微生物学报  2022, Vol. 62 Issue (8): 3176-3189   DOI: 10.13343/j.cnki.wsxb.20210773.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210773
中国科学院微生物研究所,中国微生物学会

文章信息

郭鸿蓉, 林晓凤, 朱玲, 王定一, 吴福忠. 2022
GUO Hongrong, LIN Xiaofeng, ZHU Ling, WANG Dingyi, WU Fuzhong.
转录组和蛋白组联合分析揭示Ubr1介导的白僵菌萌发和极性生长
Analysis of Ubr1-mediated germination and polar growth of Beauveria bassiana based on the combination of transcriptome and proteome
微生物学报, 62(8): 3176-3189
Acta Microbiologica Sinica, 62(8): 3176-3189

文章历史

收稿日期:2021-12-14
修回日期:2022-04-02
网络出版日期:2022-04-14
转录组和蛋白组联合分析揭示Ubr1介导的白僵菌萌发和极性生长
郭鸿蓉1,3 , 林晓凤2 , 朱玲1,3 , 王定一1,3 , 吴福忠1,3     
1. 福建师范大学地理科学学院, 福建 福州 350007;
2. 福州大学生物科学与工程学院, 福建省海洋酶工程重点实验室, 福建 福州 350116;
3. 福建师范大学湿润亚热带生态地理过程教育部重点实验室, 福建 福州 350007
摘要[目的] 通过比较球孢白僵菌野生型和ubr1基因缺失菌株分生孢子在同一时间点转录组学和蛋白组学的差异表达基因和蛋白及其所属通路,阐明Ubr1影响球孢白僵菌极性生长的机制,为提高球孢白僵菌生物防治潜能提供理论依据。[方法] 通过对转录组学和蛋白组学的KEGG分析,获得差异表达基因和蛋白所在代谢调控通路,利用显微镜拍摄菌株在各萌发培养基(germination medium,GM)衍生板中分生孢子萌发的图像验证双组学分析中显著差异的调控通路对分生孢子极性生长的影响。[结果] ubr1基因缺失使分生孢子萌发受损,形成异常弯曲或钩状的芽管。且不论是以转录组,还是以蛋白质组为核心进行双组学KEGG联合分析,二者都能富集到氮代谢、精氨酸和脯氨酸代谢和醚脂类代谢通路。进一步的验证实验表明,球孢白僵菌中ubr1基因缺失引起的精氨酸代谢异常是分生孢子极性生长紊乱的一个重要原因,而半乳糖和氮代谢异常则会导致分生孢子的萌发速率变慢。[结论] Ubr1的缺失使精氨酸代谢受阻,进而导致分生孢子萌发管极性生长异常;同时,也使半乳糖和氮代谢异常导致分生孢子萌发速率延迟。本研究的发现对于认识极性生长的机制具有一定贡献,也拓展了丝状真菌侵染循环中体壁穿透过程的理论认识。
关键词球孢白僵菌    Ubr1    极性生长    转录组    蛋白组    联合分析    
Analysis of Ubr1-mediated germination and polar growth of Beauveria bassiana based on the combination of transcriptome and proteome
GUO Hongrong1,3 , LIN Xiaofeng2 , ZHU Ling1,3 , WANG Dingyi1,3 , WU Fuzhong1,3     
1. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, Fujian, China;
2. Fujian Key Laboratory of Marine Enzyme Engineering, School of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China;
3. Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, Fujian, China
Abstract: [Objective] To clarify the mechanism of Ubr1 affecting the polar growth of Beauveria bassiana based on the differentially expressed genes (DEGs) and proteins (DEPs) and their pathways in the conidia of the wild-type (WT) and ubr1-deleted (Δubr1) strains at the same time point and thus to lay a theoretical basis for improving potential of B. bassiana for biocontrol. [Methods] Through KEGG analysis of the transcriptome and proteome, the pathways of the DEGs and DEPs were clarified. The germinated conidia in each germination medium (GM)-derived plate were photographed with a microscope to verify the influence of the differential pathways on polar growth of the conidia. [Results] ubr1 deletion impaired the germination of conidia, resulting in abnormally curved or hook-shaped germ tubes. Both the DEGs and DEPs were involved in nitrogen metabolism, arginine and proline metabolism, and ether ester metabolism. Further verification showed that abnormal arginine metabolism caused by ubr1 deletion was an important reason for the disorder of conidial polar growth and that abnormal metabolism of galactose and nitrogen led to slow germination of conidia. [Conclusion] The absence of ubr1 blocks arginine metabolism, resulting in abnormal polar growth of germ tube. The abnormal metabolism of galactose and nitrogen also delays the germination of conidia. The findings are expected to enhance the understanding of the mechanism of polar growth and the penetration process in the infection cycle of filamentous fungi.
Keywords: Beauveria bassiana    Ubr1    polar growth    transcriptome    proteome    combined analysis    

