微生物学报  2023, Vol. 63 Issue (12): 4502-4521   DOI: 10.13343/j.cnki.wsxb.20230288.
http://dx.doi.org/10.13343/j.cnki.wsxb.20230288
中国科学院微生物研究所,中国微生物学会

文章信息

马莹, 程莹莹, 石孝均, 陈新平, 骆永明. 2023
MA Ying, CHENG Yingying, SHI Xiaojun, CHEN Xinping, LUO Yongming.
溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用
Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers
微生物学报, 63(12): 4502-4521
Acta Microbiologica Sinica, 63(12): 4502-4521

文章历史

收稿日期:2023-04-20
网络出版日期:2023-07-10
溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用
马莹1 #, 程莹莹1 #, 石孝均1 , 陈新平1 , 骆永明2     
1. 西南大学资源环境学院, 重庆 400716;
2. 中国科学院南京土壤研究所 土壤环境与污染修复重点实验室, 江苏 南京 210008
摘要:大多数农业土壤有效磷资源有限,使用磷肥虽能缓解作物磷缺乏现象,但却带来较大的环境风险,影响农业生态稳定。微生物是土壤磷素循环的组成部分,在介导植物磷的可用性方面起着重要作用。溶磷菌(phosphate-solubilizing bacteria, PSB)可溶解土壤难溶性无机磷和有机磷,促进根系磷吸收,同时增强作物对逆境(如生物胁迫和非生物胁迫)的抵抗能力。目前,使用PSB作为潜在生物肥料已引起了相当大的关注,在可持续农业方面具有广阔的应用前景。本文系统阐述了PSB的农业生态学功能,并结合有机酸、水解酶、铁载体和1-氨基环丙烷-1-羧酸(1-aminocyclopropane- 1-carboxylic acid, ACC)脱氨酶等因素,阐述了PSB溶磷促生的生理和分子机制,重点分析了PSB对土壤微生物群落的影响及其与根系分泌物的互作关系,同时介绍了应用推广PSB生物肥料的重点和难点,并提出使用PSB生物肥料是提高农业磷肥使用效率和作物产量的有效措施。文章还对PSB生物肥料在未来的研究及生产应用方面提出了建议,以促进PSB生物肥料在生态农业中的应用,缓解农业资源和环境带来的双重挑战,满足未来全球粮食安全需求,顺应绿色生态农业的发展趋势。
关键词溶磷菌    溶磷    促生    微生物互作    根系分泌物    
Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers
MA Ying1 #, CHENG Yingying1 #, SHI Xiaojun1 , CHEN Xinping1 , LUO Yongming2     
1. College of Resources and Environment, Southwest University, Chongqing 400716, China;
2. CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
Abstract: Agricultural soils generally have limited available phosphorus. Although the application of phosphorus fertilizers can alleviate phosphorus deficiency in crops, it brings environmental risks, thereby affecting agroecological stability. Microorganisms are integral components of soil phosphorus cycling and play a crucial role in mediating the availability of phosphorus to plants. Phosphate-solubilizing bacteria (PSB) can solubilize insoluble inorganic and organic phosphorus in the soil, facilitating phosphorus uptake by plant roots and enhancing crop resistance to biotic and abiotic stresses. Currently, the use of PSB as potential biofertilizers has attracted considerable attention and demonstrated broad prospects for sustainable agriculture. This article systematically elucidates the agroecological functions of PSB and expounds the physiological and molecular mechanisms of PSB-mediated phosphorus solubilization and plant growth-promoting effect with consideration to other factors such as organic acids, hydrolases, siderophores, and ACC deaminases. Moreover, we analyzed the impact of PSB on soil microbial communities and their interaction with root exudates, highlighted the key points and challenges in the application and promotion of PSB biofertilizers, and put forward the application of PSB biofertilizers as an effective measure to increase phosphorus fertilizer use efficiency and crop yield. Finally, we proposed suggestions for future research and application of PSB biofertilizers, aiming to promote the application of PSB biofertilizers in ecological agriculture. The efforts aim to mitigate the dual challenges posed by agricultural resources and the environment, meet future needs of global food security, and align with the development trend of green ecological agriculture.
Keywords: phosphorus-solubilizing bacteria    phosphorus-solubilizing    growth promotion    microbial interactions    root exudates    

在全球人口快速增长的背景下,实现联合国关于农业可持续发展目标需要持续关注粮食生产问题[1]。农业不仅需要提高粮食生产力,保证粮食安全,还应维持生态环境稳定[1]。过去几十年里,传统的耕作方式(如农用化学品的施用等)虽然带来了粮食增产,但同时也对生态环境造成威胁,养分枯竭、污染物积累、干旱、土壤侵蚀和肥力丧失等问题不断出现,给农业可持续发展带来了巨大的挑战[2]。此外,过度使用农用化学产品(如化肥、农药等)也对人类健康产生了负面影响,引发诸多疾病,如体质不佳、疾病恶化和智力迟钝等[3]。经过科学家们长期的研究发现,来自不同栖息地的微生物群可以促进植物生长,提高养分利用效率。目前,表现出不同植物促生性状的微生物已成为农用化学产品的可持续替代品,是提高农业生产力和维持生态环境稳定的有效措施[4]

