binding affinity between AI-2 and DosC-LBD was evaluated using ITC analysis. Data are mean±s.e.m. of three independent experiments. The error bars represent the standard deviations of three independent experiments. P values were calculated by two-tailed unpaired Student's t-test. P < 0.05 was considered to indicate a statistically significant difference. **: P < 0.01. |
为检测DosC-LBD与AI-2的结合能力,进行了哈维氏弧菌生物发光实验及等温滴定量热实验(ITC)。哈维氏弧菌生物发光实验显示,从能够产生AI-2的大肠杆菌菌株中纯化出的DosC-LBD经热变性处理后释放的配体可以诱导哈维氏弧菌MM32菌株发光,其水平与100 nmol/L DPD/AI-2标准品诱导的发光水平相当;而同时从luxS基因缺失不能产生AI-2的大肠杆菌菌株中纯化出的DosC-LBD无法释放出可诱导哈维氏弧菌MM32菌株发光的配体(图 2C)。ITC实验进一步验证了AI-2与DosC-LBD的结合亲和性,其Kd值为2.83±0.17 μmol/L。综合以上结果,充分说明DosC是类志贺邻单胞菌NCTC 10360中的一个AI-2受体蛋白,其与AI-2具有较高的亲和作用力。
2.3 DosC响应AI-2促进c-di-GMP的降解DosC蛋白除了上游结合AI-2的dCache_1结构域,下游还具有与c-di-GMP代谢相关的GGDEF和EAL结构域[28]。为探究AI-2的结合对DosC的活性的影响,我们纯化了DosC全长跨膜蛋白,在添加或不添加AI-2情况下进行了c-di-GMP体外合成与水解实验,并通过高效液相色谱检测反应产物。结果显示,DosC能将c-di-GMP水解为pGpG,且AI-2可增强其磷酸二酯酶活性(图 3A),而在添加或不添加AI-2情况下该蛋白均无双鸟苷酸环化酶活性(图 3B)。以上结果说明,DosC具有磷酸二酯酶活性,且AI-2通过与DosC结合增强了其磷酸二酯酶活性,促进了c-di-GMP降解。
![]() |
图 3 DosC响应AI-2促进c-di-GMP的降解 Figure 3 AI-2 enhances the PDE activity of DosC and promotes the degradation of intracellular c-di-GMP. A: membrane fractions containing DosC were incubated with c-di-GMP in the presence or absence of DPD/AI-2 at 30 ℃ for 0 and 60 min and the product was analyzed by HPLC. B: membrane fractions containing DosC were incubated with GTP in the presence or absence of DPD/AI-2 at 30 ℃ for 0 and 60 min and the product was analyzed by HPLC. |
2.4 DosC通过调控胞内c-di-GMP水平影响类志贺邻单胞菌的生物膜形成及泳动能力
为探究DosC响应AI-2酶活性变化对类志贺邻单胞菌胞内c-di-GMP水平及相关表型的影响,我们利用液质联用的方法测定了类志贺邻单胞菌野生型、ΔluxS、ΔdosC菌株的胞内c-di-GMP含量,发现与野生型相比,ΔluxS和ΔdosC菌株的胞内c-di-GMP水平均有显著提高(图 4A)。同时,对WT (vector)、ΔdosC (vector)及ΔdosC (dosC)菌株进行了生物膜形成水平和泳动能力的检测,发现与野生型相比,ΔdosC (vector)菌株的生物膜形成水平及泳动能力均有显著下降,而ΔdosC (dosC)菌株恢复至野生型水平(图 4B–C)。生长曲线的测定显示,生物膜形成及泳动能力差异并不是由于菌株生长状态的不同引起(图 4D)。为进一步证明类志贺邻单胞菌的胞内c-di-GMP含量对生物膜形成的影响,我们在类志贺邻单胞菌野生型菌株内表达了一个已知的鼠伤寒沙门氏菌的c-di-GMP合成酶AdrA (STM0385)[29],通过生物膜表型实验发现表达有AdrA的菌株生物膜形成量低于类志贺邻单胞菌野生型菌株(图 4E)。以上结果说明,DosC通过影响胞内c-di-GMP水平调控类志贺邻单胞菌的生物膜形成及泳动能力。
![]() |
图 4 DosC通过调控胞内c-di-GMP水平影响类志贺邻单胞菌NCTC 10360的生物膜形成及泳动能力 Figure 4 DosC affects the biofilm formation and swimming ability of Plesiomonas shigelloides NCTC 10360 by regulating the level of intracellular c-di-GMP. A: quantification of intracellular c-di-GMP levels of Plesiomonas shigelloides NCTC 10360, ΔluxS and ΔdosC strains by LC-MS/MS. B: crystal violet quantification of biofilm formation by Plesiomonas shigelloides NCTC 10360 WT (vector), ΔdosC (vector) and ΔdosC (dosC) strains. C: quantification of swimming ability by Plesiomonas shigelloides NCTC 10360 WT (vector), ΔdosC (vector) and ΔdosC (dosC) strains. The measured data were the diffusion diameters of each strain. D: growth curves of Plesiomonas shigelloides NCTC 10360 WT (vector), ΔdosC (vector) and ΔdosC (dosC) strains. E: crystal violet quantification of biofilm formation by Plesiomonas shigelloides NCTC 10360 WT (vector) and WT (pBAD33-STM0385) strains. Data are mean±s.e.m. of three independent experiments. P values were calculated by two-tailed unpaired Student's t-test. P < 0.05 was considered to indicate a statistically significant difference. *: P < 0.05, **: P < 0.01, ***: P < 0.001. |