球孢白僵菌(Beauveria bassiana)是一种广谱性丝状昆虫病原真菌,可侵染700多种昆虫[1],因其对环境和温血动物无害、且易于培养、致病性强,逐渐成为农林害虫生物防治中应用最广泛的虫生真菌之一[2]。目前,球孢白僵菌已被广泛运用于思茅松毛虫(Dendrolimus kikuchii)、亚洲玉米螟(Ostrinia furnacalis)、二斑叶螨(Tetranychus urticae)等常见农林害虫的生物防治[35]。丝孢类生物防治试剂的分生孢子吸附到宿主体壁后,其完整的侵染循环通常包括孢子萌发、体壁穿透(由外往内)、血腔增殖、体壁穿透(由内往外)和体表产孢[6]。作为侵染生活史的第一步,孢子萌发后正常萌发管的发生对于穿透宿主体表至关重要,在病原真菌的侵染过程中占主要作用[7]。然而,当前球孢白僵菌分生孢子萌发的研究多集中于孢子耐高温、抗氧化和紫外胁迫等侵染循环中后期的抗逆力中[810],萌发速率和极性生长对孢子萌发中菌丝径向延伸和穿透体壁不可或缺,但长期缺乏必要的关注[11]

转录组学和蛋白组学能够从全局的视角揭示特定时期生物体内所有基因的转录和蛋白表达水平,已被广泛地应用到微生物病原真菌的研究中[1213]。Mou等利用转录组学揭示了球孢白僵菌中不含半胱氨酸的小分泌蛋白,而非传统认识中富含半胱氨酸的分泌蛋白,才是真菌侵染过程中必不可少的毒力因子[14]。王定一等利用转录组学的研究发现,次级代谢调控蛋白Vea能够感受外界的光照和黑暗环境因子,进而通过调节中心发育通路基因的转录水平来控制菌株在光照和黑暗条件下分生孢子的产量[15]。赵婷婷等通过蛋白组学研究发现,绿僵菌糖基转移酶MaPmt4通过广泛的遗传途径在真菌细胞壁完整性、抗逆性和毒力方面发挥重要作用[16]。尽管转录组学和蛋白组学研究可以从基因和蛋白的水平揭示生物体瞬时RNA和蛋白状态,但是遗传信息的表达不仅是从基因到蛋白的单向流动,更是二者之间的相互连接[17]。转录组和蛋白组联合分析能够获得一个表达谱的“全景图”,实现两者的互补。通过相互补充和比较,联合分析不仅可以提供对基因表达的全面了解进而获得更完整的生物体表达信息,同时两者之间的结合比单一组学分析更有效地从大规模数据库中筛选核心靶点[1821]。如林琼等对马铃薯块茎进行了转录组学和蛋白质组学联合分析,表明低温诱导了15种热休克蛋白(Hsps)的单独或协同作用,以防止马铃薯块茎因低温胁迫而遭受生理或细胞损伤[22]。白嵩等从转录和翻译水平对耐冷和低温敏感两个水稻品种在低温胁迫下的响应进行分析,从而促进了对水稻幼苗期耐冷性分子调控机制的全面认识[23]。但两者联合分析在白僵菌此类昆虫病原真菌的基因功能研究中鲜有应用。

Ubr1是一种泛素连接酶,能够通过泛素化修饰介导衰老、错误折叠蛋白质的降解,调控细胞内蛋白质质量稳态[2425]。白色念珠菌Ubr1可以控制菌丝起始和延伸[26],轮状镰刀菌Ubr1则影响分生孢子和菌丝形态[27],菌丝延伸和形态的改变则会进一步改变真菌对宿主的致病性。前期在球孢白僵菌中的研究中发现,Ubr1的缺失导致分生孢子萌发速率减慢和极性生长异常形成异常弯曲或钩状的萌发管[28],但对于Ubr1如何调控球孢白僵菌极性生长的机理尚不明确。本研究拟运用转录组和蛋白组的联合分析,通过双组学联合分析比较球孢白僵菌野生型菌株和ubr1基因缺失菌株分生孢子在同一时间点转录组和蛋白组学的差异表达基因和蛋白及其所属通路,阐明Ubr1影响球孢白僵菌极性生长的机制,为提高球孢白僵菌生物防治潜能提供理论依据。

1 材料与方法 1.1 样品制备

收集25 ℃、光周期12:12 (L: D)最佳培养条件下在萨氏培养基(配方为4%葡萄糖、1%蛋白胨、1%酵母粉和1.5%琼脂)中生长8 d的野生型和敲除菌株孢子粉,使用0.02%无菌吐温-80溶液将孢子粉稀释成108孢子/mL的孢子悬液。将悬液接种到容量为150 mL锥形瓶的萌发培养基(germination medium,GM) (0.5%蛋白胨、2%蔗糖)中,使得萌发液中孢子终浓度达到106分生孢子/mL。随后将实验组(Δubr1)和对照组(WT)孢子萌发液置于摇床中,以25 ℃、150 r/min条件振荡培养13 h。最后将实验组和对照组菌株的芽孢从GM液体培养基中离心,0.02%无菌吐温-80溶液洗涤3次后置于–80 ℃保存。