溶磷菌(phosphate-solubilizing bacteria, PSB)是一类具有代表性的促生菌,它能够促进土壤-植物磷循环过程[5]。不同于生物地球化学的碳、氮循环,磷循环属于典型的沉积循环,在地球温度和大气压下不形成任何稳定的气态物种[5-6]。在植物-土壤磷循环过程中,磷很容易被吸附固定形成不溶性磷酸盐[如铁-磷(Fe-P)、铝-磷(Al-P)、钙-磷(Ca-P)等],这致使磷成为限制性营养元素之一[7]。当土壤磷供应不足时,会对作物生长产生诸多不利影响,如限制根系构型、减缓光合速率、降低对生物胁迫和非生物胁迫的耐受性、从而减少作物产量[8]。PSB能够将土壤中被固化的磷和动植物残体中的磷转化为可供植物吸收利用的有效磷,并分泌代谢物质(如生长素、有机酸和铁载体等),促进作物生长,保证粮食安全和稳定[5]。因此,PSB生物肥料使用是克服土壤中磷缺乏具有潜在经济效益、环境友好的关键技术措施。

目前,公众对于PSB生物肥料的认可度不断提高,贡献率也在逐年增加[5]。以中国为例,中国农业农村部于20世纪60年代开始规范生物制剂的管理与注册,目前已登记的微生物菌剂已超一万种,包括微生物菌剂、微生物浓缩制剂、光合细菌菌剂和根瘤菌菌剂等。通过使用生物制剂,肥料施用量减少30%,产量增加30%[9]。其中,PSB的产量增幅达到40%,与根瘤菌共接种的净收益为1 196元,增幅为6.82%[10-11]。需要承认的是,在推广PSB的应用过程中确实存在一些问题,关于PSB生物肥料的商业化应用效果仍存在一些质疑。本综述汇集了国内外最新的PSB研究,全面阐述了PSB的生态学功能及其溶磷、促生机制,并重点关注PSB对土壤微生物群落的影响及其与植物根系的相互作用,旨在扩大PSB生物肥料的商业应用范围,为粮食增产和稳定农业生态环境提供科学依据与产品支撑。

1 PSB的农业生态学功能

PSB作为土壤微生物中具有磷动员能力的典型微生物群体,在磷调动过程中发挥着重要作用和生态功能:(1) PSB溶磷以满足自身需求,并通过生物质周转释放磷为生态系统服务。在富碳环境中,PSB将促进微生物生物量周转,特别是在磷限制情况下,PSB效应的驱动力会更为明显。在富含磷的环境中,土壤微生物将使用可利用的磷;而在磷缺乏的环境中,它将驱动微生物生物量中磷的溶解活性。(2) PSB溶磷代表了其对植物磷营养的理想贡献,即过量的磷溶解在土壤中以满足植物的需求(碳和氮供应充足)[8]。综上,本文强调了PSB在磷动员过程中的生态功能,其最终将实现农业生态系统中磷的补充。

PSB在农业生态系统中最核心的功能是将土壤中难溶性磷酸盐转化为可溶性磷酸盐,满足作物磷需求。例如,从磷酸盐固体污泥样品中分离的铜绿假单胞菌(Pseudomonas sp.)、沙雷氏菌(Serratia sp.)、泛菌(Panthenium sp.)和肠杆菌(Enterobacter sp.)等PSB能够溶解磷酸三钙[Ca3(PO4)2]、磷酸铝(AlPO4)、磷酸铁(FePO4)这3种形式的磷酸盐[12]。此外,从玉米(Zea mays)根际土壤中分离出的优势PSB,其溶磷指数为1.94–3.69[13]。与化学磷肥混合使用后,土壤中有效磷含量增加到30.6–36.3 mg/kg,能有效减少商业化肥的使用[13]。随着研究的不断深入,越来越多性能优良的PSB被发现,如不动杆菌(Acinetobacter sp.)、嗜碱芽孢杆菌(Bacillus alcalophilus)、节杆菌(Arthrobacter sp.)、偶氮幽门螺杆菌(Helicobacter azo)、芽孢杆菌(Bacillus sp.)、伯克霍尔德菌(Burkholderia sp.)、Enterobacter sp.、温氏杆菌(Owenella sp.)、黄杆菌(Flavobacteria sp.)、胶质类芽孢杆菌(Paenibacillus mucilaginosus)、巨芽孢杆菌(Priestia megaterium)、Pseudomonas sp.、根瘤菌(Rhizobia sp.)和Serratia sp.等。除了典型的溶磷性能外,一些PSB对于作物还具有良好的促生功效,如提高小麦(Triticum aestivum)、玉米(Z. mays)磷营养、增加根系和地上部磷含量;促进小麦幼苗根系和内层的生物固氮作用,增加氮含量[14-15]。在番茄(Solanum lycopersicum)上的研究结果也表明,接种Acinetobacter sp.和苍白芽孢杆菌(B. pallor)既能促进番茄根际磷的溶解,又能提高植株地上部生物量(32.6%和26.2%)和根系干重(33.1%和25.6%)[16]。同样的,接种粘液假单胞菌(P. mucilaginosus)缓解了橙(Poncirus trifoliata)幼苗的磷胁迫,促进植株生长,提高了氮磷吸收量[17]

PSB在促进植物吸收磷的同时,不仅不会破坏农业生态环境,还能修复受传统商业化肥污染的土壤环境,改善土壤团粒结构。在退化或荒漠化过程中,自然植物群落的干扰通常伴随着土壤物理化学和生物特性的丧失。例如,土壤结构、植物养分供应、有机物含量和微生物活动[18]。目前,越来越多的农业从业者致力于研究根际微生物之间的相互作用机制,以期恢复土壤的有益特性。研究表明,使用基于细菌接种剂(如PSB、Helicobacter azoRhizobia sp.)的土壤处理方法,可以显著提高土壤团聚体(尺寸范围为3–250 μm和50–2 000 μm)的水稳定性和分布情况,较其他养分管理措施(如堆肥)表现出更低的有机碳损失和更大的收益[11]

