微生物学报  2022, Vol. 62 Issue (8): 3092-3108   DOI: 10.13343/j.cnki.wsxb.20210747.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210747
中国科学院微生物研究所,中国微生物学会

文章信息

何斐, 田孝威, 雷雨俊, 邵永春, 毛洁, 卢谢敏, 王莹, 段园鹏, 刘富强. 2022
HE Fei, TYAN Shiawwei, LEI Yujun, SHAO Yongchun, MAO Jie, LU Xiemin, WANG Ying, DUAN Yuanpeng, LIU Fuqiang.
连作花魔芋软腐病株与健株根域丛枝菌根真菌群落多样性
Diversity of arbuscular mycorrhizal fungi in the root zone of Amorphophallus konjac with and without soft rot under continuous cropping
微生物学报, 62(8): 3092-3108
Acta Microbiologica Sinica, 62(8): 3092-3108

文章历史

收稿日期:2021-12-05
修回日期:2022-02-20
网络出版日期:2022-04-08
连作花魔芋软腐病株与健株根域丛枝菌根真菌群落多样性
何斐1 , 田孝威2 , 雷雨俊1 , 邵永春1 , 毛洁1 , 卢谢敏1 , 王莹1 , 段园鹏1 , 刘富强1     
1. 安康学院现代农业与生物科技学院, 陕西 安康 725000;
2. 嘉南药理大学生物科技系, 中国台湾 台南 71710
摘要[目的] 解析不同连作年限花魔芋软腐病株、健株根域的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性。[方法] 使用AMF 18S SSU rRNA基因特异引物AMV4.5NF/AMDGR对正茬及连作2年和3年的软腐病株、健株魔芋根系和根际土壤DNA扩增建库,通过高通量测序和生物信息学分析探究魔芋软腐病与其根域AMF群落多样性的关系。[结果] 魔芋根系具有明显的AMF菌丝、泡囊和丛枝等结构。在相同连作年限条件下,健株根系AMF总侵染率、侵染强度和孢子密度均显著高于病株(P < 0.05);在不同连作年限条件下,病株根系AMF总侵染率和侵染强度随连作年限延长而降低。从所有样品中共鉴定到9属53种AMF,其中有49个已知种和4个新种。球囊霉属(Glomus)和类球囊霉属(Claroideoglomus)是AMF群落的优势属,其AMF种分别占总AMF种数的41.5%和26.4%;丰度最高的Paraglomus sp. VTX00308是所有样品的共有种。连作、软腐病及二者的交互作用显著影响根系AMF群落的Shannon指数和Simpson指数及根际土壤AMF的Chao1指数(P < 0.05)。通过丰度差异分析发现6个在连作软腐病发生后丰度差异显著的AMF种(P < 0.05);NMDS分析表明,不同连作年限的魔芋软腐病株与健株之间的根域AMF菌种组成、相对丰度和群落结构存在差异。相关性分析表明,软腐病发病率和病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系AMF的Chao1和Simpson指数以及AMF总侵染率、侵染强度和孢子密度极显著负相关(P < 0.01)。[结论] 比对健株,连作魔芋软腐病株根际土壤AMF孢子密度以及根系AMF侵染率、种数和多样性均降低,其群落结构显著改变。
关键词魔芋    软腐病    连作    丛枝菌根真菌    群落结构    
Diversity of arbuscular mycorrhizal fungi in the root zone of Amorphophallus konjac with and without soft rot under continuous cropping
HE Fei1 , TYAN Shiawwei2 , LEI Yujun1 , SHAO Yongchun1 , MAO Jie1 , LU Xiemin1 , WANG Ying1 , DUAN Yuanpeng1 , LIU Fuqiang1     
1. School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, Shaanxi, China;
2. Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan 71710, Taiwan, China
Abstract: [Objective] To explore the diversity of arbuscular mycorrhizal fungi (AMF) in root zone of Amorphophallus konjac with and without soft rot under different durations of continuous cropping. [Methods] A specific primer pair (AMV4.5NF/AMDGR) targeting the 18S small subunit rRNA gene of AMF was used for PCR amplification of the DNA from the root and rhizosphere soil samples of diseased and healthy A. konjac plants under non-continuous cropping and 2 and 3 years of continuous cropping, respectively, and the DNA library was constructed. Based on high-throughput sequencing and bioinformatics analysis, the relationship between soft rot and AMF diversity in the root zone of A. konjac was investigated. [Results] AMF infection occurred in the roots of A. konjac with specific structures such as hyphae, vesicles, and arbuscules. The total infection rate, infection intensity, and spore density of AMF in healthy plants were significantly higher than those in diseased plants under the same continuous cropping duration (P < 0.05). Both the total infection rate and infection intensity of AMF in diseased plants decreased remarkably with the prolongation of continuous cropping. A total of 53 species in 9 genera of AMF (49 known species and 4 novel species) were identified from all samples. Glomus and Paraglomus were the dominant genera of AMF, accounting for 41.5% and 26.4% of the total AMF community, respectively. Among the species identified, Paraglomus sp. VTX00308 showed the highest relative abundance (12.3%) and was shared by all samples. Continuous cropping duration, soft rot, and their interaction significantly affected the Shannon and Simpson indices of AMF in the roots and the Chao1 of AMF in the rhizosphere soil (P < 0.05). Six AMF species considerably varied in relative abundance after soft rot occurred under continuous cropping (P < 0.05). Difference in AMF species composition, relative abundance, and community structure was revealed between diseased and healthy plants under different continuous cropping durations by non-metric multidimensional scaling. Correlation analysis indicated that the incidence and severity index of soft rot were negatively correlated with the Shannon index (root and rhizosphere soil), Chao1 (root), Simpson index (root), total infection rate, infection intensity, and spore density of AMF in the root zone of A. konjac (P < 0.01). [Conclusion] AMF spore density in the rhizosphere soil and AMF infection rate, species number, and community diversity in the roots of A. konjac plants with soft rot all decreased compared with those of the healthy plants, leading to remarkable shifts in the root-zone AMF community structure under continuous cropping. Our results suggest that soft rot occurrence during continuous cropping may reshape the AMF community in the root zone of A. konjac through altering the species composition, relative abundance, and diversity of AMF in both the roots and rhizosphere soil.
Keywords: Amorphophallus konjac    soft rot    continuous cropping    arbuscular mycorrhizal fungi    community structure    

丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是土壤中十分重要的一大类微生物,能与80%以上陆生维管植物形成互惠共生体。借助庞大的菌丝网络,AMF帮助宿主植物吸收营养物质,并提高宿主对生物和非生物胁迫的抗性[12]。AMF在拮抗土传病原物、提高植物抗病性方面有显著的作用效果。Spagnoletti等研究表明,接种AMF根内根生囊霉(Rhizophagus intraradices)可降低大豆炭疽病的发病率[3]。Liu等研究发现,施用AMF生物肥显著降低西洋参土传病原菌尖孢镰刀菌(Fusarium oxysporum)和茄病镰刀菌(F. solani)的丰度[4]。鉴于AMF发挥的重要作用,前人围绕AMF,尤其是与作物根部病害密切相关的AMF群落,开展了深入细致的研究。目前已有关于小葵子(Guizotia abyssinica)[5]和荩草(Arthraxon hispidus)[6]等多种草本植物根际AMF多样性的研究报道,然而对天南星科草本植物根际AMF多样性的研究较少,而在魔芋属花魔芋(Amorphophallus konjac)物种方面尚属空白。

花魔芋系天南星科魔芋属多年生草本植物,其地下块茎富含葡甘聚糖、生物碱、果胶及多种微量元素,是自然界唯一能大量提供葡甘聚糖的重要经济作物。魔芋葡甘聚糖可广泛应用于食品、环保、化工、医药、造纸、石油等行业,具有极高的商业价值[7]。作为重要的经济作物,魔芋已成为云南、贵州、四川、陕南等贫困山区的支柱产业,也是近年来乡村振兴重点推广种植的作物。然而魔芋适生区土地面积有限,轮作难以实施,长期连作导致发生日趋严重的魔芋土传病害,尤其是胡萝卜软腐果胶杆菌胡萝卜亚种(Pectobacterium carotovora subsp. carotovora)和菊果胶杆菌(P. chrysanthemi)引起的细菌性软腐病。软腐病是对魔芋产业威胁最大的毁灭性病害,由于缺乏持续有效的预防和控制措施,目前软腐病在魔芋产区广泛传播,对我国魔芋生产造成严重威胁[8]。前人研究表明,软腐病菌侵染显著改变魔芋根系内生和根际土壤细菌群落结构,同时降低细菌群落丰度和多样性[910]。然而作为魔芋重要的共生伙伴,根域AMF群落是否受到连作和软腐病的影响尚未见报道。

本研究利用高通量测序技术分析不同连作年限魔芋软腐病株、健株根系和根际土壤AMF群落结构和多样性。研究结果将有助于进一步明确连作、软腐病与魔芋根域(包括根系和根际土壤)AMF群落的关系,为下一步开发利用魔芋根域AMF进行生物防治奠定基础。

1 材料与方法 1.1 试验地概况

试验在陕西省汉中市南郑区三花石魔芋连作定点微区试验田(32°59′N,106°94′E)进行。试验地海拔650 m,年日照约220 d,年均气温14.6 ℃,≥20 ℃年活动积温2 426–2 907 ℃,年均降水量970.4 mm。属于北亚热带湿润气候区,土壤类型为黄棕壤。

1.2 试验设计

2018年3月在南郑区三花石魔芋试验基地选取2 a休耕地,长38.5 m,宽21.8 m,总面积839.3 m2。将该空地均等划分为3个区域做3次重复,每个区域均等划分成3个小区,每小区面积均为93 m2。选择(80±5) g顶芽健康露白的汉中当地花魔芋作种芋,播种前进行乙铝乙酸铜喷雾消毒和晾晒。播种时以3 200 kg/hm2有机肥作为底肥一次性施入,后期追施钾肥400 kg/hm2,其他管理同常规大田生产。采用1行玉米(株行距45 cm×80 cm)和1行魔芋(株行距35 cm×80 cm)套种遮光种植,魔芋垄作栽培。在小区内,自2018年3月至2020年10月魔芋收获,分别连续形成了种植1 a正茬魔芋(玉米—玉米—魔芋)、魔芋2 a连作(玉米—魔芋—魔芋)和魔芋3 a连作(魔芋—魔芋—魔芋)的3种处理。

1.3 供试样品采集及预处理

于2020年8月12日魔芋软腐病发病高峰期,调查统计魔芋软腐病发病株数和病害严重程度。病害严重程度分4个等级:0级,无发病症状;1级,< 25%植株出现软腐症状;2级,25%–75%植株出现软腐症状;3级,> 75%植株出现软腐症状[8, 11]。按照以下公式分别计算软腐病发病率和病情指数。

在各小区按照五点法分别选取长势均匀的健康魔芋、长势均匀且病害严重程度为2级的软腐病株各5株,小心挖出魔芋根系,采用抖根法[12]收集紧贴在魔芋根系表面不易脱落的土壤(即根际土)装于无菌自封袋中。每小区采集的5个根际土壤样品、5个根系样品分别混合均匀作为1个重复,每处理土壤和根系样品各3个重复。采集的样品迅速放入冰盒保存,及时运回实验室进行样品处理和检测。

将采集的魔芋根系和根际土壤样品分别分成2份,其中一份置于–80 ℃超低温冰箱保存,用于高通量测序;另一份根系置于FAA固定液中用于菌根形态观察和AMF侵染率检测,根际土壤自然风干用于孢子密度测定。

1.4 AMF侵染特征 1.4.1 AMF侵染率测定

将FAA固定的魔芋根系用自来水冲洗干净,经过10% KOH软化、1% HCl酸化后,加0.05%曲利苯蓝染色液浸没根系,90 ℃水浴加热染色1 min。染色结束后倒出染色剂,用自来水清洗数次,加适量乳酸甘油脱色处理24 h,置于光学显微镜下观测AMF侵染情况[13]。采用十字交叉法,参考Yang等的方法,按照菌根侵染和丛枝丰度分级标准,计算AMF侵染率和侵染强度[14]

式中,n5n4n3n2n1分别表示5、4、3、2、1级侵染的根段数。

1.4.2 孢子密度测定

从每份样品中取100 g风干土壤,采用湿筛倾析法[13]筛取AMF孢子,体视显微镜下分格统计孢子数量,以每100 g干土中的孢子数量计为孢子密度。

1.5 AMF的高通量测序与分析 1.5.1 DNA提取和PCR扩增

称取0.5 g冷冻干燥的样品,根据FastDNA® Spin Kit for Soil试剂盒说明书分别进行根系和土壤样品总DNA提取。得到的总DNA经过1%琼脂糖凝胶电泳和微量分光光度计(NanoDrop 2000,Thermo Fisher)检测浓度和纯度合格后用于PCR检测及建库测序。

选用AMF 18S SSU rRNA特异引物AMV4.5 NF (5'-AAGCTCGTAGTTGAATTTCG-3')和AMDGR(5'-CCCAACTATCCCTATTAATCAT-3')对样本进行PCR扩增[15]。扩增产物用1%琼脂糖凝胶电泳检测,使用AxyPrepDNA凝胶回收试剂盒(Axygen公司)切胶回收PCR产物,Tris-HCl洗脱回收目标DNA片段,纯化合格的PCR产物寄送上海派森诺生物科技股份有限公司,利用Illumina NovaSeq 6000 PE250平台进行测序。