1.2 转录组蛋白质组学分析

取野生型和基因敲除菌株各3个独立培养物干冰运送到美吉生物(中国上海)进行总RNA和蛋白质提取,质检合格后用于转录组学和蛋白质组学分析。转录组学原始数据上传到NCBI数据库(GSE184996),蛋白组学数据则上传到中国蛋白质组学数据与知识中心(iProX)数据库(IPX0003559000,PXD028821)。Δubr1和WT之间的差异表达基因(differentially expressed genes,DEGs)基于log2 FC (Δubr1/WT)≤–1或≥1,显著性水平为P < 0.05。差异表达蛋白(differentially expressed proteins,DEPs)的阈值设置为P < 0.05且倍数变化≥1.20或≤0.83。DEGs和DEPs数据中存在的所有已鉴定基因或蛋白质都进一步用于京都基因与基因组百科全书(KEGG)分析,获得差异表达基因和蛋白所在代谢调控通路。在美吉生物官网上(http://vip.majorbio.com/)获得转录组学和蛋白组学共同参与调控的基因和蛋白后进行联合分析,获得显著受ubr1基因缺失影响的关键代谢通路。

1.3 转录组学验证

为了验证转录组学数据的可靠性,在转录组学测序分析送样材料相同的培养条件下(见1.1)收集WT和敲除菌株芽生孢子。使用0.02%无菌吐温-80溶液洗涤离心获得的芽生孢子3次,液氮充分研磨后再加入1.8 mL TRIzol®试剂。采用成熟的酚-氯仿-异戊醇方法提取球孢白僵菌RNA[29],最后按照反转录试剂盒说明书,进行50 μL体系反转录即得真菌cDNA样品。分别选取转录组中上调和下调前5的基因在https://bioinfo.ut.ee/primer3-0.4.0/在线设计引物,获得引物后再使用https://www.ncbi.nlm.nih.gov/tools/primer-blast验证所设计引物的特异性(表 1)。最后使用实时荧光定量PCR (quantitative real-time PCR)检测基因表达量。

表 1. 野生型和敲除菌株实时定量PCR中使用的引物 Table 1. Paired primers designed for qPCR in WT and Δubr1
Primers Paired sequences (5′→3′) Purpose
BBA_05808-F/R ACGGTGACAAGTCCGATCTC/CCTGGGACTTCTTGGACTCA PCR detecting BBA_05808
BBA_08602-F/R GTCATTTCTGCCGTTTTCGT/CCAAAGGTAAAGACGCCGTA PCR detecting BBA_08602
BBA_02999-F/R GAGGCTCGCACTGATAAAGC/CAACCTTGGCACAAATTTCC PCR detecting BBA_02999
BBA_03419-F/R GTCATGGCAGTCAACATTGG/AGATCTCGGAGGATTGTTGC PCR detecting BBA_03149
BBA_07813-F/R TTCGAGGCGTACACAAAGTG/TGTTTGATTGAGTCGCTTCG PCR detecting BBA_07813
BBA_09000-F/R CCAAGTCGTCATGGTCATTG/ACCCTCTGCGAGCATAGAAA PCR detecting BBA_09000
BBA_04947-F/R TCACTGCAATGACCGAAGAG/GTCTTCCGATGAGGGATTCA PCR detecting BBA_04947
BBA_07454-F/R GTTCCGTGGAAACGACATCT/GACAGCAACCATGAGAAGCA PCR detecting BBA_07454
BBA_01398-F/R CGAGCAACACTACGGTCAGA/TGGAATCGATGGAAAAGGTC PCR detecting BBA_01398
BBA_07574-F/R CTCACTTTCTCCTCCGTTGC/ACAGGATTCCACCGGTAGTG PCR detecting BBA_07574

1.4 表型实验

为了验证双组学KEGG分析中显著差异的调控通路对分生孢子极性生长的影响,将体积为80 μL的分生孢子悬液(107个分生孢子/mL)均匀涂抹在萌发培养基(GM:0.5%蛋白胨、2%蔗糖和1.5%琼脂)作为对照。实验组接种到碳源被2%淀粉、葡萄糖、果糖、半乳糖和海藻糖替换,或氮源被0.5%硝酸钠、氯化铵和硝酸铵替换,或添加有富集到差异氨基酸的GM衍生平板上。所有培养皿放置于25 ℃培养箱中培养,13 h后在显微镜下拍摄野生和ubr1基因敲除菌株在各种平板中分生孢子萌发的图像。

2 结果与分析 2.1 Ubr1影响分生孢子萌发过程中的萌发速度和极性生长

图 1可以看出,萌发初始阶段(5 h) Δubr1和WT菌株分生孢子形状为圆形或椭圆形;在萌发中期阶段(7、9 h),Δubr1部分分生孢子开始形成弯曲的萌发管,野生型菌株萌发管则为近直线型;在萌发中后期(11、13 h),野生型菌株分生孢子全部萌发且萌发管呈近直线型,Δubr1分生孢子萌发比例增加,萌发管进一步延伸,形状异常弯曲或钩状(图 1)。

图 1 野生型和Δubr1菌株分生孢子不同萌发时间萌发管形状 Figure 1 Germination tube of wild-type and Δubr1 strains at different germination times.