研究还发现,PSB在缓解非生物胁迫中也发挥着重要作用,在高温/低温、干旱、盐度和重金属污染等极端环境下表现出良好的溶磷和抗逆性[19]。例如,从中国东部盐池沉积物中分离的盐单胞菌(Halomonas sp.)能够保持土壤磷的有效性,减少盐碱土壤的盐分,促进盐碱土壤农业的发展[20]Enterobacter sp.能增强玉米(Z. mays)对氧化应激的耐受性,提高干旱条件下种子的发芽势[21]。在重金属胁迫环境下,PSB通过上调根际细菌群落中细菌迁移性、氨基酸代谢和碳代谢相关基因的表达,促进有机酸分泌,活化土壤中的镉(Cd),修复Cd污染土壤[22]。生物炭固定化蜡样芽胞杆菌(B. cereus)、Enterobacter sp.通过分泌代谢物质(如葡萄糖酸、胞外多糖和铁载体等),有效富集镉、铬和铅等重金属,减轻其对植物的毒害[23-24]。除缓解非生物胁迫外,PSB还能减轻病原菌的入侵,缓解生物胁迫。Nallely等[25]从蓖麻(Ricinus communis)根际中分离的B. cereus,能显著降低番茄(S. lycopersicum)患溃疡病(由密歇根克拉维杆菌引起)的严重程度,增加植株的株高、茎宽,提高干重和总叶绿素含量。类似地,恶臭假单胞菌(P. putida) PSDM3、霍马切肠杆菌(E. homacher) PSDM10和小陌生菌(Advenella sp.) PSDM17能有效抑制小麦幼苗感染镰刀菌[26]

由此可见,PSB不仅具有优良的溶磷促生性能,对于一些非生物胁迫(重金属、高/低温和干旱等)和生物胁迫也有很好的抵御效果,可提高粮食生产力、保障粮食安全并实现农业生态的稳定,在农业生产中具有广阔的应用前景。尽管PSB在实验室中有效,但是田间的应用效果不佳,与预期的试验效果存在差距,致使其商业化推广进程迟缓。造成这种局面的原因包括:(1) 传统的筛菌方法侧重于单一的促生性状,鲜有将这些促生性状进行系统的量化分析。(2) 土壤环境复杂多变,根系分泌物(趋化性)、土壤原生微生物(竞争)会影响菌株在根际和根系的定殖。因此,在未来的研究中有必要借助多准则分析方法筛选出在田间试验中最具优势的PSB,同时进一步探究PSB在根际和作物体内的定殖机制,这对于提高菌株定殖效果、最大化发挥PSB的生态学功能具有重要意义。同时,未来也需要对PSB的溶磷速率以及该磷在农业生态系统中的长期意义进行更多的分析和了解。

2 PSB提高作物磷吸收效率的作用机制

土壤微生物是土壤功能和养分周转的基础,微生物生物量是土壤活性养分的重要组成部分。土壤微生物对于土壤总磷的贡献率高达26% (更典型的约5%–10%),代表植物有效磷的“潜在磷库”[5-6]。从长远来看,它们是土壤矿物质磷动员的主要驱动因素(溶解、风化等)。同时,土壤微生物还控制每年从植物和动物残留物中返还给土壤的正磷酸盐的再活化,促进“固定”池中磷的释放[5-6]。随着生态系统的发展,微生物磷库的相对大小和微生物加工磷转移到有机库(生物可利用库)的比例显著增加[27]。因此,促进风化和微生物磷库的溶解被认为是将“新”磷引入系统的关键。在此期间,PSB充当磷的活化剂,促进土壤中难溶性磷酸盐向植物可利用磷的转化,提高作物对磷的吸收效率[27]

PSB在根际区的定殖是一个动态变化的过程,在这期间,植物和微生物通过不同的化学信号通路相互作用(图 1)。掌握其内在机制对于更好地理解土壤-植物磷循环过程,服务现代农业至关重要。一方面,微生物通过分泌激素类物质、酸类物质和碳类物质等刺激根系养分吸收,提高植株养分利用效率;另一方面,植物还会分泌一些代谢物(糖类、氨基酸等)供给微生物的养分需求,影响根际微生物的分布和组成结构[28]

图 1 溶磷菌与根际的互作机制 Figure 1 Mechanism of interactions between phosphate solubilizing bacteria and the rhizosphere soils.

2.1 PSB提高土壤磷有效性的直接机制 2.1.1 溶磷机制

土壤是陆地生态系统中最重要的磷库,直接影响作物对磷素的供应[29]。无机磷在含有各种馏分的土壤磷库中占据主导作用,它通常以相对稳定且不溶的磷酸盐阴离子形式存在于初级磷矿物中[30]。而植物所需的大部分磷酸盐则以磷酸盐阴离子形式(H2PO4和H2PO42–)存在于土壤溶液中。这些正磷酸盐离子在土壤中的可溶性和不可溶性比率与土壤pH密切相关[30]