1.5.2 测序数据处理

使用MOTHUR软件(v1.31.2;http://www. mothur.org/)对测序获得的原始数据进行质控及筛选,符合以下条件的序列可以作为有效序列用于后续分析:(1) 序列带有完整准确的Barcode;(2) 序列长度 > 200 bp。利用PyroNoise对序列进行降噪,使用UCHIME软件去除嵌合体[16]。剩余序列使用MOTHOR软件去除接头、Barcode及引物序列即为有效序列。使用QIIME软件(v1.50;http://qiime.sourceforge.net/),按照97%相似度对有效序列进行操作分类单元(operational taxonomic units,OTU)聚类,每个OTU中丰度最高的序列作为该OTU的代表序列[17]。将OTU代表序列与MaarjAM数据库(http://maarjam.botany.ut.ee/)中的虚拟种(virtual taxa,VT)序列进行BLAST比对[18]和注释。BLAST比对结果中,相似度97%以上的定义为比对到该虚拟种,相似度为90%–97%定义为新的AMF分子种[19]。使用MAFFT软件[20]对所有代表序列进行比对后,用MEGA软件(v5.0)进行neighbor-joining法构建进化树[21]

1.6 数据分析

使用QIIME软件,以OTU为依据计算每个样品的α多样性指数,即Chao1、Shannon和Simpson指数[22]。以observed species参数为依据,使用R软件(v2.15.3)制作稀疏曲线图。采用非度量多维尺度分析(non-metric multidimensional scaling analysis,NMDS)检验AMF群落间的差异[23]

计量资料用“平均值±标准偏差”表示。采用SPSS 22.0统计软件对数据进行双因素方差分析(two-way ANOVA),并用Duncan检验法进行多重比较。以双尾显著性检验进行变量间的皮尔逊(Pearson)相关性分析。以P < 0.05表示显著,P < 0.01表示极显著。使用Excel 2010软件绘图。

2 结果与分析 2.1 连作对魔芋软腐病发病率和病情指数的影响

随着连作年限的延长,魔芋软腐病的发病率明显上升(图 1)。正茬魔芋软腐病发病率和病情指数分别为7.0%和3.4%,连作2年时分别上升为28.7%和16.0%,较正茬极显著增加310.0%和370.6% (P < 0.01)。魔芋连作3年时发病率和病情指数分别高达68.3%和55.1%,是正茬魔芋软腐病发病率和病情指数的9.8倍和16.2倍。

图 1 不同连作年限魔芋软腐病发病率和病情指数 Figure 1 The incidence and severity index of soft rot disease in Amorphallus konjac plants under different continuous cropping durations. Error bars indicate the standard deviation of the means (n=3). Different upper- and lowercase letters for a given variable indicate significant difference among the treatments (P < 0.01).

2.2 魔芋植株的AMF侵染特征

不同连作年限的魔芋病株、健株均能被AMF侵染定殖,根内可看到清晰的丛枝、泡囊、根内菌丝和根外菌丝结构(图 2),但不同处理间存在显著差异。连作2年魔芋健株的AMF侵染率最高,达79.20%,侵染强度17.50%,孢子密度达到最大(101.33个/100 g干土;表 1)。连作3年魔芋病株的AMF总侵染率最低,为12.46%,侵染强度2.95%,孢子密度也显著低于其他处理(P < 0.05)。双因素方差分析(表 1)表明,连作年限、植株健康状况及二者的交互作用极显著影响AMF总侵染率、侵染强度和孢子密度(P < 0.01)。

图 2 魔芋根系中丛枝菌根真菌(AMF)的菌丝结构 Figure 2 Mycelial structures of arbuscular mycorrhizal fungi (AMF) colonizing roots of A. konjac. A: arbuscule; B: vesicle; C: internal hypha; D: external hypha.

表 1. 魔芋根系AMF侵染特征 Table 1. Colonization characteristics of AMF in A. konjac roots
Treatment Total infection rate/% Infection intensity/% Spore density/(number/100 g air-dried soil)
H1/1 year 53.96±2.49b 17.08±0.20a 46.67±5.51bc
D1/1 year 42.81±1.63c 12.34±0.93c 25.00±3.00d
H2/2 years 79.20±2.05a 17.50±0.41a 101.33±2.31a
D2/2 years 13.04±0.54d 2.97±0.25d 50.33±0.58b
H3/3 years 55.21±0.67b 15.92±0.67b 44.00±2.00c
D3/3 years 12.46±1.28d 2.95±0.18d 18.33±0.58e
Sources of variation
Continuous cropping duration 142.638** 180.799** 439.892**
Health status 2 795.485** 1 937.044** 588.007**
Continuous cropping
duration×health status
443.147** 154.275** 46.162**
H: healthy plants; D: diseased plants. Data are the means±standard deviation (n=3). Values with different lowercase letters in the same column are significantly different at P < 0.05. *: P < 0.05; **: P < 0.01; NS: P > 0.05. The same applies to the following tables.

2.3 AMF群落的相对丰度

采用Illumina平台对连作魔芋病株、健株根系和根际土壤AMF群落进行了分析。通过高通量测序,总共得到1 619 831条原始序列;经过序列处理与筛选,其中1 563 968条序列符合有效序列的标准(NCBI SRA数据库登录号:PRJNA754454,各样本序列登录号SAMN20775188– SAMN20775223)。使用QIIME软件进行聚类后总共产生1 930个OTU,所有样本共有OTU为25个。在相同连作年限条件下,魔芋健株根系、根际土壤中AMF的OTU数目均高于相应的病株(图 3)。为了对OTU进行分类鉴定,将其与MaarjAM数据库中AMF序列进行比对,发现1 358 657条序列被分类到球囊霉门,占总有效序列数的92.18%,说明了特异引物对魔芋根域AMF的扩增效率和特异性较高,保证了数据的可靠性(表 2)。根据observed species数量绘制了稀疏曲线,由图 4可看出,根际土壤中所观测到的AMF物种数高于根系;随着样本序列数增加,不同处理所观测到的AMF物种数曲线逐渐趋于平缓,说明测序数量趋于饱和,测序深度能较充分发掘样品中大部分AMF种类,但仍可能有少量AMF种类未被发现。

图 3 所有样品中AMF操作分类单元(OTU)的韦恩图 Figure 3 Venn diagram of AMF operational taxonomic units (OTUs) in all samples. R: root; S: soil. The same applies to the following figures and tables.