2.2 Ubr1调控的转录组学和蛋白组学差异分析

转录组学分析共富集到4 671个基因,约占整个基因数据库的45%。富集到的基因集中有1 631个DEGs,其中658个(6.3%)下调、973个(9.3%)上调(图 2A)。同时,蛋白组学分析表明544种蛋白被差异调节,其中包括304种下调和240种上调的蛋白(图 2B)。转录组学的KEGG分析表明,1 631个DEGs被富集到11条代谢通路,即核糖体生物合成、半乳糖代谢、淀粉和蔗糖代谢、醚脂质代谢、精氨酸和脯氨酸代谢、RNA聚合酶、亚油酸代谢、新霉素、卡那霉素和庆大霉素生物合成,抗坏血酸和醛糖酸盐代谢、脂肪酸延长、泛醌和其他萜类-醌生物合成和氮代谢调控途径(图 2C)。蛋白组KEGG分析表明,544个DEPs被显著富集到22条代谢途径,其中前20条KEGG富集途径是谷胱甘肽代谢、半胱氨酸和蛋氨酸代谢、精氨酸和脯氨酸代谢、过氧化物酶体、丙酮酸代谢、生物素代谢、糖酵解/糖异生、乙醛酸和二羧酸代谢、柠檬酸循环(TCA循环)、甘氨酸、丝氨酸和苏氨酸代谢、酪氨酸代谢、磷酸肌醇代谢、脂肪酸生物合成、甘油磷脂代谢、氨基糖和核苷酸糖代谢、氮代谢、醚脂代谢、甘油脂代谢、磷脂酰肌醇信号系统和缬氨酸、亮氨酸和异亮氨酸生物合成(图 2D)。转录组和蛋白组KEGG结果表明,Ubr1主要参与碳源、氮源、脂质、氨基酸和生物素代谢。在转录组学结果验证实验中,5个上调的基因在qRT-PCR中均显著上调,5个下调的基因有4个显著下调(图 3)。

图 2 野生型和ubr1基因缺失菌株转录组与蛋白组分析 Figure 2 Transcriptomic and proteomic analysis of wild-type and ubr1 gene deletion strains. A, B: distributions of log2 FC and P values for all genes identified in the transcriptome and proteome. Differentially expressed genes (DEGs) are those significantly down-regulated (log2 FC≤–1) or up-regulated (log2 FC≥1) at the level of P < 0.05. The rest of the genes are insignificantly affected (–1≤log2 FC≤1). Differentially expressed proteins (DEPs) are those significantly down-regulated (log2 FC≤0.83) or up-regulated (log2 FC≥1.20) at the level of P < 0.05. The rest of the proteins are insignificantly affected (0.83≤log2 FC≤1.20). C, D: enrichment ratio and KEGG pathway enrichment analysis of DEGs and DEPs.

图 3 转录组学的实时定量PCR验证结果 Figure 3 Quantitative real-time PCR verification results of transcriptomics.

2.3 转录组和蛋白组DEGs和DEPs联合分析

转录组和蛋白组的联合分析表明,在1 631个DEGs和544个DEPs中共同存在140个差异表达基因或蛋白(图 4A)。这些基因或蛋白中,83个基因和44个蛋白被上调,57个基因和86个蛋白被下调(图 4B)。基于蛋白组学显著性的KEGG通路联合分析表明,Ubr1的破坏主要影响谷胱甘肽代谢、氨基酸(半胱氨酸、甲硫氨酸、精氨酸、脯氨酸、甘氨酸、丝氨酸和苏氨酸)代谢、过氧化物酶体、丙酮酸和生物素(图 4C)。另一方面,以转录组为核心的联合KEGG通路分析阐明了Ubr1的缺失主要影响碳代谢,包括半乳糖、淀粉和蔗糖(图 4D)。有趣的是,不论是以转录组为核心,还是蛋白组为核心的联合分析,氮代谢、精氨酸和脯氨酸代谢、乙醚脂类代谢这3条代谢通路都能被同时富集。进一步分析表明,ubr1的缺失显著影响了2个蛋白酶(丝氨酸羧肽酶和肽酶家族M3蛋白)和一个脂肪酶基因转录和蛋白表达水平的下降(表 2)。

图 4 野生型和ubr1基因缺失菌株转录组和蛋白组联合分析 Figure 4 Combined transcriptomic and proteomic analysis of wild-type and ubr1 gene deletion strains. A: the number of significantly differentially expressed genes and proteins enriched in the transcriptome (red) and proteome (blue-green) and the significantly differentially expressed genes and proteins co-enriched between them (brown); B: the number of up-regulated and down-regulated genes and proteins co-enriched by transcriptome and proteome analysis; C, D: enrichment ratio of KEEG pathway of wild type and Δubr1 stains based on proteome and transcriptome, respectively.