有机酸(如葡萄糖酸、苹果酸、乙酸、α酮戊二酸、柠檬酸、草酸、甲酸、琥珀酸和乳酸等)是PSB氧化、呼吸或发酵过程中产生的低分子量化合物[31]。据报道,PSB通过分泌这些有机酸,一方面降低介质pH,直接溶解不溶性无机磷酸盐;另一方面,有机酸的羧基与阳离子(如铁、铝等)螯合,从铁铝磷酸盐中释放正磷酸盐,增加土壤磷生物有效性,为植物提供充足的磷营养[31]。例如,复合接种日本芽孢杆菌(B. japonicum) 5038和P. mucilaginosus 3016显著提高大豆根际有机酸合成相关基因(pflADackAldhAppcgltA)丰度[32]。这些基因控制土壤微生物合成有机酸,降低土壤pH,增加根际的速效磷[32-33]。在几种有机酸中葡萄糖酸对磷的增溶作用贡献最大,其次是苹果酸、乙酸和α酮戊二酸,最后是乳酸、甲酸、柠檬酸和琥珀酸[34]。但也有研究发现草酸的溶磷效果最佳,能从不溶性磷酸盐中提取100%的磷酸盐,其次是柠檬酸、苹果酸、衣康酸和葡萄糖酸[35]。不同有机酸溶解磷矿资源的效率不仅取决于其自身化学特性(如羧基和羟基的数量和位置、酸解离常数),还与不同PSB的自身属性以及土壤环境的复杂性密切相关[34-36]。葡萄糖脱氢酶(glucose dehydrogenase, GDH)和氧化还原辅酶吡咯喹啉醌(pyrroloquinoline quinone, PQQ)是影响葡萄糖酸合成的关键酶,控制生态系统中微生物磷酸盐的溶解[37]。当介质中磷缺乏时,Serratia sp. S119中pqq基因的表达量增加,催化葡萄糖氧化为葡萄糖酸,缓解磷胁迫[38]。随着可溶性磷酸盐浓度的增加,吡咯喹啉醌-葡萄糖脱氢酶基因gcd基因的表达会受到抑制[39]。未来的研究可以通过修饰gcd基因调控机制来降低PSB对可溶性磷酸盐的敏感性,以扩大PSB的应用范围。以上报道证实有机酸及其还原酶在PSB溶解无机磷的过程中起着关键作用。然而由于根际有机酸的来源途径多样,植物、微生物交互作用明显,目前对于有机酸(PSB分泌的)溶磷机制的认识还不够全面,有诸多科学问题亟待解决。

除有机酸外,伴随铵离子同化的质子排泄也被认为是微生物的溶磷机制之一[40]。当存在铵盐时,PSB利用NH4+合成氨基酸,外排质子,酸化培养基,并溶解难溶性磷酸钙[36]。例如黄海芽孢杆菌(B. marisflavi) FA7通过铵同化引起质子外排,溶解介质中不溶性磷酸盐[40]。无机酸、H2S等也是微生物溶解磷酸盐的作用机制之一,但与有机酸和铵的质子外排相比,效率较低。

2.1.2 矿化机制

除了一部分无机磷外,土壤中还包含一定比例的无效有机磷(占总磷的30%–80%)。这些无效有机磷主要包括正磷酸单酯(如肌醇磷酸酯)、正磷酸盐双酯、有机多磷酸盐和膦酸盐等形式[41]。PSB通过矿化作用将这些无效有机磷转化为有效磷。土壤中有机磷的动态变化在全球生态地球化学磷素循环中起着重要作用,对农业的可持续发展具有积极意义。

在PSB的矿化过程中,磷酸酶和植酸酶这两种水解酶发挥着关键作用。其矿化机制主要分为两种:(1) 直接水解有机化合物;(2) 形成膜结合酶水解有机化合物。不同的PSB通过产生不同类型和浓度的磷酸水解酶矿化有机磷。例如,土壤Bacillus sp.通过产生胞外酶(如磷酸酯酶、磷酸二酯酶、植酸酶和磷脂酶)矿化有机磷酸盐[42]。而产气克雷伯氏菌(Klebsiella aerogenes)、荧光假单胞菌(Pseudomonas fluorescens)和 P. mucilaginosus 3016则通过产生磷酸酶水解有机磷[32, 36]

磷酸酶是微生物磷循环的重要驱动因子,可以矿化除植酸盐外的90%土壤有机磷[43-44]。根据pH的变化,微生物分泌的磷酸酶可分为酸性和碱性两大类。酸性磷酸酶通常是非特异性磷酸酶(nonspecific phosphatase, NSAPs),主要存在于革兰氏阴性细菌中,由A、B和C这3个分子家族组成,在酸性土壤中更丰富[43]。碱性磷酸酶(alkaline phosphatase, ALP)在中性和碱性土壤中占主导地位,仅来自土壤微生物和动物[44]。在细菌中编码ALP的同源基因是phoAphoDphoX[44-45]phoD是存在于土壤微生物中的关键ALP基因[45]。土壤微生物组对磷酸酶的产生受到无机磷和氮的严格控制,增加氮供应会提高土壤磷酸酶含量,这主要是因为植物和微生物对磷的需求增加[46]。反之,增加介质中无机磷供应则会抑制磷酸酶的产生及其活性。这主要是因为当游离磷酸盐过量时,PhoB活化会被PhoR作为磷酸酶打断;反之当无机磷酸盐浓度有限时,PhoBPhoR作为激酶激活[47]。Pho调控由一个双组分调控系统控制,该系统包括一个内膜组氨酸激酶传感器蛋白和一个细胞质转录反应的调节因子[47]。培养基中无机磷酸盐的消耗对于细菌中Pho调节因子的活化很重要[47]。由此可见,磷酸酶的调节是一个复杂的系统,整合有关细菌磷酸酶的知识可以更好地了解PSB的矿化机制。植酸酶是一种胞外酶,负责从有机化合物(植酸盐)中释放正磷酸盐,参与土壤磷的矿化过程[36]。植酸盐大多由植物合成,存在于植物种子和花粉中,占据土壤有机磷的60%–80%[36]。自然情况下的植酸盐难以降解[36]。植酸酶可以帮助植酸盐完全水解形成1个肌醇和6个无机磷酸盐分子,或者部分水解形成肌醇多磷酸盐和无机磷酸盐的低级异构体[48]。植酸酶根据其催化机理、立体结构和分子特征,可以分为:组氨酸酸性磷酸酶(histidine acid phosphatase, HAPhy)、半胱氨酸植酸酶(cysteine phytase, CPhy)、紫色酸性磷酸酶(purple acid phosphatase, PAPhy)和β螺旋桨型植酸酶(beta-propeller phytase, BPPhy)[49]