表 2. 测序数据质量和分类 Table 2. Quality and classification of sequencing data
Sample Treatment Raw reads Effective reads Proportion of effective reads/% Glomeromycota reads Proportion of Glomeromycota reads/%
Root H1R/1 year 140 435 135 736 96.65 126 803 93.42
D1R/1 year 142 233 137 707 96.82 129 814 94.27
H2R/2 years 139 086 134 539 96.73 120 876 89.84
D2R/2 years 138 382 133 531 96.49 120 491 90.23
H3R/3 years 139 639 135 081 96.74 123 372 91.33
D3R/3 years 137 456 133 011 96.77 128 168 96.36
Total 837 231 809 605 96.70 666 195 92.58
Soil H1S/1 year 139 926 134 642 96.22 125 432 93.16
D1S/1 year 137 312 132 317 96.36 123 075 93.02
H2S/2 years 124 769 120 261 96.39 112 749 93.75
D2S/2 years 122 407 118 399 96.73 108 863 91.95
H3S/3 years 127 181 122 586 96.39 111 004 90.55
D3S/3 years 131 005 126 158 96.30 111 339 88.25
Total 782 600 754 363 96.39 692 462 91.79
Total 1 619 831 1 563 968 96.55 1 358 657 92.18

图 4 样品的稀疏曲线 Figure 4 Rarefaction curve of all samples.

36个样品得到的1 930个OTU涵盖了1门3纲5目8科9属53种AMF的物种信息,包括49个MaarjAM数据库中收录的已知种和4个新种。基于所有AMF种构建的系统进化树(图 5)显示,53个AMF种主要分为近明球囊霉属(Claroideoglomus)、类球囊霉属(Paraglomus)和球囊霉属(Glomus) 3个大的分组,其中原囊霉属(Archaeospora)的3个种、双型球囊霉属(Ambispora)的1个种和球囊霉属(Glomus)的2个种都被归属到了类球囊霉属组,而无梗囊霉属(Acaulospora)的3个种、多孢囊霉属(Diversispora)的3个种和盾巨孢囊霉属(Scutellospora)的1个种都被归属到球囊霉属组,说明其亲缘关系上更近。新的AMF分子种主要聚集为1个簇,包括2个类球囊霉属的分子种Paraglomus N1和Paraglomus N2,另外2个新种Acaulospora N1和Glomus N1分别位于无梗囊霉属和球囊霉属AMF分支上。

图 5 基于邻接分析法构建的魔芋根域所有AMF种的系统进化树 Figure 5 A phylogenetic tree of all AMF species identified in the root zone of A. konjac based on Neighbor-Joining analysis.

在不同连作年限魔芋病株、健株根域AMF群落中,球囊霉属和类球囊霉属的AMF种分别占总AMF数的41.5%和26.4%,并且丰度最高的10个AMF菌种中,有5个为球囊霉属、4个类球囊霉属和1个多孢囊霉属的AMF种,说明球囊霉属和类球囊霉是魔芋根域AMF群落的优势属。值得关注的是,在所有检测到的AMF种中,丰度最高的Paraglomus sp. VTX00308对应191 824条有效序列,Glomus LES06 VTX00310次之(122 834条),而丰度最低的Glomus Yoshimura13a Glo1、Glomus sp. VTX00069、Glomus N1和Paraglomus N2均只有2条有效序列,说明不同AMF菌种的丰度存在不均一性(表 3)。

表 3. 基于MaarjAM数据库的魔芋根域AMF鉴定及分类 Table 3. Identification and classification of AMF species in the root zone of A. konjac based on the MaarjAM database
AMF species OTUs Reads AMF species OTUs Reads
Paraglomus sp. VTX00308 295 191 824 Claroideoglomus Shi14b Cla-24 VTX00340 2 85
Glomus LES06 VTX00310 8 122 834 Glomus sp. VTX00130 1 67
Glomus Yoshimura13a Glo2 2 60 386 Claroideoglomus sp. VTX00225 1 67
Glomus sp. VTX00310 3 43 251 Archaeospora LH-Ar02 1 59
Paraglomus Glom 1B.13 VTX00308 25 30 483 Glomus MO-G46 VTX00096 3 45
Paraglomus sp. VTX00281 1 6 719 Archaeospora sp. VTX00245 1 37
Glomus NES25 VTX00332 6 3 641 Paraglomus Yoshimura13b Para1 1 31
Glomus NES31 VTX00151 14 3 262 Paraglomus Para2 VTX00308 4 23
Paraglomus N1 1 3 088 Glomus sp. VTX00117 1 20
Diversispora MO-D2 VTX00353 2 2 883 Ambispora Hernandez-Hernandez17 Amb1 2 17
Acaulospora sp. VTX00026 1 2 397 Paraglomus sp. VTX00001 1 16
Claroideoglomus sp. VTX00057 1 2 114 Paraglomus sp. VTX00239 1 16
Acaulospora Acau10 VTX00028 1 2 027 Paraglomus occultum VTX00238 1 14
Paraglomus Alguacil12b ACA1 VTX00352 11 1 926 Glomus Alguacil11d Glo G17 VTX00172 2 14
Claroideoglomus Yoshimura13b Glo17 3 1 370 Claroideoglomus sp. VTX00278 2 9
Glomus sp. VTX00122 1 1 009 Claroideoglomus Alguacil12b GLO G3 VTX00357 1 9
Glomus sp. VTX00090 1 813 Glomus Yoshimura13b Glo7 1 6
Scutellospora sp. VTX00041 1 780 Glomus Obase13 Clade G VTX00219 1 6
Diversispora sp. VTX00353 1 653 Glomus sp. VTX00387 1 5
Glomus Varela-Cervero15 BG11 1 591 Glomus LH-Gl05 1 4
Paraglomus sp. VTX00238 2 366 Acaulospora N1 1 4
Paraglomus LH-Pg01 1 291 Archaeospora Yoshimura13b Arch1 1 3
Glomus Yoshimura13a Glo5 1 199 Glomus Yoshimura13a Glo1 1 2
Glomus sp. VTX00063 1 188 Glomus sp. VTX00069 1 2
Diversispora sp. VTX00040 1 181 Glomus N1 1 2
Glomus Yoshimura13a Glo6 5 141 Paraglomus N2 1 2
Paraglomus Para2 VTX00001 1 106