表 2. 精氨酸-脯氨酸代谢、氮代谢和体壁穿透过程中相关蛋白酶、脂肪酶中显著受转录组与蛋白组学共同调节的基因 Table 2. The significantly regulated genes of arginine and proline metabolism and nitrogen metabolism in transcriptome and proteomics
Gene name Gene description DEGs DEPs
log2 FC P value log2 FC P value
Arginine and proline metabolism
 BBA_09701 Amidinotransferase family protein –2.04 P < 0.001 –1.03 P < 0.001
 BBA_07822 Ornithine decarboxylase 1.48 P < 0.001 –0.29 P=0.009
 BBA_07026 Ornithine-oxo-acid transaminase 1.84 P < 0.001 0.39 P < 0.001
 BBA_04583 Putative aldehyde dehydrogenase –0.51 P < 0.001 –1.20 P < 0.001
Nitrogen metabolism
 BBA_08916 Carbonic anhydrase 2.95 P < 0.001 –0.30 P=0.004
Protease
 BBA_09427 Serine carboxypeptidase 2.01 P < 0.001 –1.17 P < 0.001
 BBA_02915 Peptidase family M3 –1.54 P < 0.001 –0.30 P < 0.001
Lipase
 BBA_00702 Lipase, putative –1.34 P < 0.001 –1.14 P < 0.001
 BBA_02483 Serine/threonine-protein kinase ssp1 1.36 P < 0.001 0.30 P < 0.001
 BBA_03331 Lipase/serine esterase 1.65 P < 0.001 0.58 P < 0.001

2.4 添加氨基酸后分生孢子萌发速度和极性生长的变化

在Δubr1突变体中分生孢子萌发受损,且更重要的是突变体在分生孢子萌发后菌丝体变短,形成异常弯曲或钩状的芽管,与野生型菌株形成芽管以利于极性生长形成对比。在添加不同氨基酸的GM培养基上培养13 h后对分生孢子的萌发进行观察,其萌发形态总体而言可分为2类:一在添加精氨酸后,敲除菌株弯曲或钩状的芽管极性生长缺陷缓解,部分芽管形状恢复为直线型;二在添加半胱氨酸、甲硫氨酸、脯氨酸、甘氨酸、丝氨酸、苏氨酸、缬氨酸、亮氨酸和异亮氨酸后,极性生长缺陷未有缓解(图 5)。转录组和代谢组联合分析表明,精氨酸和脯氨酸代谢中的4个关键蛋白酰胺基转移酶家族蛋白、鸟氨酸脱羧酶、鸟氨酸-氧-酸转氨酶和假定乙醛脱氢酶同时显著受到二者调控(表 2)。

图 5 添加氨基酸对野生型和ubr1基因缺失菌株分生孢子萌发速度和极性生长的影响 Figure 5 Effects of amino acids on conidial germination and polar growth of wild-type and ubr1 gene deleted strains. The arrow indicates that the germination tube returns to the near linear shape.

2.5 替换碳、氮源及生物素对分生孢子萌发速度和极性生长的影响

Δubr1突变体在替换碳源为淀粉、麦芽糖、葡萄糖和半乳糖的衍生GM平板上分生孢子的萌发与GM平板类似,芽管呈现弯曲或钩状,但以半乳糖为碳源时,敲除菌株的萌发管长度较其他3种碳源短。在以硝酸钠和硝酸铵为唯一氮源的GM衍生平板中,可以看出ubr1基因缺失菌株的萌发明显受阻,萌发管长度显著低于GM平板中基因敲除菌株。在添加生物素后Δubr1突变体与在GM平板上之间没有明显区别(图 6)。转录组和代谢组联合分析表明,氮代谢通路中的碳酸酐酶(carbonic anhydrase)显著受二者调控,半乳糖中则没有同时显著受到二者调控的基因或蛋白(表 2)。

图 6 替换碳、氮源以及添加生物素对野生型和ubr1基因缺失菌株分生孢子萌发速度和极性生长的影响 Figure 6 Effects of replacing carbon and nitrogen sources and adding biotin on conidial germination and polar growth of wild-type and ubr1 gene deleted strains.

3 讨论

球孢白僵菌中泛素连接酶Ubr1的缺失引起侵染循环早期分生孢子萌发速率减缓、极性生长异常,形成较野生型菌株萌发管短而弯曲的钩状异常萌发管,这与之前的研究相一致[28]。野生型和ubr1基因缺失菌株的芽生孢子的转录组学分析富集到了球孢白僵菌基因总数的约45%,低于次级代谢调控基因Vea和分泌蛋白基因CFP转录组中约90%的富集率,而显著差异基因富集数量则与蛋白磷酸酶激活蛋白BbGlc8缺失菌株的转录组学类似,均在1 500–2 000之间[1415, 2930]。本研究中转录组检测时间为接种后第13 h,VeaCFP等基因转录组取样时间为接种后第3天,这与Chu等在球孢白僵菌侵染宿主后24、36、48 h不同时间段转录组中基因富集率随时间增长的结果相一致[31]。转录组学KEGG富集分析表明,ubr1缺失主要显著影响了核糖体代谢、糖代谢与脂质代谢,而蛋白组学富集分析中则主要富集到了氨基酸代谢、谷胱甘肽代谢、丙酮酸代谢和过氧化物酶体。转录组学与蛋白组学的KEGG富集结果并不完全一致,这与之前在甘鹿黑穗病菌、水稻恶苗病菌和小麦的转录组和蛋白组学相关性系数不高的研究结果相一致[3234]。转录组与蛋白组学相关性不高的原因不仅可能包括mRNA降解、选择性剪切、基因表达的转录后调控及翻译后修饰,而且外界噪音也是造成mRNA-蛋白质相关性低的重要因素[17, 35]