综上所述,对于不同的磷源,PSB通过产生不同的代谢物转化土壤难溶性磷酸盐,以达到提高土壤有效磷含量、加强土壤-植物磷素循环的目的。随着研究的不断深入,一些关键的调控通路(Pho调控)被发现,一些关键调控基因(pqqApqqB等)被聚焦。通过修饰改良这些调控基因可以进一步提高菌株的溶磷效果。但是目前对这些调控通路、调控基因的认识还不够深入,需要进一步认证。未来可以运用多组学知识,重点剖析PSB溶磷的直接调控机制,以提高对自然界中以PSB为中心的微生物群落的了解,并最终实现农作物磷的稳定供应。本课题组近期也在借助非靶向代谢组学技术,进一步探究PSB溶磷过程中代谢物的组成差异与其溶磷效率之间的相关性。

2.2 PSB促进作物生长发育的作用机制

养分利用效率是作物养分吸收的生理基础。部分PSB除了介导土壤有效磷库容量外,还会对根系产生促进作用,塑造良好的根系构型,提高作物养分利用效率。

2.2.1 根系分泌物

作为微生物与植物相互作用的物质基础,根系分泌物包括初级代谢物和次级代谢物[28]。土壤微生物会通过优先影响根系初级代谢物(如糖、氨基酸和有机酸)的分泌,在根系周围建立特定的代谢物活动通路,影响土壤养分状况[50]。初级代谢物包括糖(如阿拉伯糖、果糖和低聚糖)、氨基酸(天冬氨酸、谷氨酸和甘氨酸)和有机酸(柠檬酸,草酸和琥珀酸)。它们由碳代谢物质组成,通过特定的外排载体和运输通道排出根系,参与微生物与植株的生物化学循环过程[28]。根系分泌物中的多糖和脯氨酸通过诱导菌株生物膜的形成帮助菌株定殖。研究表明,生物膜包裹细菌,构成细菌生长和发育的保护模式,既能保护外来细菌竞争生态位点,提高其在逆境环境下的存活率;同时帮助菌株与植物根表形成稳定的共生关系,提高根际定殖效率[51-53]。有机酸是低分子量化合物,存在于根系分泌物中。它被认为是塑造根系微生物组成结构的选择性试剂,对土壤优势微生物类群有重要影响,是植物应对逆境的重要策略之一[54]。另外,类黄酮是植物中最广泛的次生代谢物之一,在植物与根际细菌相互作用中扮演着信号分子的重要角色[55]。目前,关于PSB与根系互作关系的研究逐渐受到关注,国内外也取得了一定的研究成果。但是,由于根系分泌物种类的多样性,PSB主要影响哪几种根系分泌物还需要进一步认证,同时关于PSB与根系互作的特定代谢调控机制的研究也有待进一步深入探究。

2.2.2 吲哚乙酸

吲哚乙酸(indoleacetic acid, IAA)是植物-微生物相互作用中响应外部刺激的关键效应分子。多项研究表明,能够产IAA的微生物可以刺激植物细胞伸长/影响细胞分裂,促进根的生长发育,从而有助于植物从土壤中获得更多的营养物质[56]。例如,Acinetobacter sp.通过分泌IAA和氨,促进拟南芥(Arabidopsis thaliana)种子萌发,增加侧根数,提高叶绿素含量[57]。黄微球菌(Micrococcus flavus) LS570菌株通过分泌IAA,阻止拟南芥幼苗初级根的伸长,破坏顶端优势,促进根分枝,提高养分吸收效率[58]。也有研究认为,根际细菌分泌的IAA会使植物细胞壁松动,增强根系分泌物的渗透性,为根际细菌发育提供更多的营养物质[59]。目前,国内外学者对于IAA响应的分子机制也取得了一定的进展。研究发现,生长素通过运输抑制剂1/生长素信号F-box蛋白(TIR1/AFBs)受体家族感知,这种相互作用会加速生长素/吲哚乙酸(Aux/IAA)转录抑制蛋白的降解,使生长素反应因子(ARFs)发生反抑制[60]。生长素反应因子ARF7和ARF19以及典型生长素受体会介导藤黄分枝杆菌(Mycobacterium luteum) LS570引起的主根和侧根反应[58]。鉴于此,作者的课题组以IAA作为关键的促生指标筛选高效优势PSB,同时借助分子手段(如转录组、高通量测序)解析产IAA的PSB调控作物养分循环的作用机制,以期能扩大PSB的商业化应用范围,丰富PSB与根系互作的理论基础。

2.2.3 胞外多糖

作为膜的主要成分之一,胞外多糖(exopolysaccharide, EPS)决定了细菌在植物根系表面的形成和附着能力[61]。缺少胞外多糖相关基因的贝莱斯芽孢杆菌(B. velezensis)会失去生物膜形成能力,无法在番茄根际定殖[62]。据报道,细菌通过群体感应(quorum sensing, QS)调节生物膜的形成过程。在此期间,细菌通过产生和感知信号分子与临近细菌进行通信,当信号分子浓度达到显著水平时,细菌会做出反应调节靶基因表达,促进整体生物膜的发育[63]。最近的研究还发现,EPS会影响PSB的溶磷效果[64]。多粘类芽孢杆菌(B. polymyxoides) GOL 0202的EPS产量与磷酸盐增溶效率呈正相关[65]。EPS的溶磷机制与生物膜的形成密切相关[63]。因为EPS通过促进生物膜的形成,为菌株分泌有机酸提供一个紧密的环境,从而提高菌株对于磷矿的溶解度,实现最大的溶磷量[63, 66]。也有研究表明,EPS会打破微生物磷的动态平衡,改变游离磷酸盐的移动方向,从而促进可溶性磷酸盐的释放[67]。但目前对于EPS在微生物磷循环中扮演的角色未见详细的描述,关于EPS如何影响磷动态循环过程也缺乏系统的报道。未来可以进一步分析EPS的物理化学结构和功能特点,模拟EPS影响下的磷酸盐循环过程,以期能深入解析EPS的生态学功能。