2.4 AMF群落α多样性

对连作病株、健株魔芋根系和根际土壤AMF的α多样性分析(表 4)表明,相同连作年限条件下,魔芋健株根系和根际土壤AMF中,种群丰富度Chao1指数和种群多样性Shannon指数高于病株,而Simpson指数在病株和健株之间差异不明显(连作3年的根系除外)。不同连作年限条件下,病株和健株魔芋根系中AMF的Chao1指数、Shannon指数和Simpson指数变化趋势相同,即随着连作年限的延长先升高后降低。在根际土壤中,魔芋病株和健株AMF的Chao1指数随着连作年限的延长呈现先降低后升高的趋势,而Shannon和Simpson指数则逐渐降低。连作年限、植株健康状况及二者的交互作用显著影响魔芋根系AMF群落的Shannon指数、Simpson指数及魔芋根际土壤AMF的Chao1指数(P < 0.05)。

表 4. 魔芋根域AMF丰富度和多样性指数 Table 4. Species richness and diversity indices of AMF in the root zone of A. konjac
Treatment Chao1 Library coverage/% Shannon index Simpson index
Root H1R/1 year 244.60±31.27ab 99.93±0.001b 2.76±0.09a 0.68±0.03b
D1R/1 year 173.89±22.10b 99.95±0.001a 2.61±0.05a 0.68±0.06b
H2R/2 years 293.59±14.24a 99.92±0.002b 2.85±0.11a 0.76±0.02a
D2R/2 years 274.41±41.59a 99.92±0.001b 2.65±0.03a 0.75±0.03a
H3R/3 years 245.43±24.39ab 99.94±0.001ab 2.80±0.21a 0.75±0.01a
D3R/3 years 178.09±32.19b 99.95±0.001a 2.21±0.18b 0.62±0.01c
Sources of variation
Continuous cropping duration 102.158** 9.620** 5.562* 12.893**
Health status 146.135** 5.890* 25.521** 10.736**
Continuous cropping duration× health status 0.537NS 1.393NS 5.177* 8.123**
Soil H1S/1 year 858.75±7.52a 99.81±0.002ab 4.70±0.05a 0.91±0.03a
D1S/1 year 671.89±16.94cd 99.85±0.003ab 4.47±0.22a 0.88±0.01a
H2S/2 years 683.78±36.50c 99.85±0.002ab 3.85±0.23b 0.69±0.03b
D2S/2 years 622.32±24.79d 99.86±0.006a 3.33±0.03c 0.70±0.07b
H3S/3 years 834.56±3.53ab 99.79±0.004b 3.28±0.31c 0.59±0.01c
D3S/3 years 793.69±10.83b 99.79±0.002b 3.26±0.18c 0.64±0.01bc
Sources of variation
Continuous cropping duration 261.060** 5.171* 72.059** 101.484**
Health status 266.706** 0.976NS 7.906* 0.216NS
Continuous cropping duration× health status 59.735** 0.433NS 2.425NS 2.006NS

2.5 AMF群落组成

不同连作年限魔芋病株、健株根系和根际土壤AMF群落由类球囊霉属(Paraglomus)、球囊霉属(Glomus)、近明球囊霉属(Claroideoglomus)、原囊霉属(Archaeospora)、无梗囊霉属(Acaulospora)、多孢囊霉属(Diversispora)、双型球囊霉属(Ambispora)、盾巨孢囊霉属(Scutellospora)和unidentified Glomeromycota 9个属组成。各个样品中均有类球囊霉属和球囊霉属,二者是不同连作年限魔芋病株、健株根系和根际土壤中的优势属,其相对丰度占比分别维持在5.48%–84.60%和8.05%–22.28%。随着连作年限的延长,魔芋健株根系中类球囊霉属相对丰度持续降低,而根际土壤中则先降低后升高;相反,魔芋病株根系和根际土壤中类球囊霉属相对丰度则随着连作年限延长而逐渐升高(图 6)。

图 6 魔芋根域AMF属水平相对丰度 Figure 6 Relative abundance of major AMF genera in the root zone of A. konjac.

在种水平上,不同连作年限魔芋病株、健株根系和根际土壤AMF丰度 > 1%的有6个AMF种(表 5),所有样品共有种为Paraglomus sp. VTX00308。Paraglomus sp. VTX00308、Glomus Yoshimura13a Glo2和Paraglomus sp. VTX00281 3种AMF的相对丰度在魔芋病株根系和根际土壤中显著增加,且随着连作年限的延长而增加(个别除外)。相反,Glomus LES06 VTX00310、Glomus sp. VTX00310和Paraglomus Glom 1B.13 VTX00308的相对丰度在魔芋病株根系和根际土壤中显著降低,且随着连作年限的延长而逐渐降低。连作年限、植株健康状况及二者的交互作用显著影响魔芋根系和根际土壤中丰度 > 1%的6个AMF种,说明连作和软腐病菌侵染显著改变了魔芋根际AMF种类的相对丰度,从而导致AMF群落结构发生改变。

表 5. 魔芋根域AMF种水平相对丰度 Table 5. Relative abundance of major AMF species in the root zone of A. konjac
Treatment Paraglomus sp. VTX00308/% Glomus Yoshimura13a Glo2/% Paraglomus sp. VTX00281/% Glomus LES06 VTX00310/% Glomus sp.
VTX00310/%
Paraglomus Glom 1B.13 VTX00308/%
Root H1R/1 year 0.43±0.03e 0f 0b 11.31±0.05a 6.89±0.23a 4.30±0.35a
D1R/1 year 2.73±0.27b 1.54±0.11c 0b 0c 0d 0.04±0.01c
H2R/2 years 0.32±0.02e 0.41±0.01e 0b 2.71±0.18b 2.83±0.23b 0.96±0.09b
D2R/2 years 1.45±0.04c 3.84±0.04b 0b 0c 0d 0.02±0c
H3R/3 years 0.83±0.12d 0.77±0.05d 0b 2.61±0.20b 0.24±0.05c 0.56±0.05b
D3R/3 years 3.22±0.20a 4.37±0.06a 0.33±0.01a 0c 0d 0c
Sources of variation
Continuous cropping duration 93.330** 1 510.972** 58 061.353** 2 954.237** 952.793** 100.301**
Health status 792.976** 10 616.852** 58 236.765** 10 905.686** 2 796.033** 257.840**
Continuous cropping duration× health status 34.480** 569.405** 58 061.353** 2 952.872** 951.667** 96.684**
Soil H1S/1 year 1.04±0.05e 0d 0c 10.70±0.40a 1.10±0.04a 1.53±0.03a
D1S/1 year 9.83±0.21c 0.12±0.01c 0.03±0c 2.30±0.08c 0c 0.09±0.01d
H2S/2 years 1.77±0.04d 0d 0c 4.06±0.15b 0.07±0.01b 0.76±0.04b
D2S/2 years 10.56±0.22b 1.97±0.09b 0.45±0.05b 0e 0c 0.01±0e
H3S/3 years 1.96±0.11d 0.11±0.01c 0c 0.55±0.01d 0c 0.14±0.01c
D3S/3 years 19.29±0.61a 3.39±0.11a 1.04±0.05a 0e 0c 0e
Sources of variation
Continuous cropping duration 601.241** 1 296.030** 485.541** 1 977.777** 2 128.557** 2 129.624**
Health status 7 733.903** 4 325.395** 1 460.122** 2 711.209** 2 569.301** 7 030.156**
Continuous cropping duration×
health status
463.476** 1 135.119** 485.541** 741.306** 2 128.557** 1 627.972**