不论是以转录组为核心进行KEGG富集分析,还是以蛋白质组为核心的KEGG联合分析,二者都能富集到氮代谢、精氨酸和脯氨酸代谢和醚脂类代谢通路,这表明Ubr1的缺失极可能影响了这些物质的代谢进而影响分生孢子萌发过程中的极性生长。培养基中添加精氨酸的验证实验中,萌发管从弯曲或钩状恢复成近直线型,这验证了富集结果中精氨酸通路对极性生长的作用。以往丝状真菌中的经典研究早已发现,细胞骨架的建立是维持机体生长的关键步骤,同时,分泌囊泡从菌丝体到生长的菌丝顶端的持续流动对细胞壁和细胞膜的延伸至关重要[3637]。在极性建立的过程中,分子开关“cdc42”、Rho家族鸟苷三磷酸合成酶、几丁质合成酶、几丁质酶、蛋白激酶类似物、内吞蛋白等相互作用,都对极性生长具有促进作用[11, 38]。精氨酸作为蛋白质合成的基础原料之一,是这些蛋白质合成必不可少的成分,这可能导致了极性生长的异常。添加半乳糖后,敲除菌株出现明显的萌发延迟,这证实了Ubr1的缺失影响了半乳糖代谢。半乳糖是细胞壁中核心交联物质半乳甘露聚糖的合成原料之一,其代谢受阻可能是引起分生孢子萌发速率减缓的诱因之一[39]。同时,敲除菌株在氮代谢验证培养基中的萌发变慢也与之前Mou等、Ren等发现氮代谢异常后分生孢子萌发速率减慢的研究相一致[14, 40]。而在培养基中添加脯氨酸的验证实验中,孢子萌发仍出现异常,这表明Ubr1的缺失并未影响脯氨酸代谢。脯氨酸合成途径中受到2种关键酶的影响,一种是Δ1-吡咯啉-5-羧酸合成酶(P5CS)以及还原酶(P5CR),另一种是鸟氨酸转氨酶(δ-OAT)这2种关键酶的影响[41]。尽管联合分析结果表明,精氨酸-脯氨酸代谢通路中的蛋白酰胺基转移酶家族蛋白和假定乙醛脱氢酶显著上调,鸟氨酸-氧-酸转氨酶显著下调(表 2),但是脯氨酸合成中关键的2个酶没有显著变化,这可能是添加脯氨酸后孢子萌发中极性生长未受到影响的原因。体壁穿透作为侵染循环中重要的一环,几丁质酶、蛋白酶和脂肪酶在其中发挥了重要的作用[42]。通过挖掘联合分析中共同受双组学调控的基因和蛋白,我们发现丝氨酸羧肽酶和肽酶家族M3蛋白与脂肪酶基因转录和蛋白表达水平的下降可能是导致ubr1基因缺失菌株毒力下降的潜在原因。

我们的研究首次发现了泛素连接酶Ubr1的缺失通过引起精氨酸代谢受阻,进而导致分生孢子萌发管极性生长异常,对于认识极性生长的机制具有一定贡献;同时,半乳糖和氮代谢异常对分生孢子萌发速率影响的发现也拓展了丝状真菌侵染循环穿透体壁过程的理论认识;对相关代谢通路的进一步基因挖掘为泛素化调控极性生长和体壁穿透的潜在靶标基因或蛋白研究提供了方向。但是,本研究并未深入解析Ubr1如何通过泛素化影响精氨酸代谢、氮代谢和半乳糖代谢中的关键靶标蛋白或基因,该基因或蛋白又是如何通过调控细胞膜、细胞骨架、肌动蛋白等极性生长的关键因素最终影响极性生长,这些问题需要在后期研究中进一步开展。

