
中国科学院微生物研究所,中国微生物学会
文章信息
- 李强, 吴晓青, 张新建. 2023
- LI Qiang, WU Xiaoqing, ZHANG Xinjian.
- 微生物降解秸秆木质素的研究进展
- Research progress in microbial degradation of straw lignin
- 微生物学报, 63(11): 4118-4132
- Acta Microbiologica Sinica, 63(11): 4118-4132
-
文章历史
- 收稿日期:2023-03-24
- 网络出版日期:2023-06-29
我国作为农业大国,每年产生大量的农作物秸秆。全国农作物秸秆综合利用情况报告显示,2021年,我国农作物秸秆利用量为6.47亿t,综合利用率达88.1%,其中秸秆肥料化量达4亿t,占利用量的61.8%[1]。农作物收获后残留的秸秆中含有丰富的碳、氮、磷等大量元素和作物生长所需要的中微量元素,秸秆肥料化还田不仅能够提高土壤肥力,减少化肥的施用量,还能实现秸秆资源循环利用。但在实际应用过程中,秸秆肥料化技术中还存在较为突出的秸秆降解效率偏低的问题,这与秸秆天然的结构特征有关。
秸秆成分一般主要包括纤维素(占35%−50%)、半纤维素(占20%−35%)和木质素(占15%−25%),其他成分还包括微量的果胶、氮化合物和无机成分[2-3]。其中木质素嵌入纤维素和半纤维素结构之间,形成复杂的异质网络,限制了微生物纤维素酶和半纤维素酶的可及性。因此,木质素是环境微生物降解秸秆的主要屏障[4]。木质素具有高度交联的三维网状结构[5-7],一般由3种苯基丙烷结构单体——愈创木基(G型)、紫丁香基(S型)和对羟基苯基(H型) (图 1A)通过不同类型的醚键和碳碳(C−C)键无序聚合形成(图 1B)。在不同类型的木质素中3种单体的组合和比例也存在差异。研究表明,硬木木质素由S和G单体组成,软木木质素由G单体和少量H单体组成,而包括玉米、水稻和小麦等秸秆在内的草本木质素则包括所有3种单体[8-9]。由于木质素的天然降解十分缓慢,为了提高秸秆腐熟效率,木质素高效降解菌的发掘成为近年来研究的热点。本文综述了近年木质素降解菌、降解酶和降解机制的研究进展,并讨论了秸秆木质素降解菌的应用前景和未来的研究方向,以期为后续研究以及秸秆高效利用提供理论基础。
![]() |
图 1 木质素结构特征[5-7] Figure 1 Lignin structural features[5-7]. A: The three phenyl propane monomers in the lignin structure. B: The lignin structure with different types of carbon-carbon bonds (red dashed box) and ether bonds (red solid box) linked to the disordered polymerization of lignin monomers. The carbon-carbon bonds in the lignin structure mainly include β-1 (1, 2-diaryl-propane bond), β-5 (phenyl coumaranbond), and 5-5 (diaryl) bond, and the ether bonds mainly include α-O-4 (alkyl-aryl ether) bond, β-O-4 (alkyl-aryl ether) bond and 4-O-5 (diaryl ether) bond. Among them, the β-O-4 bond is the most abundant, accounting for about 50% of the structural bonds of lignin. |
1 秸秆木质素降解菌的发掘现状
相比物理化学方法,利用微生物降解木质素是对环境更为友好的一种提高降解效率的技术手段。目前报道中仅白腐真菌(white-rot fungi)这类微生物能够将木质素完全降解为CO2和H2O,不过白腐真菌普遍存在降解周期长、对环境耐受性差等特点[10-12]。近年来,研究者不断发掘新的木质素降解菌,包括真菌和细菌。
1.1 木质素降解真菌目前研究最为广泛的木质素降解菌大部分属于真菌[13-15]。研究表明,一些真菌分泌的木质素降解酶种类多,且可利用菌丝有效破坏植物细胞壁结构,为其分泌的多种木质素胞外氧化酶的渗透提供通道[12]。根据促使木材腐烂后形成腐朽的颜色或硬度区分,木质素降解真菌可以分为白腐真菌、褐腐真菌(brown-rot fungi)和软腐真菌(soft-rot fungi),其中白腐真菌降解木质素的能力相对较强[16-17]。白腐真菌分泌的胞外氧化酶主要是漆酶和过氧化物酶,可以同时导致木质素内部醚键和C−C键的断裂及侧链的去除,对木质素降解率高[12]。例如Chen等[18]以玉米秸秆作为平菇(Pleurotus ostreatus)的发酵基质,30 d后玉米秸秆木质素含量从18.45%下降到8.35%,降解率达54.7%。且通过扫描电子显微镜(scanning electron microscope, SEM)观察,发酵10 d后平菇菌丝体覆盖了玉米秸秆整个表面,细胞壁被大面积破坏。Sharari等[19]利用黄孢原毛平革菌(Phanerochaete chrysosporium)降解甘蔗木质素的研究结果表明,发酵5 d后对甘蔗木质素降解率达到70%。根据胞外氧化酶作用对象不同,白腐真菌对木质素的降解有选择性和非选择性2种途径。选择性白腐真菌如虫拟蜡菌(Ceriporiopsis subvermispora)、污叉丝孔菌(Dichomitus squalens)和黄孢原毛平革菌等菌株分泌的胞外氧化酶主要作用于木质素[20]。非选择性白腐真菌如云芝(Trametes versicolor)和木蹄层孔菌(Fomes fomentarius)等菌株不仅可降解木质素,还可降解纤维素和半纤维素[21-22]。褐腐真菌一般可有效降解纤维素和半纤维素。但有研究表明部分褐腐真菌不仅可通过芬顿氧化(Fenton-oxidation)产生的羟基自由基(−OH)氧化和降解木质素,也能产生胞外氧化酶非选择性氧化木质素单体与侧链之间的化学键[23-24]。Knežević等[14]利用小麦秸秆为唯一碳源培养松生拟层孔菌(Fomitopsis pinicola)的研究表明,发酵10 d后,锰过氧化物酶检测到最大活性(3 235 U/L),漆酶活性微弱,14 d后木质素的降解率达到32%。软腐真菌同样可以有效降解纤维素和半纤维素。有研究表明部分软腐真菌可以通过氧化紫丁香基单体来降解木质素[11],但Hamed[25]证明黑曲霉菌(Aspergillus niger)和产黄青霉菌(Penicillium chrysogenum)等软腐真菌对木质素只有修饰功能,无降解作用。虽然已知的褐腐真菌和软腐真菌对木质素的降解能力不如白腐真菌,但探究其对木质素的作用机制有利于更加全面地阐明微生物对木质素的降解机理。
1.2 木质素降解细菌随着多组学技术的发展,通过对木质素降解细菌的不断挖掘,已从不同的栖息地(如土壤、腐烂的木材、废水处理厂和动物肠道)中鉴定出具有木质素降解能力的细菌(表 1)[14, 26-33]。目前,木质素降解细菌的研究主要集中在链霉菌属(Streptomyces)等几个细菌属中[34]。在链霉菌属中,对于Streptomyces viridosporus T7A降解木质素的研究较为丰富。Zeng等以小麦秸秆为底物对S. viridosporus T7A培养3周后发现,麦秸木质素含量由17.65%下降至14.71%,研究表明,该菌株产生的包括漆酶和过氧化物酶在内的多种木质素氧化酶可将木质素降解为水溶性聚合物,对木质素结构中的羰基(−C=O)和甲氧基(CH3O−)的修饰也很显著[26]。另外,Maria等[35]从热带河口生态系统中分离出5株链霉菌,其中S. albogriseolus表现出漆酶和木质素过氧化物酶活性,在培养10 d后对木质素的降解率达到40%。除链霉菌属外,红球菌属(Rhodococcus)的一些菌株也表现出较高的木质素降解活性。研究表明,R. opacus和R. jostii在降解木质素过程中会产生苯酚等芳香族化合物,而这些化合物最终会被红球菌吸收利用,进而提高对木质素的降解活性[36-37]。在芽孢杆菌属(Bacillus)中,B. amyloliquefacienss[31]、B. flexus[38]和B. lignophilus[39],均被报道具有降解木质素的能力,且降解率分别达到28.55%、30.00%和9.10%。
Type | Strains | Straw substrate | Source | Reference |
Fungi | Lenzites betulina | Corn | − | [13] |
C. versicolor | Corn | − | [13] | |
D. squalens | Wheat | − | [14] | |
Fomitopsis pinicola | Wheat | − | [14] | |
P. chrysosporium | Corn, rice | − | [15] | |
Lentinula edodes | Corn, rice | − | [15] | |
Bacterium | S. viridosporus | Wheat, corn | Soil | [26-27] |
R. jostii | Wheat | Soil | [28-29] | |
R. erythropolis | Wheat | Wood, soil | [30] | |
B. amyloliquefacienss | Cigarettes and tobacco | Soil | [31] | |