3 讨论与结论
AI-2作为目前唯一一种广泛存在于革兰氏阳性细菌与革兰氏阴性细菌中的群体感应信号分子,在细菌种内、种间交流过程中发挥着重要作用,甚至被称为“细菌的世界语”。LuxS/AI-2系统在大肠杆菌(E. coli)、鼠伤寒沙门氏菌(S. typhimurium)、哈维氏弧菌(V. harveyi)、霍乱弧菌(V. cholerae)、枯草芽孢杆菌(B. subtilis)等多种细菌中已有详尽报道[6]。然而,许多细菌对AI-2的感受和响应机制仍不明确,这主要是因为关于其受体的信息还相对缺乏[30–31]。本研究通过序列比对及体外结合实验发现了类志贺邻单胞菌中一个具有dCache_1结构域的AI-2新受体DosC,其胞内功能域含有与c-di-GMP代谢相关的GGDEF与EAL结构域。通过胞内c-di-GMP定量、体外酶活实验及相关表型实验发现,AI-2可增强该受体EAL结构域的磷酸二酯酶活性,促进体内c-di-GMP的降解,进而调控细菌的生物膜形成及泳动能力。
c-di-GMP作为细菌内普遍存在的第二信使分子,介导多种信号转导通路,广泛参与调控细菌生物膜的形成、运动性、毒力、细胞周期循环和细胞的分化等重要生理生化途径,在细菌响应外界环境刺激方面起着重要作用[32–33]。细菌内往往存在多个c-di-GMP代谢途径,会对信号刺激产生不同的响应,构成一个复杂的调控网络,以对局部和整体的c-di-GMP水平及细菌的多种生命活动进行调控,从而使细菌适应环境的变化[34–35],例如类志贺邻单胞菌NCTC 10360基因组编码12个具GGDEF结构域的蛋白,8个具EAL结构域的蛋白以及6个含GGDEF/EAL双结构域的蛋白(图 5)。除DosC外,类志贺邻单胞菌其他c-di-GMP代谢酶的功能及调节机制仍有待阐明。
![]() |
图 5 类志贺邻单胞菌NCTC 10360中DGCs和PDEs的结构域 Figure 5 Domain organization of the DGCs and PDEs present in Plesiomonas shigelloides NCTC 10360. GGDEF is the synthesis domain of c-di-GMP and exerts diguanylate cyclase (DGC) activity. EAL and HD-GYP are c-di-GMP hydrolytic domains and exert phosphodiesterase (PDE) activity. Domains identified in yellow and blue are associated to signalling systems and works as a signal sensor domain. |
多数情况下,细菌胞内c-di-GMP含量的升高会促进细菌与生物或非生物组织接触表面的黏附,进而促进生物膜的形成,抑制鞭毛介导的运动[18, 36]。本研究中发现,在类志贺邻单胞菌中,细胞内高浓度的c-di-GMP生物膜的形成量下降。此种现象已在Xylella fastidiosa、Burkholderia cenocepacia等少数细菌中有所报道[25, 37–38]。c-di-GMP水平的动态变化是由不同的信号识别和接受结构域完成的,这些结构域整合了不同的环境线索,用于环境适应性调控。c-di-GMP可与多种效应因子作用,发挥其不同的调节作用。同时c-di-GMP分子的结构灵活性增加了多重相互作用的可能性[39]。因此不同的表型调控可能是某些细菌适应环境变化的机制,其具体的分子机理还有待进一步研究探讨。
类志贺邻单胞菌作为一种水生环境中常见的致病菌,可对人类健康构成严重威胁,并会对经济活动,尤其是对养殖业的生产带来极大的风险[40–41]。对类志贺邻单胞菌LuxS/AI-2群体感应系统介导的c-di-GMP信号通路及其调控机制的研究将为相关药物的筛选、设计和优化奠定基础,可以为该菌引起的感染性疾病的防治提供新的策略。
[1] | Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Molecular Cell, 2005, 18(5): 507-518. DOI:10.1016/j.molcel.2005.04.020 |
[2] | Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nature Reviews Microbiology, 2016, 14(9): 576-588. DOI:10.1038/nrmicro.2016.89 |
[3] | Xiong Q, Liu D, Zhang HH, Dong XY, Zhang GS, Liu YP, Zhang RF. Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility. Applied Microbiology and Biotechnology, 2020, 104(16): 7177-7185. DOI:10.1007/s00253-020-10713-w |
[4] | Li H, Li X, Song C, Zhang Y, Wang Z, Liu Z, Wei H, Yu J. Autoinducer-2 facilitates Pseudomonas aeruginosa PAO1 pathogenicity in vitro and in vivo. Frontiers in Microbiology, 2017, 8: 1944. DOI:10.3389/fmicb.2017.01944 |
[5] | Li HD, Li XY, Wang ZL, Fu YK, Ai Q, Dong Y, Yu JL. Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner. BMC Microbiology, 2015, 15: 192. DOI:10.1186/s12866-015-0529-y |
[6] | Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews, 2013, 37(2): 156-181. DOI:10.1111/j.1574-6976.2012.00345.x |
[7] | Xavier KB, Bassler BL. Interference with AI-2-mediated bacterial cell-cell communication. Nature, 2005, 437(7059): 750-753. DOI:10.1038/nature03960 |
[8] | Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002, 415(6871): 545-549. DOI:10.1038/415545a |