2.2.4 1-氨基环丙烷-1-羧酸脱氨酶、铁载体

乙烯(ethylene, ET)及其前体1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylate, ACC)不仅影响植物的生长发育进程,还参与细菌诱导的防御和共生程序[68]。在外源施用乙烯和ACC的情况下,功能菌株在根际和植株中的定殖会受到抑制,从而降低菌株的施用效果[68]。然而,利用ACC脱氨酶可以将ACC转化成α酮丁酸和氨,从而抑制乙烯的生物合成,提高了菌株的施用效果。目前,已筛选出了具有溶磷、促生和抗逆等多种优良性能的PSB,并将ACC脱氨酶作为促生指标来评估[69]Bacillus sp.、Burkholderia sp.和Pseudomonas sp.等PSB可以通过产生ACC脱氨酶来增加菌株对于磷酸钙的溶解性,增加根瘤,并促进鹰嘴豆(Cicer arietinum)的生长[70]。此外,当附着在植物根部时,含有ACC脱氨酶的细菌充当ACC的汇,确保乙烯水平不会增加到根系生长和发育受损的程度[68-69]。目前,已有几种含ACC脱氨酶的PSB能成功改善重金属胁迫下的植物生长[68-70]。ACC脱氨酶影响微生物溶磷效果的机制可能有两种:(1) 水解ACC产物α酮丁酸充当有机酸的作用,溶解无机磷;(2) 水解ACC产物氨,以铵的形式存在于土壤中,作为无机酸,溶解无机磷[68-70]。铁载体是一种可以螯合三价铁离子的低分子量物质。模型菌株巨型芽孢杆菌(B. megaterium) YCR-R4具有多种促生性能:产ACC脱氨酶、溶磷和分泌生长素[71]。研究发现B. megateriumPseudomonas sp.产生的铁载体对植株的根和芽有较强的刺激作用,增加了根和芽的生物量[72]。细菌产生的铁载体是唯一的细胞外铁载体[73]。产铁载体细菌通过释放铁载体,形成Fe3+-复合物,促进植物对铁的吸收。同时,细菌铁载体还能与其他金属(如Cd2+、Cu2+和Zn2+等)结合,修复重金属污染土壤[73-74]

综上,部分外源PSB添加后会与根系产生互惠关系,彼此促进,共同抵御环境压力,促进作物生长,提高作物养分利用效率。然而目前关于PSB-根系互作机制的研究有限,存在一些问题:(1) 并非所有PSB都具有促生、生防和抗逆功能,未来的研究需要考虑具有这些功能的PSB与其他PSB相比,产生差异的原因是什么,受哪些关键通路、基因控制;(2) PSB分为根际菌和内生菌,不同来源的菌株在土壤和作物体内的定殖部位是不同的,不同的定殖部位产生的定殖响应机制也是不同的,未来关于定殖的研究需要考虑菌株的生理生化特性;(3) 菌株的定殖是一个动态连续的过程,受根系分泌物的诱导,未来的研究需要考虑分泌物的组成差异及其功能特性,同时借助标记和分子技术等进一步探究时间维度上菌株的定殖行为与差异分泌物之间的关联性,深度解析PSB不同阶段与根系互作的机制。

3 PSB改变土壤微生物群落结构 3.1 有益微生物菌群

除上述的功能机制,接种PSB还能提高土壤微生物群落多样性和丰度,改变微生物之间的相互作用,提高核心细菌群落的有机质降解能力和多功能潜力,最终改善土壤养分质量[75]。例如,接种地衣芽孢杆菌(B. licheniformis)和Bacillus sp.,会使变形杆菌(Proteobacteria)、酸杆菌(Acidobacteria)和放线菌(Actinobacteria)的丰度增加,土壤中的优势菌群也会随之改变,主要为还原铁酸性土单胞菌(Aciditerrimonas ferrireducens)、橙色芽单胞菌(Gemmatimonas aurantiaca)和甲基脂蛋白吡啶单胞菌(Pyrinomonas methylaliphatogenes)[76]。接种B. japonicum 5038和P. mucilaginosus 3016主要影响δ-变形菌(Deltaproteobacteria)和芽单胞菌(Gemmatimonadetes)丰度,增幅分别为5.47%和1.72%[32]。这些细菌大多与氨基酸代谢、糖代谢和能量代谢途径有关,影响土壤有机质和有效养分含量[76]。特别的,Gemmatimonadetes具有一系列纤维素水解酶和漆酶基因,它们参与木质素降解过程[77]

丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是比较有代表性的一类有益微生物[78]。它们与大多数陆地植物的根建立互惠共生关系,利用宿主植物提供的碳源维持自身生长代谢。同时,AMF通过菌丝网络将定殖根系扩散到根际环境中,促进根系养分吸收和转运[78]。目前,大量研究和报道已表明PSB与AMF分离菌株在植物磷营养中的相互作用。在磷限制土壤中,PSB能够刺激AMF菌丝生长,促进有机磷矿化[78]。PSB在AMF菌丝周围形成的厚水膜中移动,并向植酸盐聚集处迁移,提高PSB对有机磷的矿化效率[79]。同时,PSB溶解矿化的正磷酸盐也会借助AMF不规则菌丝进入根系,促进根系磷的吸收[79]。AM真菌与其他微生物合作形成水稳定土壤团聚体的作用在不同的生态情况下是显而易见的[80]。研究发现,土壤颗粒通过细菌产物和AM真菌的菌丝结合在一起,形成稳定的微聚集体(直径2–20 μm)[80]。之后,在细菌多糖的作用下,由微聚体(直径2–20 μm)结合成较大的微聚体(直径20–250 μm),最后结合形成大聚集体(直径 > 250 μm),AM菌丝体增加大聚集体的大小[80]。AM的作用是由外部菌丝体的大小,分支习性和三维结构来解释的,这些菌丝体定殖在根部周围的土壤中,持续周期长达22周[80]。目前关于PSB调控土壤团聚体的研究也已有报道,但是关于PSB如何调控土壤团聚体形成的机制还鲜有研究,其是否与特定PSB产生的胞外多糖、有机酸等物质存在联系还存在疑问。