Pseudomonas sp. | Wheat | Termite gut | [32] | |
Ochrobactrum pseudintermedium B. sonorensis Klebsiella pneumoniae |
Corn, rice, peanut vine | Water buffalo rumen | [33] |
虽然已发掘的真菌相较于细菌对木质素降解效率高,但对极端环境的耐受性较差,在实际应用方面受到较大的局限性[40-41]。而细菌除对极端环境具有更强的适应性之外,还具有繁殖快、基因组更小便于分子遗传和蛋白质表达等优势[42]。因此,探索构建木质素降解复合菌群,优势互补,可能是大规模降解和利用木质素的突破口。
1.3 复合菌群由于组成木质素的分子结构复杂且含有多种芳烃结构,需要多种降解酶共同作用才能提高降解效率。多项研究结果表明,复合菌群对木质素的降解效率要优于单一菌株[43-45]。例如Cui等[13]将桦革褶菌和云芝联合培养组成复合菌群,在2种白腐真菌的协同作用下,漆酶和锰过氧化物酶的活性显著增强,最大酶活分别为18.06 U/mL和13.58 U/mL,在相同培养条件下,与桦革褶菌和云芝单一培养相比,从该复合菌群中获得的漆酶和锰过氧化物酶活性均提高了40%,且木质素降解率为50%,高于桦革褶菌(26.6%)和云芝(37.2%)单一菌株木质素降解率。与之研究结果类似的是,Jiménez-Barrera等[44]将血红密孔菌(Pycnoporus sanguineus)和布氏白僵菌(Beauveria brongniartii)共培养后,漆酶和锰过氧化物酶的活性分别增强了6倍和2.3倍。研究表明,2种木质素降解细菌联合培养同样能有效提高木质素降解率。Yadav等[43]从污泥中筛选得到的枯草芽孢杆菌(B. subtilis)和肺炎克雷伯菌对牛皮纸木质素的降解率分别为39%和44%,而枯草芽孢杆菌和肺炎克雷伯菌在相同条件下联合培养后,对牛皮纸木质素的降解率达到85%。真菌与细菌通过联合培养对木质素降解同样可以起到促进作用。Iimura等[45]从腐朽木材中发现了与白腐真菌共存的5种甲基杆菌属(Methylobacterium)细菌,甲基杆菌可以将白腐真菌降解木质素产生的甲醇转化为甲醛,此前报道了甲醛可以阻止木质素解聚产生的小分子化合物缩合反应[46],该研究表明甲基杆菌通过与白腐真菌相互协作能间接提高木质素降解率。Kamei[47]通过将云芝与在腐朽木材中分离得到的贪铜菌属(Cupriavidus)细菌和肠杆菌属(Enterobacter)细菌分别联合培养15 d后研究结果表明,漆酶活性显著增强,木质素降解率均提高5%左右。多项研究表明,复合菌群的组建可以克服单一菌株降解木质素效率低的问题,整合多种木质素代谢途径,形成更加全面的木质素代谢网络,有利于提高木质素降解效率。
2 微生物降解木质素的酶系组成微生物降解木质素是一个由微生物分泌的胞外氧化酶引发木质素内部化学键断裂的过程。越来越多的木质素降解酶被挖掘并应用于木质素的解聚和矿化中。其中,漆酶和过氧化物酶在具有木质素降解作用的微生物中发现较多,作用机制也得到了论证。
2.1 漆酶漆酶(laccase, Lac)是一种蓝色多铜氧化酶,大多数已知的漆酶通常具有1个单核位点(T1Cu)和1个三核位点(T2Cu和T3Cu)[48]。每个漆酶单体含有4个铜原子,T1和T2位点各包含1个铜原子,而T3位点包含2个铜原子[49]。漆酶利用氧气作为电子受体通过3个步骤来氧化木质素底物:(1) 通过接受来自底物的电子并产生自由基来还原T1位点的铜原子;(2) 电子从T1转移到T2/T3三核位点;(3) 在T2/T3三核位点中将分子氧还原为水[50-51]。漆酶氧化还原电位较低,只能氧化酚类化合物,但当有2, 2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐[2, 2-Biazo-bis(3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt, ABTS]或1-羟基苯并三唑(1-hydroxybenzotriazole, HBT)等小分子介质存在并充当载体的情况下,漆酶可以催化非酚类化合物的氧化,提高木质素降解效率[52]。Gutiérrez等[53]在利用长绒毛栓菌(Trametes villosa)分泌的漆酶与HBT小分子介质结合分别降解桉树和狼尾草木质素的研究中发现,当漆酶单独处理2种底物时,木质素降解率均小于5%,HBT小分子充当介质后木质素降解率分别提高到48%和32%。虽然化学介质能增强漆酶对木质素的降解能力,但其成本过高阻碍了在实际生产中的应用。与此方法相比,高产漆酶菌株的筛选以及发酵培养基条件的优化仍然是当前的研究热点。Li等[54]在腐朽木材中分离得到栓菌属(Trametes)真菌,命名为Trametes sp. LS-10C,在调整最适pH值为4.0,最适温度为40 ℃后研究发现,在10 L发酵罐中发酵9 d后漆酶产量达到最大值873.82 U/mL。漆酶广泛存在于木质素降解微生物中,表 2列举了分泌漆酶的部分菌株以及最适产酶条件[55-60]。与细菌漆酶相比,大部分真菌漆酶的氧化还原电位较高,可以氧化具有高氧化还原电位的化合物[61],而对于影响漆酶的产生和活性的环境因素(如温度、酸碱度等),细菌漆酶则表现出更强的耐受性和适应性。
Type | Strains | Optimum pH | Optimum temperature (℃) | Reference |
Laccase | P. ostreatus | 3.0 | 50 | [55] |
Ganoderma lucidum | 3.0 | 60 | [56] | |
T. trogii | 4.0 | 60 | [57] | |
Cerrena unicolor | 2.6 | 45 | [58] | |
Clostridium botulinum | 7.0 | 50 | [59] | |
K. pneumoniae | 5.0 | 50 | [60] | |
Lignin peroxidase | P. chrysosporium | 3.0 | 40 | [73] |
Acinetobacter sp. | 2.0 | 60 | [74] | |
Manganese peroxidase | G. lucidum | 4.5 | 25 | [75] |
K. pneumoniae | 5.0 | 50 | [60] | |
Versatile peroxidase | Pleurotus eryngii | 3.0 | 45 | [76] |
Physisporinus vitreus | 5.0 | 40 | [77] | |
Dye decolorization peroxidase | P. sapidus | 4.5 | 15−30 | [78] |
Dictyostelium discoideum | 4.0 | 20−40 | [79] |
2.2 过氧化物酶
目前研究发现的参与木质素降解过程的过氧化物酶主要包括木质素过氧化物酶(lignin peroxidase, LiP)、锰过氧化物酶(manganese peroxidase, MnP)、多功能过氧化物酶(versatile peroxidase, VP)和染料脱色过氧化物酶(dye decolorization peroxidase, DyP)[62]。
LiP以H2O2作为氧化剂,并且需要3, 4-二甲氧基苄醇(藜芦醇)作为电子供体和辅助因子来完成氧化反应[63-64]。LiP具有较高的氧化还原电位,具有独自催化非酚类芳香族底物中C−C键和醚键氧化的能力[65]。MnP主要催化酚类木质素化合物中C−C键的裂解[66-67],但研究表明,添加如藜芦醇等酚类中间体或不饱和脂肪酸可以使MnP有效氧化非酚类化合物,且在培养过程中,向培养基中添加Mn2+或Cu2+能明显刺激MnP的产生,并增强MnP的木质素降解活性[66-68]。VP广泛存在于黑管菌属(Bjerkandera)和侧耳菌属(Pleurotus)中[10]。VP是一种双功能酶,既可以氧化藜芦醇、甲氧基苯和非酚类木质素化合物,还可以氧化各种具有高或低氧化还原电位的芳香族底物[69]。因此,VP除用于木质素降解外,还可用于生物质脱木质素[70]。DyP的序列和结构与其他过氧化物酶不同,根据序列特征,DyPs可分为4类,A、B和C型DyP广泛存在于细菌中,D型DyP则主要由真菌产生[71]。4类DyP均具有过氧化物酶活性和特征,其中C和D型DyP对木质素底物氧化活性较高[72]。表 2列举了产过氧化物酶的部分菌株以及最适产酶条件,以供参考[60, 73-79]。
除上述介绍的漆酶和过氧化物酶以外,直接参与木质素解聚和矿化的酶还包括β-醚酶、脱氢酶、脱羧酶、单加氧酶、双加氧酶、O-去甲基化酶和甲基转移酶等。由于酶的催化底物专一性,每种木质素降解酶仅作用于特定的结构或化学键,因此木质素的完全降解需要多种酶的协同作用。但由于不同酶间影响酶活性的环境及物质因子不同,进而将不同的木质素降解酶整合到同一个稳定的协作系统中成为一个难题,导致木质素降解效率仍然很低。因此参与木质素代谢的完整酶系、分泌机制、酶间互作机制以及影响酶活性的各种因素等是下一步研究的重点方向。
3 微生物介导的木质素降解机制及衍生芳烃的代谢路径 3.1 降解机制目前,针对微生物介导的木质素降解机制的研究虽不完善,但一般降解过程已经构建出来。研究表明,微生物分泌的胞外氧化酶(如漆酶和过氧化物酶)首先引发木质素内部的C−C键、C−O键断裂等裂解反应并产生苯氧基自由基中间体,将木质素解聚成简单的单体形式,如对香豆醇、松柏醇和芥子醇[80]。随后,木质素解聚产生的芳香族异质混合物通过细菌独特的“生物漏斗”途径被各种细胞内酶(如双加氧酶、脱羧酶、甲基转移酶和谷胱甘肽转移酶等)代谢转化为中心中间体——丁香酸、香草酸和对羟基苯甲酸,最终中间体被多种环裂解途径进一步降解进入三羧酸循环(tricarboxylic acid cycle, TCA)[27, 81-83] (图 2)。有研究表明,在木质素降解初期,胞外氧化酶分子较大而无法穿透细胞壁,因此低分子量化合物(植物细胞外存在的芳香族化合物如黄酮、单宁和木酚素等)便作为可扩散的氧化剂和酶系统的“电子穿梭器”(electron shuttles)直接与木质素反应,引发一系列木质素内部化学键的裂解,导致木质素的解聚[84-85]。由此可见,在微生物降解木质素过程中,除酶发挥主导作用外,各种辅助因子也扮演重要角色。进一步研究当中,除要重点挖掘参与木质素代谢的各种酶系外,还可利用组学等技术手段,充分挖掘与木质素代谢相关的各种辅助因子及其作用机制,以更加全面地阐明木质素的微生物降解机制。