[9] | Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell, 2004, 15(5): 677-687. DOI:10.1016/j.molcel.2004.07.020 |
[10] | Kavanaugh JS, Gakhar L, Horswill AR. structure of LsrB from Yersinia pestis complexed with autoinducer-2. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 2011, 67(Pt 12): 1501-1505. |
[11] | Zhang L, Li S, Liu X, Wang Z, Jiang M, Wang R, Xie L, Liu Q, Xie X, Shang D, Li M, Wei Z, Wang Y, Fan C, Luo ZQ, Shen X. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nature Communications, 2020, 11: 5371. DOI:10.1038/s41467-020-19243-5 |
[12] | Ozdemir O, Sari SN, Terzioglu S, Zenciroglu A. Plesiomonas shigelloides sepsis and meningoencephalitis in a surviving neonate. Journal of Microbiology, Immunology and Infection, 2010, 43(4): 344-346. DOI:10.1016/S1684-1182(10)60053-9 |
[13] | Xi DY, Jing FY, Liu Q, Cao BY. Plesiomonas shigelloides sipD mutant, generated by an efficient gene transfer system, is less invasive. Journal of Microbiological Methods, 2019, 159: 75-80. DOI:10.1016/j.mimet.2019.02.017 |
[14] | Samrot AV, Mohamed AA, Faradjeva E, Jie L, Sze CH, Arif A, Sean TC, Michael EN, Mun CY, Qi NX, Mok PL, Kumar SS. Mechanisms and impact of biofilms and targeting of biofilms using bioactive compounds-a review. Medicina: Kaunas, Lithuania, 2021, 57(8): 839. |
[15] | Thi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, 2020, 21(22): 8671. DOI:10.3390/ijms21228671 |
[16] | Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology: Reading, England, 2005, 151(Pt 5): 1325-1340. |
[17] | Dasgupta N, Ramphal R. Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. Journal of Bacteriology, 2001, 183(22): 6636-6644. DOI:10.1128/JB.183.22.6636-6644.2001 |
[18] | Baraquet C, Murakami K, Parsek MR, Harwood CS. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Research, 2012, 40(15): 7207-7218. DOI:10.1093/nar/gks384 |
[19] | Römling U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cellular and Molecular Life Sciences: CMLS, 2005, 62(11): 1234-1246. DOI:10.1007/s00018-005-4557-x |
[20] | Römling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system. Molecular Microbiology, 2005, 57(3): 629-639. DOI:10.1111/j.1365-2958.2005.04697.x |
[21] | Pereira CS, McAuley JR, Taga ME, Xavier KB, Miller ST. Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria. Molecular Microbiology, 2008, 70(5): 1223-1235. DOI:10.1111/j.1365-2958.2008.06477.x |
[22] | Bassler BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 1993, 9(4): 773-786. DOI:10.1111/j.1365-2958.1993.tb01737.x |
[23] | Ficarra FA, Grandellis C, Galván EM, Ielpi L, Feil R, Lunn JE, Gottig N, Ottado J. Xanthomonas citri ssp. citri requires the outer membrane porin OprB for maximal virulence and biofilm formation. Molecular Plant Pathology, 2017, 18(5): 720-733. DOI:10.1111/mpp.12433 |
[24] | Le Moual H, Quang T, Koshland DE Jr. Conformational changes in the cytoplasmic domain of the Escherichia coli aspartate receptor upon adaptive methylation. Biochemistry, 1998, 37(42): 14852-14859. DOI:10.1021/bi980343y |
[25] | Deng YY, Schmid N, Wang C, Wang JH, Pessi G, Wu DH, Lee J, Aguilar C, Ahrens CH, Chang CQ, Song HW, Eberl L, Zhang LH. Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15479-15484. DOI:10.1073/pnas.1205037109 |