2.6 AMF群落结构

NMDS分析图(图 7)中的每个点代表一个样本,点与点之间的距离表示样本差异程度。魔芋根系(图 7A)和根际土壤(图 7B)样本中,Stress值分别为0.133和0.103,均 < 0.2,说明本试验的NMDS分析结果可以准确反映样本间的差异程度。魔芋根系和根际土壤样本表现出相同规律:在相同连作年限条件下,软腐病株与健株之间AMF组成差异较大,病株与健株在3个不同连作年限间AMF的组成差异也较大。且随着连作年限的延长,健株(H1R、H2R、H3R、H1S、H2S、H3S)分别与对应病株样本(D1R、D2R、D3R、D1S、D2S、D3S)的距离(图中蓝色虚线)逐渐增加,差异越来越明显。

图 7 基于Bray-Curtis距离的魔芋根系(A)和根际土壤(B) AMF群落非度量多维尺度分析(NMDS)排序图 Figure 7 Non-metric multidimensional scaling (NMDS) ordination biplots based on Bray-Curtis similarities of AMF community in the roots (A) and rhizosphere soil (B) of A. konjac.

2.7 魔芋软腐病与根域AMF群落特征的相关性

Pearson相关性(图 8)分析表明,AMF总侵染率、侵染强度和孢子密度与魔芋根系AMF的Shannon指数极显著正相关(P < 0.01)。而软腐病发病率、病情指数与魔芋根系和根际土壤AMF的Shannon指数、根系Chao1指数和Simpson指数、总侵染率、侵染强度和孢子密度极显著负相关(P < 0.01),与魔芋根际土壤AMF的Chao1和Simpson指数均呈不显著的负相关关系(P > 0.05)。

图 8 魔芋软腐病与根域AMF群落多样性及侵染特征的Pearson相关系数矩阵 Figure 8 Pearson correlations between soft rot disease and AMF community diversity and infection characteristics in the root zone of A. konjac. *: P < 0.05; **: P < 0.01.

3 讨论

AMF在改良土壤、改善植物营养和协助宿主植物抵御逆境胁迫等方面发挥重要作用[2426]。目前对魔芋属植物(尤其是花魔芋)根域AMF群落结构和功能的了解非常有限。笔者通过对连作花魔芋软腐病株与健株根系和根际土壤中AMF特异区段的Illumina测序,共鉴定得到归属于9个AMF属的53个分子种。这些种包括49个MaarjAM数据库中收录的已知种和4个新种,基于此初步建立了花魔芋根域AMF的菌种库。本研究首次发现连作和软腐病菌侵染能够显著改变魔芋根域AMF群落多样性,为深入研究连作和软腐病菌侵染对魔芋根域微生物群落的影响及AMF在魔芋对软腐病耐性中的功能奠定了基础。

现有研究表明,印度野生钟苞魔芋(Amorphophallus campanulatus)根系AMF主要归属于球囊霉属、无梗囊霉属和巨孢囊霉属,其中球囊霉属为优势AMF属[27]。本研究发现不同连作年限花魔芋病株、健株根系和根际土壤AMF群落中,类球囊霉属和球囊霉属的AMF平均相对丰度占比较高(分别为46.49%和15.91%),丰度前十的菌种中有4个归属于类球囊霉属,5个归属于球囊霉属,并且丰度最高的AMF种为Paraglomus sp. VTX00308,Glomus LES06 VTX00310次之。这进一步说明了类球囊霉属和球囊霉属是花魔芋根域的优势AMF属,在根系和根际土壤AMF群落中均占绝对主导地位。与前人所报道的天南星科植物高丰度AMF主要是球囊霉属[28]结果较相似,球囊霉属AMF (尤其是Glomus LES06 VTX00310、Glomus Yoshimura13a Glo2和Glomus sp. VTX00310)在魔芋根域AMF群落中占比较高,也说明球囊霉属是当地的高丰度AMF,在魔芋根际土壤中发挥重要作用。

魔芋软腐病是一种土传和种传的细菌性维管束系统性侵染病害。软腐病菌通过自然孔口、伤口和根系吸附侵入,沿维管束传至地上部,进而演变为魔芋块茎腐烂和植株黄化倒伏[29]。AMF是魔芋根域微生物群落的重要组成部分[27]。魔芋根际AMF群落主要受宿主基因型和生境显著影响[27, 30],但其是否也受软腐病害的影响尚未可知。本研究发现软腐病菌的侵染通过改变AMF群落组成、丰度及多样性来影响魔芋根域AMF的群落结构。同时,魔芋软腐病发病率、病情指数与AMF总侵染率、侵染强度、孢子密度以及根系Chao1、Shannon和Simpson指数极显著负相关(P < 0.01),这与高岩等[31]报道的AMF丰富度和多样性指数与鸡蛋花干腐病发病率和病情指数极显著负相关(P < 0.01)相似。朱红惠等[3233]和曾维爱等[34]研究发现,接种AMF能显著降低番茄和烟草青枯病病原细菌青枯雷尔氏菌(Ralstonia solanacearum)的数量。由此推测,合适的AMF可作为生物药剂对魔芋细菌性软腐病进行生物防治,通过接种外来AMF或调动土著AMF,提高AMF孢子密度及种类多样性,有望控制和预防魔芋软腐病的发生。江龙等的研究认为,AMF可能与烟草青枯病菌青枯雷尔氏菌争夺侵染位点,减少青枯病菌的侵入空间和感染概率[35]。与之相似,AMF可能与软腐病菌争夺魔芋根系上的侵染位点,故减少了软腐病菌的侵染和感染概率。此外,AMF也可能通过调节魔芋次生代谢物质、改变根际微生物种群、提高水分和养分的吸收能力和激活防御机制[36]等途径提高植株对软腐病的抗性,但其更具体的和更深层次的抗病机理还需进一步的研究验证。