![]() |
图 2 微生物对木质素的解聚及衍生芳烃代谢机制示意图[27, 83] Figure 2 Schematic diagram of microbial depolymerization of lignin and metabolism of derived aromatic hydrocarbons[27, 83]. Microbial degradation of lignin can be divided into two stages: Depolymerization and mineralization. A: The depolymerization stage of lignin. The C−C bonds and C−O bonds inside lignin are first oxidized by laccase and peroxidase secreted by microorganisms, and the lignin macromolecules are depolymerized into simple monomer forms. B: The mineralization stage of lignin. The aromatic compounds produced by lignin depolymerization are converted into intermediates through various metabolic pathways, and finally the intermediates are further degraded by various ring cleavage pathways and enter the tricarboxylic acid cycle. |
3.2 “生物漏斗”式木质素衍生芳烃的降解
研究表明,细菌在木质素衍生的非均相芳香族化合物的矿化过程中起着主导作用。为克服木质素的顽固性,自然界中一些木质素降解细菌进化出“生物漏斗”式木质素衍生芳烃的代谢途径(图 2B):即木质素降解细菌会通过β-芳基醚和联苯等多种代谢途径,将木质素解聚衍生的芳香族化合物转化为丁香酸、香草酸和对羟基苯甲酸中间体,随后便通过O-去甲基化等反应将中间体转化为儿茶酚等衍生物,最终衍生物的苯环被多种环裂解途径破坏进入三羧酸循环(TCA),从而实现细菌对木质素衍生芳烃的降解和利用[27, 83, 86]。“生物漏斗”式木质素衍生芳烃降解方式的提出,为解决木质素芳香族异质混合物难降解的问题提供可能。如恶臭假单胞菌KT2440 (Pseudomonas putida KT2440)分泌的双加氧酶可以将儿茶酚衍生物转化为顺, 顺-己二烯二酸[87],短小芽胞杆菌ZB1 (B. pumilus ZB1)分泌的单加氧酶将丁香酚和异丁香酚转化为香兰素[88],少动鞘氨醇单胞菌SYK-6 (Sphingomonas paucimobilis SYK-6)则可以通过β-芳基醚和香兰豆素等多种代谢途径降解木质素芳香族化合物[86]。同时,如图 2所示[27, 83],该衍生芳烃的代谢方式与上游木质素解聚相结合,降解细菌可以迅速代谢木质素解聚衍生的芳烃混合物,阻断木质素解聚后再聚合的可能,为木质素的降解转化提供可行性的方案,具有应用前景。目前已经报道具有降解木质素衍生芳烃能力的细菌主要集中在少数菌株中,需进一步挖掘具有代谢木质素衍生芳烃能力的菌株。此外,该方案证明组建木质素降解复合菌群,尤其是真菌与细菌进行合理配伍降解木质素的可行性,这将是下一步的研究重点。
4 木质素降解微生物在秸秆肥料化技术中的应用进展 4.1 提高秸秆腐熟效率如前述,木质素是微生物降解秸秆木质纤维素的限速因子,同时也会降低秸秆腐熟的实际效率。一些高效降解秸秆木质素的微生物能有效地提高秸秆降解腐熟效率。Saha等[89]以26株白腐真菌为研究对象,玉米秸秆为底物,在相同条件下培养30 d后发现黄孢原毛平革菌NRRL-6370 (P. chrysosporium NRRL-6370)对玉米秸秆中木质素的降解率最大(51%),血红密孔菌NRRL-FP- 103506-Sp (Py. sanguineus NRRL-FP-103506-Sp)次之(46.7%),而木质素的降解会增加底物的孔径,从而为纤维素酶和半纤维素酶提供一个更容易接触目标的表面积,使得纤维素和半纤维素更容易降解,最终提高玉米秸秆腐熟效率。与此研究结果类似的是,Song等[90]将烟曲霉菌CLL (Aspergillus fumigatus CLL)接种到含有玉米秸秆的培养基内接续培养,通过扫描电子显微镜观察到10 d后玉米秸秆的表面结构被彻底破坏,纤维素和半纤维素完全暴露在可视范围内,有效提高纤维素酶和半纤维素酶的可及性,加速秸秆的腐熟效率。2项研究均有效地阐明利用木质素降解微生物对秸秆进行预处理提高秸秆整体酶解腐熟效率的可行性。
4.2 在秸秆好氧堆肥中的应用好氧堆肥是一种微生物介导的需氧、嗜热的固态发酵过程,该过程可以将秸秆转化成作物生长所需要的腐殖质(humus),是实现秸秆资源化和减量化的高效途径之一。研究表明,秸秆木质素降解过程中释放的化合物可以作为腐殖质形成的前体,提高腐殖质的形成效率[91]。基于这2点原因,前人有报道接种木质素降解菌有助于堆肥效率的提高。例如,Mei等[31]在研究接种木质素降解菌解淀粉芽孢杆菌SL-7对烟草秸秆堆肥腐熟效率影响实验中表明,堆肥结束时,接种与未接种堆肥物料相比,木质素降解率提高22.26%,腐殖质的含量提高3.56 g/kg。并且该研究通过检测对比接种解淀粉芽孢杆菌SL-7前后堆肥材料的C/N及种子萌发指数(germination index, GI)判断,接种该菌株有利于秸秆的腐熟,且能提高堆肥肥效及稳定性。Chen等[92]在玉米秸秆和油菜残渣的堆肥冷却期接种黄孢原毛平革菌的研究结果表明,接种后与未接种相比,木质素含量降低64.3%,纤维素含量降低40%,此外,腐殖质含量显著增加55.4%。上述研究结果皆表明,接种木质素降解微生物具有克服目前好氧堆肥腐熟效率低,堆肥产品不均匀的能力。但好氧堆肥过程温度往往起伏较大,因此,筛选出对极端环境有着较强抵御作用的极端木质素降解微生物,可能会对堆肥效率的提高更有帮助。
5 研究展望木质素结构复杂,且与纤维素、半纤维素组成晶体结构,是环境微生物降解秸秆的主要障碍。近年来利用高通量测序技术和多组学技术的优势,对木质素降解菌及其降解机制的研究取得积极的进展,但仍存在以下3个方面的问题有待解决:(1) 缺乏对高效率木质素降解细菌和复合菌群的挖掘。虽然目前已报道的真菌降解木质素在实验室层面得到充分论证,但实际应用中还是会受到孵育周期长、对极端环境耐受性差等因素的影响。而由于细菌具有对极端环境较强的适应性以及能被基因工程改造等优势,正逐渐成为当前研究的热点[42]。不过目前对木质素降解细菌的发掘未能有新的突破,因此整合目前现有技术手段挖掘出高效的木质素降解细菌,可能成为实际应用中大规模降解转化木质素的突破口。此外,复合菌群的构建可以整合不同菌株的优势,对木质素降解起着积极作用,但目前对复合菌群之间互作机制的研究较为匮乏。借助高通量组学技术的优势,挖掘木质素降解复合菌群,将会为解决目前存在的木质素降解效率低的问题提供方向。(2) 木质素降解酶系的研究尚不完善。木质素的降解需要多种氧化酶的协同作用,而当前针对多种酶间以及酶与小分子介质之间互作机制的研究较少。因此,充分利用分子生物学技术研究参与木质素降解和转化的潜在的关键酶系统、分泌机制和酶间互作机制是当前需要解决的关键问题,这将有助于进一步阐明木质素降解机制。此外,木质素降解酶针对特定底物发挥作用的最适环境条件还需进一步研究[93]。(3) 木质素降解菌应用于秸秆还田方面的报道较少。当前我国对可收集秸秆超一半以上作还田处理[1],秸秆依靠土壤微生物自然降解效率缓慢,长期存在不利于土壤与大气环境的物质交换,易导致土壤处于缺氧环境,不利于作物生长[52]。因此,提高秸秆还田降解效率是当前亟需解决的问题,但目前木质素降解菌在秸秆还田中应用的研究较少。利用多种底物筛选方法,目前课题组已从不同生境(来自土壤、基质、玉米秸秆、堆肥、药渣等)中分离获得具有显著木质纤维素降解能力的真菌和细菌[94]。其中通过解析非洲哈茨木霉(Trichoderma afroharzianum)基因组和生物特性研究表明,非洲哈茨木霉不仅可以产生纤维素酶等水解酶通过水解真菌病原菌细胞壁达到抑制病原菌的效果,还能分泌木质素降解酶系,在秸秆还田中具有应用前景[95-96]。下一步,将对秸秆还田之后秸秆降解菌群演化规律做进一步研究,并结合筛选出适用于还田的木质素降解菌及复合菌群。
综上所述,微生物介导的木质素降解是需要多种酶系统通过多种代谢途径实现的复杂过程。而挖掘新的高效木质素降解微生物和降解酶,并深层次地解析木质素降解转化机制将为实现农作物秸秆的资源化、减量化和无害化提供理论基础。
[1] |
Ministry of Agriculture and Rural Affairs, PRC. Report on comprehensive utilization of crop straw in China[R]. http://www.moa.gov.cn/xw/zwdt/202210/t20221010_6412962.htm. 2022.12.15 (in Chinese). 中华人民共和国农业农村部. 全国农作物秸秆综合利用情况报告[R]. http://www.moa.gov.cn/xw/zwdt/202210/t20221010_6412962.htm. 2022.12.15. |