生物固氮(biological fixation of nitrogen, BNF)是全球许多生态系统中氮的主要输入方式,主要由细菌和古细菌完成。磷浓度与根际土壤中的生物固氮率密切相关。而PSB通过改变土壤磷有效性来增加土壤重氮营养群落的丰度和多样性,从而缓解氮肥对生物固氮的抑制作用[81]。例如,接种PSB类芽孢杆菌(Paenibacillus sp.)可以充分调动土壤磷库资源,为内生重氮菌提供正反馈,能最大限度地提高固氮率[14]。类似地,PSB与无机磷肥一起使用可以提高绿豆(Vigna radiata)根际的生物固氮能力,使土壤含氮量由0.04%提高到0.09%[82]。氮酶编码基因(nifH)被认定为是影响固氮率的关键生物因子,其丰度与固氮速率呈正相关[83]。共接种PSB和重氮营养菌可以提高植物生物量并增加nifH的相对表达量,进一步证实PSB对土壤氮生物群落的影响[14]

3.2 病原微生物菌群

除有益微生物菌群外,土壤中还存在一类会对作物生长发育产生抑制作用的病原微生物,如细菌、真菌、病毒和类病毒等。它们通过产生不同种类的有毒物质,入侵植物根系、茎秆和叶片等器官,导致植株出现多种生理性病变,从而危害植株健康[84]。研究表明,特定PSB通过竞争生态位和底物、分泌化感化学物质(如铁载体、抗生素等)激活寄主植物免疫系统以诱导其对病原体和环境胁迫的全身抗性等机制抑制病原微生物活性,改变土壤群落结构[85]。例如,PSB菌株Bacillus sp. SV101能有效抑制镰刀菌枯萎病,促进作物生长[85]。关于拟南芥的转录组结果也表明,模型菌株B. megaterium YC4-R4通过调节植株总纤维素和脂质百分比,上调代谢生物合成途径(酚类和类黄酮),帮助植株抵御逆境胁迫[86]。系统获得性抗性(systemic acquired resistance, SAR)和诱导系统抗性(induced systemic resistance, ISR)是诱导抗性的两种形式,其主要是通过支链氨基酸介导[87]。PSB的常见菌株如Agrobacterium sp.、Bacillus sp.和Pseudomonas sp.等通过产生支链氨基酸,破坏病原体的孢子或者菌丝体,抑制植物病原体的增殖并刺激植物生长[88]。挥发物是具有低分子量的小扩散有机化合物,负责微生物间/内物种或病原体之间的交流。挥发物的组成可随微生物菌株、宿主基因型、生长培养基和周围环境的变化而发生改变[87]。微生物挥发物对植物病原菌生长的控制在果实采后管理中也起着至关重要的作用。例如,枯草芽孢杆菌(B. subtilis)产生的挥发物有效控制了灰霉菌(Botrytis cinerea)孢子的胚管伸长和萌发[89]。单纯假单胞菌(B. simplex)、B. subtilis、戊酸芽孢杆菌(B. valerate)、地衣假单胞菌(B. lichens)和贝勒芽孢杆菌(B. belessen)等PSB,会产生抑制真菌病原体的抗真菌化合物(如细菌素、抗菌肽和脂肽、聚酮酸和铁载体),并与它们争夺空间和食物,杀死病原菌[87-90]。根瘤菌株主要通过在铁限制条件下产生抗生素、氢氰酸(HCN)、溶菌酶和铁载体等物质对土壤中的植物病原真菌(如镰刀菌、丝核菌、菌核和大叶菌)产生抑制作用[91-92]。近年来,植物病原菌的生物防治一直是农业研究的重点内容,它提供了一种更经济、更安全的策略,可以抑制土壤病原菌群,减少其对作物的损害。

PSB作为微生物接种剂中的典型代表,接种后会与土壤微生物种群产生相互作用,使土壤原生微生物重新组装,产生新的核心功能种群。但由于PSB自身的功能特性(如分泌有机酸、水解酶、IAA和铁载体等),其与土壤微生物是否存在特殊的作用机制还不清楚。现阶段有关PSB-微生物互作的研究或借助高通量测序和宏基因组学分析PSB诱导下的土壤核心功能种群和关键调控基因(如磷酸酶基因、氮酶编码基因等);或借助代谢组学分析PSB与土壤功能微生物之间的代谢物差异[93-94]。但实际上土壤作为一个复杂的生态系统,根系、PSB和土壤微生物三者共同存在,彼此之间通过特定物质产生不同的作用关系,迄今为止尚缺乏关于三者功能互惠关系的系统研究[95]

4 PSB生物肥料的应用与生产

随着人们对于粮食的需求不断增加,传统的耕作方式虽然提高了粮食产量,但环境成本过高。生物肥料中含有促进作物生长的有益微生物(PSB),能提高作物对逆境胁迫的抵抗力,维持作物生长性能,减少土壤和水体污染,实现粮食增产与环境保护,具有广阔的应用前景,在可持续农业中发挥重要作用[95-96]。目前,生物肥料的推广应用规模正在逐步扩大。农业农村部微生物肥料质检中心主任李俊指出,微生物肥料现已成为新型肥料中产量最大(占70%以上)、应用范围最广的品种,中国微生物肥料市场也已经形成[5, 97]。从表 1可知,PSB类生物肥料已在多种作物上(如谷类作物、豆科作物和经济作物等)得到了推广应用,并取得了良好的增产效果,具有较强的市场竞争力[98-100]