[26] | Bähre H, Kaever V. Identification and quantification of cyclic di-guanosine monophosphate and its linear metabolites by reversed-phase LC-MS/MS. Methods in Molecular Biology: Clifton, N J, 2017, 1657: 45-58. |
[27] | Garner AL, Park J, Zakhari JS, Lowery CA, Struss AK, Sawada D, Kaufmann GF, Janda KD. A multivalent probe for AI-2 quorum-sensing receptors. Journal of the American Chemical Society, 2011, 133(40): 15934-15937. DOI:10.1021/ja207556d |
[28] | Valentini M, Filloux A. Multiple roles of c-di-GMP signaling in bacterial pathogenesis. Annual Review of Microbiology, 2019, 73: 387-406. DOI:10.1146/annurev-micro-020518-115555 |
[29] | Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Barthel M, Peters V, Hardt WD, Römling U. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLoS One, 2011, 6(12): e28351. DOI:10.1371/journal.pone.0028351 |
[30] | Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680): 313-320. DOI:10.1038/nature24624 |
[31] | Whiteley M, Diggle S, Greenberg E. Corrigendum: progress in and promise of bacterial quorum sensing research. Nature, 2018, 555: 126. |
[32] | Wang RJ, Wang FB, He R, Zhang RJ, Yuan JH. The second messenger c-di-GMP adjusts motility and promotes surface aggregation of bacteria. Biophysical Journal, 2018, 115(11): 2242-2249. DOI:10.1016/j.bpj.2018.10.020 |
[33] | Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Molecular Aspects of Medicine, 2021, 81: 101001. DOI:10.1016/j.mam.2021.101001 |
[34] | Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM, Herbst S, Kaever V, Hengge R. More than enzymes that make or break cyclic di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli. mBio, 2017, 8(5): e01639-e01617. |
[35] | Hengge R. Linking bacterial growth, survival, and multicellularity-small signaling molecules as triggers and drivers. Current Opinion in Microbiology, 2020, 55: 57-66. DOI:10.1016/j.mib.2020.02.007 |
[36] | Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Molecular Microbiology, 2010, 75(4): 827-842. DOI:10.1111/j.1365-2958.2009.06991.x |
[37] | Castiblanco LF, Sundin GW. New insights on molecular regulation of biofilm formation in plant-associated bacteria. Journal of Integrative Plant Biology, 2016, 58(4): 362-372. DOI:10.1111/jipb.12428 |
[38] | De Souza AA, Ionescu M, Baccari C, Da Silva AM, Lindow SE. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling. Applied and Environmental Microbiology, 2013, 79(11): 3444-3454. DOI:10.1128/AEM.03834-12 |
[39] | Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environmental Microbiology, 2021, 23(9): 5433-5462. DOI:10.1111/1462-2920.15664 |
[40] | Maciejewska A, Bednarczyk B, Lugowski C, Lukasiewicz J. Structural studies of the lipopolysaccharide isolated from Plesiomonas shigelloides O22: H3 (CNCTC 90/89). International Journal of Molecular Sciences, 2020, 21(18): 6788. DOI:10.3390/ijms21186788 |
[41] | De Jesús Cortés-Sánchez A, Espinosa-Chaurand LD, Díaz-Ramirez M, Torres-Ochoa E. Plesiomonas: a review on food safety, fish-borne diseases, and tilapia. The Scientific World Journal, 2021, 2021: 3119958. |