[2] | MORI T, TSUBOI Y, ISHIDA N, NISHIKUBO N, DEMURA T, KIKUCHI J. Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose[J]. Scientific Reports, 2015, 5: 11848 DOI:10.1038/srep11848. |
[3] | ØSTBY H, HANSEN LD, HORN SJ, EIJSINK VGH, VÁRNAI A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9): 623-657. |
[4] | WU YJ, GE SB, XIA CL, MEI CT, KIM KH, CAI LP, SMITH LM, LEE J, SHI SQ. Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose[J]. Renewable and Sustainable Energy Reviews, 2021, 136: 110442 DOI:10.1016/j.rser.2020.110442. |
[5] | WATANABE M, KANAGURI Y, SMITH RL JR. Hydrothermal separation of lignin from bark of Japanese cedar[J]. The Journal of Supercritical Fluids, 2018, 133: 696-703 DOI:10.1016/j.supflu.2017.09.009. |
[6] | CHIO C, SAIN M, QIN W. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249 DOI:10.1016/j.rser.2019.03.008. |
[7] | CRESTINI C, CRUCIANELLI M, ORLANDI M, SALADINO R. Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers[J]. Catalysis Today, 2010, 156(1/2): 8-22. |
[8] | CAO Y, CHEN SS, ZHANG SC, OK YS, MATSAGAR BM, WU KCW, TSANG DCW. Advances in lignin valorization towards bio-based chemicals and fuels: lignin biorefinery[J]. Bioresource Technology, 2019, 291: 121878 DOI:10.1016/j.biortech.2019.121878. |
[9] | ZHU YF, SONG WQ, YAO RJ, ZHAO YZ, XU GY. In-situ catalytic hydropyrolysis of lignin for the production of aromatic rich bio-oil[J]. Journal of the Energy Institute, 2022, 101: 187-193 DOI:10.1016/j.joei.2022.01.011. |
[10] | ZHOU NN, THILAKARATHNA WPDW, HE QS, RUPASINGHE HPV. A review: depolymerization of lignin to generate high-value bio-products: opportunities, challenges, and prospects[J]. Frontiers in Energy Research, 2022, 9: 758744 DOI:10.3389/fenrg.2021.758744. |
[11] | WENG CH, PENG XW, HAN YJ. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84 DOI:10.1186/s13068-021-01934-w. |
[12] | BILAL M, AHMAD QAMAR S, YADAV V, CHENG HR, KHAN M, ADIL SF, TAHERZADEH MJ, IQBAL HMN. Exploring the potential of ligninolytic armory for lignin valorization-a way forward for sustainable and cleaner production[J]. Journal of Cleaner Production, 2021, 326: 129420 DOI:10.1016/j.jclepro.2021.129420. |
[13] | CUI TW, YUAN B, GUO HW, TIAN H, WANG WM, MA YQ, LI CZ, FEI Q. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping[J]. Biotechnology for Biofuels, 2021, 14(1): 1-11 DOI:10.1186/s13068-020-01854-1. |
[14] | KNEŽEVIĆ A, MILOVANOVIĆ I, STAJIĆ M, LONČAR N, BRČESKI I, VUKOJEVIĆ J, ĆILERDŽIĆ J. Lignin degradation by selected fungal species[J]. Bioresource Technology, 2013, 138: 117-123 DOI:10.1016/j.biortech.2013.03.182. |
[15] | HOU LP, JI DD, DONG WF, YUAN L, ZHANG FS, LI Y, ZANG LH. The synergistic action of electro-Fenton and white-rot fungi in the degradation of lignin[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 99 DOI:10.3389/fbioe.2020.00099. |
[16] | RADHIKA NL, SACHDEVA S, KUMAR M. Lignin depolymerization and biotransformation to industrially important chemicals/biofuels[J]. Fuel, 2022, 312: 122935 DOI:10.1016/j.fuel.2021.122935. |
[17] | ANDLAR M, REZIĆ T, MARĐETKO N, KRACHER D, LUDWIG R, ŠANTEK B. Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation[J]. Engineering in Life Sciences, 2018, 18(11): 768-778 DOI:10.1002/elsc.201800039. |
[18] | CHEN Y, FAN H, MENG FR. Pleurotus ostreatusdecreases cornstalk lignin content, potentially improving its suitability for animal feed[J]. Journal of the Science of Food and Agriculture, 2017, 97(5): 1592-1598 DOI:10.1002/jsfa.7907. |
[19] | SHARARI M, JAHAN LATIBARI A, GUILLET A, AUROUSSEAU M, MOUHAMADOU B, RAFEIEE G, MIRSHOKRAEI A, PARSAPAGHOUH D. Application of the white rot fungus Phanerochaete chrysosporium in biotreatment of bagasse effluent[J]. Biodegradation, 2011, 22(2): 421-430 DOI:10.1007/s10532-010-9415-3. |
[20] | SURYADI H, JUDONO JJ, PUTRI MR, ECLESSIA AD, ULHAQ JM, AGUSTINA DN, SUMIATI T. Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi[J]. Heliyon, 2022, 8(2): e08865 DOI:10.1016/j.heliyon.2022.e08865. |
[21] | MASRAN R, ZANIRUN Z, BAHRIN EK, IBRAHIM MF, YEE PL, ABD-AZIZ S. Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment[J]. Applied Microbiology and Biotechnology, 2016, 100(12): 5231-5246 DOI:10.1007/s00253-016-7545-1. |