魔芋生长对环境条件要求高,适生区土地面积有限,轮作难以实施[37]。因此,连作是目前魔芋种植区普遍存在的栽培方法。随着连作年限延长,魔芋软腐病菌逐年累积,有益微生物数量减少,导致根际微生态失衡[38],魔芋软腐病发病率和病情指数相应增高。连作不仅导致魔芋土传病害日益加剧,也影响土壤中AMF群落组成和多样性[39]。本研究结果显示,经过连续3年连作,魔芋健株根系中GlomusScutellospora属的比例随着连作有所增加,而ParaglomusClaroideoglomusAcaulosporaDiversispora属的相对丰度有所降低(图 6),但ParaglomusGlomus属在魔芋根系中仍然是AMF优势属。由于连作导致魔芋根际酸碱度发生改变,而Glomus具有独特的繁殖方式,能够耐受多种环境变化,因此更能适应pH的改变[40]。但是,连作3年的魔芋健株根际土壤中GlomusParaglomus属比例较正茬有所下降,同时Ambispora属比例增加(图 6)。连作条件下,魔芋根际分泌物可能发生变化,导致GlomusParaglomus属AMF依赖的某些次生代谢产物含量降低,而生存环境的变化进一步影响了这两类AMF在根际土壤的定殖,但该推论还有待于进一步验证。

由本研究得到的重要启示是,在魔芋种植中,可以通过轮作倒茬以及与玉米、番荔枝、甘蔗等高秆作物间套作等农艺措施来提高魔芋抗病性;同时,也可以通过接种优良AMF或调动土著AMF使有益菌群占据生态位,从而抑制有害微生物生长,减轻魔芋连作土传病害的发生。

4 结论

比对健株,连作魔芋软腐病株根际土壤AMF孢子密度和根系AMF侵染率、种数和多样性均降低,导致根域AMF群落结构发生明显改变。下一步可通过检测不同连作年限魔芋根系和根际土壤的碳源组成、基因表达和蛋白表达水平的变化深入解析其分子机制。