References
[1] Bextine BR, Thorvilson HG. Field applications of bait-formulated Beauveria bassiana alginate pellets for biological control of the red imported fire ant (Hymenoptera: Formicidae). Environmental Entomology, 2002, 31(4): 746-752. DOI:10.1603/0046-225X-31.4.746
[2] De Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 2007, 43(3): 237-256. DOI:10.1016/j.biocontrol.2007.08.001
[3] Ullah MS, Lim UT. Laboratory bioassay of Beauveria bassiana against Tetranychus urticae (Acari: Tetranychidae) on leaf discs and potted bean plants. Experimental & Applied Acarology, 2015, 65(3): 307-318.
[4] Huang SH, Zhang BX, Li DS, Feng L, Chen WL. Preliminary report on control of sweet corn borer in Pearl River Delta. Guangdong Agricultural Science, 2004, 31(1): 44-46. (in Chinese)
黄少华, 张宝鑫, 李敦松, 冯莉, 陈万良. 珠江三角洲甜玉米螟害防治试验初报. 广东农业科学, 2004, 31(1): 44-46. DOI:10.3969/j.issn.1004-874X.2004.01.017
[5] Liu XX, Wang XR, Wang YX, Huang JB, Chen JY, Zheng L. Biological characteristics of highly virulent strains of Beauveria bassiana for Dendrolimus punctatus. Journal of Southern Agriculture, 2017, 48(6): 1019-1023. (in Chinese)
刘晓晓, 王星冉, 王义勋, 黄俊斌, 陈京元, 郑露. 马尾松毛虫高毒力球孢白僵菌菌株的生物学特性. 南方农业学报, 2017, 48(6): 1019-1023. DOI:10.3969/j.issn.2095-1191.2017.06.13
[6] Cai Q, Tong SM, Shao W, Ying SH, Feng MG. Pleiotropic effects of the histone deacetylase Hos2 linked to H4-K16 deacetylation, H3-K56 acetylation, and H2A-S129 phosphorylation in Beauveria bassiana. Cellular Microbiology, 2018, 20(7): e12839. DOI:10.1111/cmi.12839
[7] Yu SH, Zeng MS, Wu GY. Research, application and prospect of Beauveria bassiana. Tea Science and Technology, 2009, 50(3): 8-11. (in Chinese)
余素红, 曾明森, 吴光远. 球孢白僵菌的研究应用与展望. 茶叶科学技术, 2009, 50(3): 8-11. DOI:10.3969/j.issn.1007-4872.2009.03.002
[8] Wang DY, Mou YN, Tong SM, Ying SH, Feng MG. Photoprotective role of photolyase-interacting RAD23 and its pleiotropic effect on the insect-pathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 2020, 86(11): e00287-00220.
[9] Wang J, Chen JW, Hu Y, Ying SH, Feng MG. Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genetics and Biology, 2020, 144: 103437. DOI:10.1016/j.fgb.2020.103437
[10] Zhang LB, Feng MG. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Applied Microbiology and Biotechnology, 2018, 102(12): 4995-5004. DOI:10.1007/s00253-018-9033-2
[11] Groth A, Schunke C, Reschka EJ, Pöggeler S, Nordzieke DE. Tracking fungal growth: establishment of Arp1 as a marker for polarity establishment and active hyphal growth in filamentous Ascomycetes. Journal of Fungi: Basel, Switzerland, 2021, 7(7): 580.
[12] Mutz KO, Heilkenbrinker A, Lönne M, Walter JG, Stahl F. Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1): 22-30. DOI:10.1016/j.copbio.2012.09.004
[13] Otto A, Becher D, Schmidt F. Quantitative proteomics in the field of microbiology. Proteomics, 2014, 14(4/5): 547-565.
[14] Mou YN, Fu B, Ren K, Ying SH, Feng MG. A small cysteine-free protein acts as a novel regulator of fungal insect-pathogenic lifecycle and genomic expression. mSystems, 2021, 6(2): e00098-e00021.
[15] Wang DY, Tong SM, Guan Y, Ying SH, Feng MG. The velvet protein VeA functions in asexual cycle, stress tolerance and transcriptional regulation of Beauveria bassiana. Fungal Genetics and Biology: FG & B, 2019, 127: 1-11.
[16] Zhao TT, Tian HT, Xia YX, Jin K. MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Current Genetics, 2019, 65(4): 1025-1040. DOI:10.1007/s00294-019-00957-z
[17] Jiang KR, Ma Z, Zheng H, Liu XJ. Review on the application of integrated transcriptome and proteome analysis in biology. Biotechnology Bulletin, 2018, 34(12): 50-55. (in Chinese)
蒋可人, 马峥, 郑航, 刘小军. 转录组与蛋白质组整合分析在生物学研究中的应用. 生物技术通报, 2018, 34(12): 50-55.
[18] Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, Ferrari R. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2016, 19(2): 286-302.
[19] Paczesny S. Biomarkers for posttransplantation outcomes. Blood, 2018, 131(20): 2193-2204. DOI:10.1182/blood-2018-02-791509
[20] Chalmel F, Rolland AD. Linking transcriptomics and proteomics in spermatogenesis. Reproduction: Cambridge, England, 2015, 150(5): R149-R157. DOI:10.1530/REP-15-0073
[21] Li ZW, Zhou X, Zhu HQ, Song X, Gao HJ, Niu ZY, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. Journal of Biochemical and Molecular Toxicology, 2021, 35(3): e22665.
[22] Lin Q, Xie YJ, Guan WQ, Duan YQ, Wang ZD, Sun CD. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chemistry, 2019, 297: 124991. DOI:10.1016/j.foodchem.2019.124991
[23] Bai S, Lin WG, Zhao JL, Ma YM, Kong LL, Zhang SH, Ni SM. The molecular mechanisms of cold tolerance in rice revealed by transcriptomics and proteomics analysis. Molecular Plant Breeding, 2021, 19(12): 3837-3848. (in Chinese)