[22] | SAINI S, SHARMA KK. Fungal lignocellulolytic enzymes and lignocellulose: a critical review on their contribution to multiproduct biorefinery and global biofuel research[J]. International Journal of Biological Macromolecules, 2021, 193: 2304-2319 DOI:10.1016/j.ijbiomac.2021.11.063. |
[23] | ATIWESH G, PARRISH CC, BANOUB J, LE TAT. Lignin degradation by microorganisms: a review[J]. Biotechnology Progress, 2022, 38(2): e3226 DOI:10.1002/btpr.3226. |
[24] | YELLE DJ, RALPH J, LU FC, HAMMEL KE. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2008, 10(7): 1844-1849 DOI:10.1111/j.1462-2920.2008.01605.x. |
[25] | HAMED SAM. In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum[J]. International Biodeterioration & Biodegradation, 2013, 78: 98-102. |
[26] | ZENG J, SINGH D, LASKAR DD, CHEN S. Degradation of native wheat straw lignin by Streptomyces viridosporus T7A[J]. International Journal of Environmental Science and Technology, 2013, 10(1): 165-174 DOI:10.1007/s13762-012-0085-z. |
[27] | KAMIMURA N, SAKAMOTO S, MITSUDA N, MASAI EIJI, KAJITA S. Advances in microbial lignin degradation and its applications[J]. Current Opinion in Biotechnology, 2019, 56: 179-186 DOI:10.1016/j.copbio.2018.11.011. |
[28] | MYCROFT Z, GOMIS M, MINES P, LAW P, BUGG TDH. Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways[J]. Green Chemistry, 2015, 17(11): 4974-4979 DOI:10.1039/C5GC01347J. |
[29] | BUGG TDH, WILLIAMSON JJ, ALBERTI F. Microbial hosts for metabolic engineering of lignin bioconversion to renewable chemicals[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111674 DOI:10.1016/j.rser.2021.111674. |
[30] | TAYLOR CR, HARDIMAN EM, AHMAD M, SAINSBURY PD, NORRIS PR, BUGG TDH. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples[J]. Journal of Applied Microbiology, 2012, 113(3): 521-530 DOI:10.1111/j.1365-2672.2012.05352.x. |
[31] | MEI JF, SHEN XB, GANG LP, XU HJ, WU FF, SHENG LQ. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently[J]. Bioresource Technology, 2020, 310: 123445 DOI:10.1016/j.biortech.2020.123445. |
[32] | DUMOND L, LAM LPY, van ERVEN G, KABEL M, MOUNET F, GRIMA-PETTENATI J, TOBIMATSU Y, HERNANDEZ-RAQUET G. Termite gut microbiota contribution to wheat straw delignification in anaerobic bioreactors[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(5): 2191-2202. |
[33] | WANG Z, WU WQ, CUI LC, LI X, KULYAR MFEA, XIONG HQ, ZHOU N, YIN HH, LI JK, LI X. Isolation, characterization, and interaction of lignin-degrading bacteria from rumen of buffalo (Bubalus bubalis)[J]. Journal of Basic Microbiology, 2021, 61(8): 757-768 DOI:10.1002/jobm.202100068. |
[34] | XU R, ZHANG K, LIU P, HAN HW, ZHAO S, KAKADE A, KHAN A, DU DL, LI XK. Lignin depolymerization and utilization by bacteria[J]. Bioresource Technology, 2018, 269: 557-566 DOI:10.1016/j.biortech.2018.08.118. |
[35] | BURAIMOH OM, AMUND OO, IIORI MO. Kraft lignin degradation by autochtonous streptomyces strains isolated from a tropical lagoon ecosystem[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2015, 5(3): 248-253 DOI:10.15414/jmbfs.2015/16.5.3.248-253. |
[36] | ROELL GW, CARR RR, CAMPBELL T, SHANG ZY, HENSON WR, CZAJKA JJ, MARTÍN HG, ZHANG FZ, FOSTON M, DANTAS G, MOON TS, TANG YJ. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630[J]. Metabolic Engineering, 2019, 55: 120-130 DOI:10.1016/j.ymben.2019.06.013. |
[37] | SHIN SK, KO YJ, HYEON JE, HAN SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes[J]. Bioresource Technology, 2019, 289: 121728 DOI:10.1016/j.biortech.2019.121728. |
[38] | KUMAR A, PRIYADARSHINEE R, SINGHA S, SENGUPTA B, ROY A, DASGUPTA D, MANDAL T. Biodegradation of alkali lignin by Bacillus flexus RMWW Ⅱ: analyzing performance for abatement of rice mill wastewater[J]. Water Science and Technology, 2019, 80(9): 1623-1632 DOI:10.2166/wst.2020.005. |
[39] | ZHU DC, ZHANG PP, XIE CX, ZHANG WM, SUN JZ, QIAN WJ, YANG B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1[J]. Biotechnology for Biofuels, 2017, 10(1): 44 DOI:10.1186/s13068-017-0735-y. |
[40] | CHAUHAN PS. Role of various bacterial enzymes in complete depolymerization of lignin: a review[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101498 DOI:10.1016/j.bcab.2020.101498. |