References
[1] Schütz L, Saharan K, Mäder P, Boller T, Mathimaran N. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms. Applied Soil Ecology, 2022, 169: 104156. DOI:10.1016/j.apsoil.2021.104156
[2] Cai XY, Zhao HH, Liang C, Li M, Liu RJ. Effects and mechanisms of symbiotic microbial combination agents to control tomato Fusarium crown and root rot disease. Frontiers in Microbiology, 2021, 12: 629793. DOI:10.3389/fmicb.2021.629793
[3] Spagnoletti FN, Cornero M, Chiocchio V, Lavado RS, Roberts IN. Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 2020, 156(3): 839-849. DOI:10.1007/s10658-020-01934-w
[4] Liu N, Shao C, Sun H, Liu ZB, Guan YM, Wu LJ, Zhang LL, Pan XX, Zhang ZH, Zhang YY, Zhang B. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L. ) growth under the continuous cropping regime. Geoderma, 2020, 363: 114155. DOI:10.1016/j.geoderma.2019.114155
[5] Zanchi CS, Batista ÉR, Silva AO, Barbosa MV, Pinto FA, Santos JV, Carneiro MAC. Recovering soils affected by iron mining tailing using herbaceous species with mycorrhizal inoculation. Water, Air, and Soil Pollution, 2021, 232(3): 1-13.
[6] Lin Y, He YJ, He MH, Wu CY, Fang ZY, Han X, Xu XY, Wang SX. Species diversity of soil arbuscular mycorrhizal fungi in Karst vegetation succession process. Acta Ecologica Sinica, 2019, 39(11): 4127-4137. (in Chinese)
林艳, 何跃军, 何敏红, 吴春玉, 方正圆, 韩勖, 徐鑫洋, 王世雄. 喀斯特植被演替过程土壤丛枝菌根真菌(AMF)多样性. 生态学报, 2019, 39(11): 4127-4137.
[7] Ban HF, Chai XL, Lin YJ, Zhou Y, Peng DH, Zhou Y, Zou YL, Yu ZN, Sun M. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Reports, 2009, 28(12): 1847-1855. DOI:10.1007/s00299-009-0788-x
[8] Chen EF, Liu H, Ding HB, Pan M, Wang QF. Cloning and expression analysis of pelD and PelE genes from konjac soft rot pathogen. Southwest China Journal of Agricultural Sciences, 2021, 34(3): 495-500. (in Chinese)
陈恩发, 刘辉, 丁海兵, 潘牧, 王启富. 魔芋软腐病pelDpelE基因的克隆与表达分析. 西南农业学报, 2021, 34(3): 495-500.
[9] Wu JP, Jiao ZB, Zhou J, Guo FL, Ding ZL, Qiu ZM. Analysis of bacterial communities in rhizosphere soil of continuously cropped healthy and diseased konjac. World Journal of Microbiology & Biotechnology, 2017, 33(7): 134.
[10] He F. Response of root-associated bacterial communities to different degrees of soft rot damage in Amorphophallus konjac under a Robinia pseudoacacia plantation. Frontiers in Microbiology, 2021, 12: 652758. DOI:10.3389/fmicb.2021.652758
[11] He F, Zhang ZL, Cui M, Xue QH, Wang DS. Disease prevention and growth promotion effects of actinomycete strain D74 on Amorphophallus konjac. Acta Horticulturae Sinica, 2015, 42(2): 367-376. (in Chinese)
何斐, 张忠良, 崔鸣, 薛泉宏, 王东胜. 放线菌'D74'对魔芋的防病促生作用. 园艺学报, 2015, 42(2): 367-376.
[12] Fu YZ, Ma K, Cui HZ, Li GW. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system. Chinese Journal of Ecology, 2021, 40(1): 131-139. (in Chinese)
伏云珍, 马琨, 崔慧珍, 李光文. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响. 生态学杂志, 2021, 40(1): 131-139.
[13] Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1): 158-161. DOI:10.1016/S0007-1536(70)80110-3
[14] Yang Y, Ou XH, Yang G, Xia YS, Chen ML, Guo LP, Liu DH. Arbuscular mycorrhizal fungi regulate the growth and Phyto-active compound of Salvia miltiorrhiza seedlings. Applied Sciences, 2017, 7(1): 68. DOI:10.3390/app7010068
[15] Van Geel M, Busschaert P, Honnay O, Lievens B. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Methods, 2014, 106: 93-100. DOI:10.1016/j.mimet.2014.08.006
[16] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16): 2194-2200. DOI:10.1093/bioinformatics/btr381
[17] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303
[18] Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 2010, 188(1): 223-241. DOI:10.1111/j.1469-8137.2010.03334.x
[19] Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 2019, 20(4): 1160-1166. DOI:10.1093/bib/bbx108
[20] Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics, 2009, 25(1): 126-127. DOI:10.1093/bioinformatics/btn575
[21] Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184(2): 424-437. DOI:10.1111/j.1469-8137.2009.02920.x
[22] Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science & Technology, 2012, 46(11): 5764-5771.
[23] Dray S, Dufour AB. The ade4 Package: implementing the duality diagram for ecologists. Journal of Statistical Software, 2007, 22(4): 1-20.
[24] Wang Y, Zhang WZ, Liu WK, Ahammed GJ, Wen WX, Guo SR, Shu S, Sun J. Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biology, 2021, 21(1): 48. DOI:10.1186/s12870-020-02817-2
[25] Juge C, Cossette N, Jeanne T, Hogue R. Long-term revegetation on iron mine tailings in northern Québec and Labrador and its effect on arbuscular mycorrhizal fungi. Applied Soil Ecology, 2021, 168: 104145. DOI:10.1016/j.apsoil.2021.104145
[26] Li MH, Hou SW, Wang JH, Hu JL, Lin XG. Arbuscular mycorrhizal fungus suppresses tomato (Solanum lycopersicum Mill. ) Ralstonia wilt via establishing a soil-plant integrated defense system. Journal of Soils and Sediments, 2021, 21(11): 3607-3619.
[27] Prayudyaningsih R, Nursyamsi N. Diversity of tuber crops and arbuscular mycorrhizae fungi (AMF) under community forest stand in South Sulawesi. Jurnal Penelitian Kehutanan Wallacea, 2015, 4(1): 81-92. DOI:10.18330/jwallacea.2015.vol4iss1pp81-92
[28] Shi XF, Huang JJ, Shi Y, Ding ZS, Cheng DQ. On AMF diversity of Pinellia ternate. Journal of Shaanxi University of Chinese Medicine, 2017, 40(3): 75-81. (in Chinese)
施晓峰, 黄晶晶, 史亚, 丁志山, 程东庆. 半夏丛枝菌根真菌多样性研究. 陕西中医药大学学报, 2017, 40(3): 75-81.
[29] Wu JP, Diao Y, Gu YC, Hu ZL. Infection pathways of soft rot pathogens on Amorphophallus konjac. African Journal of Microbiology Research, 2010, 4(14): 1495-1499.
[30] Zhao ZW, Li XW, Wang GH, Cheng LZ, Sha T, Yang L, Ren LC. Am fungi in the tropical rain forest of Xishuangbanna. Mycosystema, 2001, 20(3): 316-323. (in Chinese)
赵之伟, 李习武, 王国华, 程立忠, 沙涛, 杨玲, 任立成. 西双版纳热带雨林中丛枝菌根真菌的初步研究. 菌物系统, 2001, 20(3): 316-323. DOI:10.3969/j.issn.1672-6472.2001.03.006
[31] Gao Y, Tong YG, Ma HC, Wu JR, Li X, Yang XQ. The resistance of Plumeria rubra to dry rot by arbuscular mycorrhizal fungi (AMF). Journal of West China Forestry Science, 2020, 49(2): 128-136. (in Chinese)
高岩, 佟有贵, 马焕成, 伍建榕, 李雪, 杨晓倩. 丛枝菌根真菌(AMF)对鸡蛋花干腐病的抗性研究. 西部林业科学, 2020, 49(2): 128-136.
[32] Zhu HH, Long LK, Yang SZ, Yao Q. Influence of AM fungus on Ralstonia solanacearum population and bacterial community structure in rhizosphere. Mycosystema, 2005, 24(1): 137-142. (in Chinese)
朱红惠, 龙良坤, 羊宋贞, 姚青. AM真菌对青枯菌和根际细菌群落结构的影响. 菌物学报, 2005, 24(1): 137-142.
[33] Zhu HH, Yao Q, Li HH, Yang SZ. Inhibition of Ralstonia solanacearum by AM fungus Glomus versiforme and their effect on phenols in root. Microbiology China, 2004, 31(1): 1-5. (in Chinese)
朱红惠, 姚青, 李浩华, 羊宋贞. AM真菌对青枯菌的抑制和对酚类物质的影响. 微生物学通报, 2004, 31(1): 1-5. DOI:10.3969/j.issn.0253-2654.2004.01.001
[34] Zeng WA, Long SP, Li HG, Peng FY, Huang YN. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco. Journal of Southern Agriculture, 2011, 42(6): 612-615. (in Chinese)
曾维爱, 龙世平, 李宏光, 彭福元, 黄艳宁. 苗期接种不同丛枝菌根真菌对烟草青枯病防治效果的影响. 南方农业学报, 2011, 42(6): 612-615. DOI:10.3969/j.issn.2095-1191.2011.06.011
[35] Jiang L, Wang ZM, Zhang CH, Huang JG, Yuan L. Research on wilt disease resistance of AM mycorrhizal tobacco seedlings. Acta Tabacaria Sinica, 2009, 15(6): 49-52. (in Chinese)
江龙, 王智明, 张长华, 黄建国, 袁玲. 菌根烟苗的抗青枯病效应研究. 中国烟草学报, 2009, 15(6): 49-52.
[36] Himaya SMMS, Sivasubramaniam N, Afreen SMMS. A review on role of mycorrhizal fungi in plant disease management. Sri Lankan Journal of Technology, 2021, 1(2): 41-50.
[37] He F, Cui M, Li C, Lu XD. Effects of agent and potassium fertilizer on plant growth, physiological metabolism and disease incidence in continuous cropping of Amorphophallus konjac. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(7): 1095-1105. (in Chinese)
何斐, 崔鸣, 李川, 鲁小东. 菌剂与钾肥配施对连作魔芋生长、生理代谢和发病率的影响. 西北农业学报, 2020, 29(7): 1095-1105.
[38] Yang M, Pei WH, Dong JH, Pan KH, Wu DX, Yu L. Effect of long-term continuous cropping with Amorphophallus konjac on rhizosphere soil microflora and enzyme activities. Northern Horticulture, 2018(23): 110-115. (in Chinese)
杨敏, 裴卫华, 董家红, 潘开华, 吴德喜, 余磊. 魔芋连作对根际土壤微生物数量及酶活性的影响. 北方园艺, 2018(23): 110-115.
[39] Zhang ZW, Tian YW, Yang JF, Wang C, Zhang J, Zhao J, Wang D, Zheng HL. Arbuscular mycorrhizal fungi population diversity of rhizosphere soil and root system in potato field in central Inner Mongolia. Microbiology China, 2020, 47(3): 738-748. (in Chinese)
张之为, 田永伟, 杨剑峰, 王超, 张键, 赵君, 王东, 郑红丽. 内蒙古中部地区马铃薯根际和根系丛枝菌根真菌类群的多样性. 微生物学通报, 2020, 47(3): 738-748.
[40] Brito I, Goss MJ, De Carvalho M, Chatagnier O, Van Tuinen D. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil and Tillage Research, 2012, 121: 63-67.