白嵩, 林文贵, 赵均良, 马雅美, 孔雷蕾, 张少红, 倪世明. 转录组与蛋白组技术结合分析水稻耐低温分子机制. 分子植物育种, 2021, 19(12): 3837-3848.
[24] Eisele F, Wolf DH. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Letters, 2008, 582(30): 4143-4146. DOI:10.1016/j.febslet.2008.11.015
[25] Nillegoda NB, Theodoraki MA, Mandal AK, Mayo KJ, Ren HY, Sultana R, Wu K, Johnson J, Cyr DM, Caplan AJ. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Molecular Biology of the Cell, 2010, 21(13): 2102-2116. DOI:10.1091/mbc.e10-02-0098
[26] Lu Y, Su C, Unoje O, Liu HP. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. PNAS, 2014, 111(5): 1975-1980. DOI:10.1073/pnas.1318690111
[27] Ridenour JB, Smith JE, Hirsch RL, Horevaj P, Kim H, Sharma S, Bluhm BH. UBL1 of Fusarium verticillioides links the N-end rule pathway to extracellular sensing and plant pathogenesis. Environmental Microbiology, 2014, 16(7): 2004-2022. DOI:10.1111/1462-2920.12333
[28] Wang DY, Mou YN, Du X, Guan Y, Feng MG. Ubr1-mediated ubiquitylation orchestrates asexual development, polar growth, and virulence-related cellular events in Beauveria bassiana. Applied Microbiology and Biotechnology, 2021, 105(7): 2747-2758. DOI:10.1007/s00253-021-11222-0
[29] Peng YJ, Ding JL, Feng MG, Ying SH. Glc8, a regulator of protein phosphatase type 1, mediates oxidation tolerance, asexual development and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus. Current Genetics, 2019, 65(1): 283-291. DOI:10.1007/s00294-018-0876-y
[30] Dan M, Huang HB, Guo AP, He LK. A simple and efficient method for extracting fungal total RNA. Fujian Science & Technology of Tropical Crops, 2006, 31(4): 19-20. (in Chinese)
淡明, 黄海波, 郭安平, 贺立卡. 一种简单高效的真菌总RNA提取方法. 福建热作科技, 2006, 31(4): 19-20. DOI:10.3969/j.issn.1006-2327.2006.04.009
[31] Chu ZJ, Wang YJ, Ying SH, Wang XW, Feng MG. Genome-wide host-pathogen interaction unveiled by transcriptomic response of diamondback moth to fungal infection. PLoS One, 2016, 11(4): e0152908. DOI:10.1371/journal.pone.0152908
[32] Feil G, Horres R, Schulte J, Mack AF, Petzoldt S, Arnold C, Meng C, Jost L, Boxleitner J, Kiessling-Wolf N, Serbest E, Helm D, Kuster B, Hartmann I, Korff T, Hahne H. Bacterial cellulose shifts transcriptome and proteome of cultured endothelial cells towards native differentiation. Molecular & Cellular Proteomics, 2017, 16(9): 1563-1577.
[33] Peng ZY, Wang MC, Li F, Lv HJ, Li CL, Xia GM. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Molecular & Cellular Proteomics, 2009, 8(12): 2676-2686.
[34] Pfannmüller A, Leufken J, Studt L, Michielse CB, Sieber CMK, Güldener U, Hawat S, Hippler M, Fufezan C, Tudzynski B. Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS One, 2017, 12(4): e0176194. DOI:10.1371/journal.pone.0176194
[35] Ullman S, Harari D, Dorfman N. From simple innate biases to complex visual concepts. PNAS, 2012, 109(44): 18215-18220. DOI:10.1073/pnas.1207690109
[36] Fischer R, Zekert N, Takeshita N. Polarized growth in fungi-interplay between the cytoskeleton, positional markers and membrane domains. Molecular Microbiology, 2008, 68(4): 813-826. DOI:10.1111/j.1365-2958.2008.06193.x
[37] Takeshita N, Manck R, Grün N, De Vega SH, Fischer R. Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Current Opinion in Microbiology, 2014, 20: 34-41. DOI:10.1016/j.mib.2014.04.005
[38] Li HY, Barker BM, Grahl N, Puttikamonkul S, Bell JD, Craven KD, Cramer RA Jr. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryotic Cell, 2011, 10(2): 174-186. DOI:10.1128/EC.00288-10
[39] Liu HM, Ma Y. Research progress on polar growth related genes of Aspergillus fumigatus. Chinese Journal of Mycology, 2021, 16(4): 279-283. (in Chinese)
刘慧敏, 马彦. 烟曲霉极性生长相关基因研究进展. 中国真菌学杂志, 2021, 16(4): 279-283. DOI:10.3969/j.issn.1673-3827.2021.04.014
[40] Ren K, Mou YN, Tong SM, Ying SH, Feng MG. DIM5/KMT1 controls fungal insect pathogenicity and genome stability by methylation of histone H3K4, H3K9 and H3K36. Virulence, 2021, 12(1): 1306-1322. DOI:10.1080/21505594.2021.1923232
[41] Zeng Y, Yan L, Liu YL, Zeng ZJ, Jiang CC. Effects of exogenous proline on the growth, physiological characteristics, and proline metabolism of cotton seedlings under boron deficiency stress. Cotton Science, 2020, 32(3): 258-268. (in Chinese)
曾钰, 闫磊, 刘亚林, 曾紫君, 姜存仓. 外源脯氨酸对缺硼下棉花幼苗生长、生理特性以及脯氨酸代谢的影响. 棉花学报, 2020, 32(3): 258-268.
[42] Brivio MF, Mastore M. When appearance misleads: the role of the entomopathogen surface in the relationship with its host. Insects, 2020, 11(6): 387. DOI:10.3390/insects11060387
转录组和蛋白组联合分析揭示Ubr1介导的白僵菌萌发和极性生长
郭鸿蓉 , 林晓凤 , 朱玲 , 王定一 , 吴福忠