[41] | RESHMY R, ATHIYAMAN BALAKUMARAN P, DIVAKAR K, PHILIP E, MADHAVAN A, PUGAZHENDHI A, SIROHI R, BINOD P, KUMAR AWASTHI M, SINDHU R. Microbial valorization of lignin: prospects and challenges[J]. Bioresource Technology, 2022, 344: 126240 DOI:10.1016/j.biortech.2021.126240. |
[42] | YANG J, ZHAO J, JIANG JC, XU H, ZHANG N, XIE JC, WEI M. Isolation and characterization of Bacillus sp. capable of degradating alkali lignin[J]. Frontiers in Energy Research, 2021, 9: 807286 DOI:10.3389/fenrg.2021.807286. |
[43] | YADAV S, CHANDRA R. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry[J]. Journal of Environmental Sciences, 2015, 33: 229-238 DOI:10.1016/j.jes.2015.01.018. |
[44] | JIMÉNEZ-BARRERA D, CHAN-CUPUL W, FAN ZL, OSUNA-CASTRO JA. Fungal co-culture increases ligninolytic enzyme activities: statistical optimization using response surface methodology[J]. Preparative Biochemistry & Biotechnology, 2018, 48(9): 787-798. |
[45] | IIMURA Y, ABE H, OTSUKA Y, SATO Y, HABE H. Bacterial community coexisting with white-rot fungi in decayed wood in nature[J]. Current Microbiology, 2021, 78(8): 3212-3217 DOI:10.1007/s00284-021-02595-6. |
[46] | SHUAI L, AMIRI MT, QUESTELL-SANTIAGO YM, HÉROGUEL F, LI YD, KIM H, MEILAN R, CHAPPLE C, RALPH J, LUTERBACHER JS. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016, 354(6310): 329-333 DOI:10.1126/science.aaf7810. |
[47] | KAMEI I. Co-culturing effects of coexisting bacteria on wood degradation by Trametes versicolor[J]. Current Microbiology, 2017, 74(1): 125-131 DOI:10.1007/s00284-016-1162-1. |
[48] | LI C, CHEN C, WU XF, TSANG CW, MOU JH, YAN JB, LIU Y, LIN CSK. Recent advancement in lignin biorefinery: with special focus on enzymatic degradation and valorization[J]. Bioresource Technology, 2019, 291: 121898 DOI:10.1016/j.biortech.2019.121898. |
[49] | CHAN JC, PAICE M, ZHANG X. Enzymatic oxidation of lignin: challenges and barriers toward practical applications[J]. ChemCatChem, 2020, 12(2): 401-425 DOI:10.1002/cctc.201901480. |
[50] | SHRADDHA, SHEKHER R, SEHGAL S, KAMTHANIA M, KUMAR A. Laccase: microbial sources, production, purification, and potential biotechnological applications[J]. Enzyme Research, 2011, 2011: 217861. |
[51] | ZOFAIR SFF, AHMAD S, HASHMI MA, KHAN SH, KHAN MA, YOUNUS H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: significance in sustainable green chemistry[J]. Journal of Environmental Management, 2022, 309: 114676 DOI:10.1016/j.jenvman.2022.114676. |
[52] | CAJNKO MM, OBLAK J, GRILC M, LIKOZAR B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics[J]. Bioresource Technology, 2021, 340: 125655 DOI:10.1016/j.biortech.2021.125655. |
[53] | GUTIÉRREZ A, RENCORET J, CADENA EM, RICO A, BARTH D, del RÍO JC, MARTÍNEZ ÁT. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks[J]. Bioresource Technology, 2012, 119: 114-122 DOI:10.1016/j.biortech.2012.05.112. |
[54] | LI S, TANG B, LIU Y, CHEN AN, TANG WJ, WEI SH. High-level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C[J]. Biocatalysis and Agricultural Biotechnology, 2016, 8: 278-285 DOI:10.1016/j.bcab.2016.10.008. |
[55] | LIU XP, DENG W, YANG Y. Characterization of a novel laccase LAC-Yang1 from white-rot fungus Pleurotus ostreatus strain Yang1 with a strong ability to degrade and detoxify chlorophenols[J]. Molecules, 2021, 26(2): 473 DOI:10.3390/molecules26020473. |
[56] | DING ZY, PENG L, CHEN YZ, ZHANG L, SHI GY, ZHANG KC. Production and characterization of thermostable laccase from the mushroom, Ganoderma lucidum, using submerged fermentation[J]. African Journal of Microbiology Research, 2012, 6(6): 1147-1157 DOI:10.5897/AJMR11.1257. |
[57] | YANG XL, WU YY, ZHANG Y, YANG E, QU Y, XU HN, CHEN YH, IRBIS C, YAN JP. A thermo-active laccase isoenzyme from Trametes trogii and its potential for dye decolorization at high temperature[J]. Frontiers in Microbiology, 2020, 11: 241 DOI:10.3389/fmicb.2020.00241. |
[58] | WANG SS, NING YJ, WANG SN, ZHANG J, ZHANG GQ, CHEN QJ. Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01[J]. International Journal of Biological Macromolecules, 2017, 95: 920-927 DOI:10.1016/j.ijbiomac.2016.10.079. |
[59] | OLAJUYIGBE FM, FATOKUN CO. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05[J]. International Journal of Biological Macromolecules, 2017, 94: 535-543 DOI:10.1016/j.ijbiomac.2016.10.037. |
[60] | GAUR N, NARASIMHULU K, PYDISETTY Y. Biochemical and kinetic characterization of laccase and manganese peroxidase from novel Klebsiella pneumoniae strains and their application in bioethanol production[J]. RSC Advances, 2018, 8(27): 15044-15055 DOI:10.1039/C8RA01204K. |
[61] | JANUSZ G, PAWLIK A, ŚWIDERSKA-BUREK U, POLAK J, SULEJ J, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Laccase properties, physiological functions, and evolution[J]. International Journal of Molecular Sciences, 2020, 21(3): 966 DOI:10.3390/ijms21030966. |
[62] | ZHUO R, FAN FF. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants[J]. Science of the Total Environment, 2021, 778: 146132 DOI:10.1016/j.scitotenv.2021.146132. |
[63] | WONG DWS. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209 DOI:10.1007/s12010-008-8279-z. |
[64] | DATTA R, KELKAR A, BARANIYA D, MOLAEI A, MOULICK A, MEENA R, FORMANEK P. Enzymatic degradation of lignin in soil: a review[J]. Sustainability, 2017, 9(7): 1163 DOI:10.3390/su9071163. |
[65] | SÁNCHEZ-RUIZ MI, AYUSO-FERNÁNDEZ I, RENCORET J, GONZÁLEZ-RAMÍREZ AM, LINDE D, DAVÓ-SIGUERO I, ROMERO A, GUTIÉRREZ A, MARTÍNEZ AT, RUIZ-DUEÑAS FJ. Agaricales mushroom lignin peroxidase: from structure-function to degradative capabilities[J]. Antioxidants, 2021, 10(9): 1446 DOI:10.3390/antiox10091446. |
[66] | LUEANGJAROENKIT P, TEERAPATSAKUL C, SAKKA K, SAKKA M, KIMURA T, KUNITAKE E, CHITRADON L. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system[J]. Mycobiology, 2019, 47(2): 217-229 DOI:10.1080/12298093.2019.1589900. |
[67] | ZHANG Y, DONG ZQ, LUO Y, YANG E, XU HN, CHAGAN I, YAN JP. The Manganese peroxidase gene family of Trametes trogii: gene identification and expression patterns using various metal ions under different culture conditions[J]. Microorganisms, 2021, 9(12): 2595 DOI:10.3390/microorganisms9122595. |
[68] | ASINA F, BRZONOVA I, KOZLIAK E, KUBÁTOVÁ A, JI Y. Microbial treatment of industrial lignin: successes, problems and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 1179-1205 DOI:10.1016/j.rser.2017.03.098. |
[69] | BARBER-ZUCKER S, MINDEL V, GARCIA-RUIZ E, WEINSTEIN JJ, ALCALDE M, FLEISHMAN SJ. Stable and functionally diverse versatile peroxidases designed directly from sequences[J]. Journal of the American Chemical Society, 2022, 144(8): 3564-3571 DOI:10.1021/jacs.1c12433. |
[70] | KONG W, FU X, WANG L, ALHUJAILY A, ZHANG JL, MA FY, ZHANG XY, YU HB. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion[J]. Biotechnology for Biofuels, 2017, 10(1): 1-15 DOI:10.1186/s13068-016-0693-9. |
[71] | CORDAS CM, NGUYEN GS, VALÉRIO GN, JØNSSON M, SÖLLNER K, AUNE IH, WENTZEL A, MOURA JJG. Discovery and characterization of a novel Dyp-type peroxidase from a marine actinobacterium isolated from Trondheim fjord, Norway[J]. Journal of Inorganic Biochemistry, 2022, 226: 111651 DOI:10.1016/j.jinorgbio.2021.111651. |
[72] | BROWN ME, CHANG MCY. Exploring bacterial lignin degradation[J]. Current Opinion in Chemical Biology, 2014, 19: 1-7 DOI:10.1016/j.cbpa.2013.11.015. |
[73] | SADAQAT B, KHATOON N, MALIK AY, JAMAL A, FAROOQ U, ALI MI, HE H, LIU FJ, GUO HG, URYNOWICZ M, WANG QR, HUANG ZX. Enzymatic decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium[J]. Scientific Reports, 2020, 10: 20240 DOI:10.1038/s41598-020-76376-9. |
[74] | SINGH R, SHEDBALKAR UU, NADHE SB, WADHWANI SA, CHOPADE BA. Lignin peroxidase mediated silver nanoparticle synthesis in Acinetobacter sp[J]. AMB Express, 2017, 7(1): 1-10 DOI:10.1186/s13568-016-0313-x. |
[75] | XU H, GUO MY, GAO YH, BAI XH, ZHOU XW. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol[J]. BMC Biotechnology, 2017, 17(1): 1-12 DOI:10.1186/s12896-016-0323-4. |
[76] | GAO Y, LI JJ, ZHENG LY, DU YG. Rational design of Pleurotus eryngii versatile ligninolytic peroxidase for enhanced pH and thermal stability through structure-based protein engineering[J]. Protein Engineering, Design and Selection, 2017, 30(11): 743-751 DOI:10.1093/protein/gzx055. |
[77] | LIU JS, ZHANG S, SHI QP, WANG L, KONG W, YU HB, MA FY. Highly efficient oxidation of synthetic and natural lignin-related compounds by Physisporinus vitreus versatile peroxidase[J]. International Biodeterioration & Biodegradation, 2019, 136: 41-48. |
[78] | LAUBER C, SCHWARZ T, NGUYEN QK, LORENZ P, LOCHNIT G, ZORN H. Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus[J]. AMB Express, 2017, 7(1): 1-15 DOI:10.1186/s13568-016-0313-x. |
[79] | RAI A, KLARE JP, REINKE PYA, ENGLMAIER F, FOHRER J, FEDOROV R, TAFT MH, CHIZHOV I, CURTH U, PLETTENBURG O, MANSTEIN DJ. Structural and biochemical characterization of a dye-decolorizing peroxidase from Dictyostelium discoideum[J]. International Journal of Molecular Sciences, 2021, 22(12): 6265 DOI:10.3390/ijms22126265. |
[80] | KUMAR M, YOU SM, BEIYUAN JZ, LUO G, GUPTA J, KUMAR S, SINGH L, ZHANG SC, TSANG DCW. Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects[J]. Bioresource Technology, 2021, 320: 124412 DOI:10.1016/j.biortech.2020.124412. |
[81] | BRINK DP, RAVI K, LIDÉN G, GORWA-GRAUSLUND MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database[J]. Applied Microbiology and Biotechnology, 2019, 103(10): 3979-4002 DOI:10.1007/s00253-019-09692-4. |
[82] | ZHU DC, QARIA MA, ZHU B, SUN JZ, YANG B. Extremophiles and extremozymes in lignin bioprocessing[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112069 DOI:10.1016/j.rser.2021.112069. |
[83] | LI F, ZHAO YQ, XUE L, MA FY, DAI SY, XIE SX. Microbial lignin valorization through depolymerization to aromatics conversion[J]. Trends in Biotechnology, 2022, 40(12): 1469-1487 DOI:10.1016/j.tibtech.2022.09.009. |
[84] | JANUSZ G, PAWLIK A, SULEJ J, ŚWIDERSKA-BUREK U, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution[J]. FEMS Microbiology Reviews, 2017, 41(6): 941-962 DOI:10.1093/femsre/fux049. |
[85] | ULLAH M, LIU PY, XIE SX, SUN S. Recent advancements and challenges in lignin valorization: green routes towards sustainable bioproducts[J]. Molecules, 2022, 27(18): 6055 DOI:10.3390/molecules27186055. |
[86] | KAMIMURA N, TAKAHASHI K, MORI K, ARAKI T, FUJITA M, HIGUCHI Y, MASAI EJ. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism[J]. Environmental Microbiology Reports, 2017, 9(6): 679-705 DOI:10.1111/1758-2229.12597. |
[87] | KOHLSTEDT M, STARCK S, BARTON N, STOLZENBERGER J, SELZER M, MEHLMANN K, SCHNEIDER R, PLEISSNER D, RINKEL J, DICKSCHAT JS, VENUS J, van DUUREN JBJH, WITTMANN C. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida[J]. Metabolic Engineering, 2018, 47: 279-293 DOI:10.1016/j.ymben.2018.03.003. |
[88] | ZUO KJ, LI HN, CHEN JH, RAN QP, HUANG MT, CUI XX, HE LL, LIU JS, JIANG ZB. Effective biotransformation of variety of guaiacyl lignin monomers into vanillin by Bacillus pumilus[J]. Frontiers in Microbiology, 2022, 13: 901690 DOI:10.3389/fmicb.2022.901690. |
[89] | SAHA BC, QURESHI N, KENNEDY GJ, COTTA MA. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis[J]. International Biodeterioration & Biodegradation, 2016, 109: 29-35. |
[90] | SONG ZW, WEN XC, SHENG T, SUN CY. Bioaugmentation of corn stalk saccharification with Aspergillus fumigatus under low/high solid loading culture[J]. BioEnergy Research, 2022, 15(4): 1908-1917 DOI:10.1007/s12155-022-10398-1. |
[91] | KULIKOWSKA D, SINDREWICZ S. Effect of barley straw and coniferous bark on humification process during sewage sludge composting[J]. Waste Management, 2018, 79: 207-213 DOI:10.1016/j.wasman.2018.07.042. |
[92] | CHEN Y, WANG YY, XU Z, LIU YY, DUAN HP. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresource Technology, 2019, 293: 122075 DOI:10.1016/j.biortech.2019.122075. |
[93] | XU X, PANG DW, CHEN J, LUO YL, ZHENG MJ, YIN YP, LI YX, LI Y, WANG ZL. Straw return accompany with low nitrogen moderately promoted deep root[J]. Field Crops Research, 2018, 221: 71-80 DOI:10.1016/j.fcr.2018.02.009. |
[94] | ZHOU FY, WU XQ, GAO YX, FAN SS, ZHOU HZ, ZHANG XJ. Diversity shifts in the root microbiome of cucumber under different plant cultivation substrates[J]. Frontiers in Microbiology, 2022, 13: 878409 DOI:10.3389/fmicb.2022.878409. |
[95] | WU XQ, LYU YP, REN H, ZHOU FY, ZHANG XJ, ZHAO XY, ZHANG GZ, YANG HT. Degradation of oxalic acid by Trichoderma afroharzianum and its correlation with cell wall degrading enzymes in antagonizing Botrytis cinerea[J]. Journal of Applied Microbiology, 2022, 133(5): 2680-2693 DOI:10.1111/jam.15617. |
[96] |
WU XQ, ZHANG XJ, ZHOU FY, ZHOU HZ, ZHAO XY, XIE XY, WANG JN. A Trichoderma afroharzianum TA97 and its application in straw back to the field[P]. China: ZL202011309961.2. 2022.04. 15 (in Chinese). 吴晓青, 张新建, 周方园, 周红姿, 赵晓燕, 谢雪迎, 王加宁. 一株非洲哈茨木霉Ta97及其在秸秆还田方面的应用[P]. 中国: ZL202011309961.2. 2022.04. 15. |