表 1. PSB生物肥料在生态农业中的应用 Table 1. Application of phosphate-solubilizing bacteria biofertilizers in modern agriculture
Crop Strain Stress Effect References
Cereal crop Triticum aestivum Pseudomonas helmanticensis Salt stress Increase soil available phosphorus content, promote above-ground phosphorus absorption, and increase grain yield (increase by 17%) [98]
Zea mays Alcaligenes sp. None Increase plant biomass and promote the absorption of nitrogen and phosphorus [99]
Hordeum vulgare Erwinia sp., Flavobacterium articularis, Pseudomonas None Promote the growth of crops, increase the content of phenols, flavonoids and soluble sugars, and increase the ability of nitrogen fixation [100]
Oryza sativa Bacillus licheniformis, Pantoea dispersa, Staphylococcus sp. None Improve the activity of antioxidant enzymes and chlorophyll content, increase yield and reduce the use of chemical fertilizer [101]
Leguminous crop Glycine max Agrobacterium sp. Salt stress Stimulate the growth of common legumes and help improve plant nitrogen and phosphorus nutrition [102]
Cash crop Gossypium sp. Bacillus subtilis subsp., Bacillus halotolerans, Bacillus pumilus Drought stress Promote seed germination and increase yield [103]
Solanum lycopersicum Bacillus cereus Biological stress Increase the height, stem width, total chlorophyll content and reduce the severity of canker disease of tomato [25]
Brassica napus Bacillus sp., Serratia sp., Arthrobacter sp., Pantoea sp. None Promote rapeseed growth, improve rapeseed production [104]
Helianthus annuus Bacillus cereus Lead stress Improve plant lead repair ability, relieve heavy metal stress [105]
Capsicum annuum Pseudomonas aeruginosa None Increase soil available phosphorus content, improve plant nutrient absorption [106]

虽然市场上现在有许多生物肥料,但它们的数量和质量因生产单位而异。在投放市场之前,生物肥料必须满足以下先决条件:(1) 低成本、可规模化生产。(2) 稳定性强、有效期长。(3) 养分多源、效果稳定。(4) 适用范围广[107]。制作PSB生物肥料是一个复杂的过程,包括分离和筛选优势的PSB菌株、优化菌株生长和培养条件、验证菌株实际效果、选择适当载体、制定配方、进行工业化生产、建设储存和质量控制系统等[108]。在商业化生产过程中,必须优化PSB生物肥料制备的各个环节,并结合长时间的物理化学保护,以防止引入的细菌快速减少,提高其应用效果。载体材料在生物肥料的应用中起着关键作用。使用各种性能优良的载体材料(如海藻酸盐、生物炭等)可以提高菌株在土壤和植物中的定殖效果,控制有效养分释放,提高施用效果[109]

PSB生物肥料有固体和液体两种状态,各自具有优缺点。使用水、油或水溶性聚合物制备的液体生物肥料能够提高菌株的稳定性和分散性,表现出更高的植物促生效果[110]。虽然液体接种剂可以长时间包装和储存,但微生物易受到非生物胁迫的影响[111]。营养消耗、热休克或缺氧等不利条件会导致液体制剂中活细胞和/或活性细胞数量急剧下降,影响制剂的使用效果[111]。固体生物肥料通常基于无机或有机载体制备,包括颗粒、微粒、可湿性粉末和粉尘[112]。相较于液体配方,含水量低的固体配方可以延长微生物的保质期,保护细菌细胞免受各种恶劣环境条件的影响[112]。然而,在实际应用中,部分干燥制剂需要再水化成细胞悬浮液才能覆盖种子,浸入根部或分布在土壤上[113]

近年来,构建有益微生物群已成为生物肥料研究的热点。相比于单一微生物肥料,有益微生物群可以提高外来菌株的定殖效率,为植物提供更均衡的营养,从而获得更大的促生效果和经济效益[114]。其中,包含AMF菌根和PSB (如多粘杆菌)的生物肥料能帮助植株根系积累更多的生物量,扩大土壤中有效磷的吸收面积,促进植物更好的生长[115]。这是因为不同的功能微生物(如PSB、固氮细菌、AM真菌和光合细菌等)之间可以相互作用,分泌不同的代谢物质,影响不同的微生物功能群落,从而提高菌株的定殖效率并发挥各自的促生效果[44]。除了构建有益微生物群外,PSB与矿物或有机肥料结合使用也被认为是一种有前途的农艺措施,既能提高磷肥农艺效率、减少磷肥施用,同时实现高产与优质[36]

5 结论与展望

本文系统阐述了PSB的农业生态学功能(溶磷、促生和抗逆)以及这些功能的机制,讨论了PSB与根系的互作关系(根系分泌物、胞外多糖等),阐述了PSB商业化推广应用的重点及难点,并突出了应用PSB生物肥料对于维持农业粮食安全的重要性。此外,本文还强调了PSB通过分泌不同的代谢物质(如有机酸、胞外多糖和氨基酸等)改变土壤核心微生物群落丰度和多样性,协调土壤关键代谢通路(如氮、碳和磷),继而改善土壤质量;同时,破坏病原微生物的生长和传播途径,减轻病原菌对作物的侵害,是实现农业生态稳定的关键环节。然而,由于环境的复杂性和PSB自身的局限性,PSB的商业化应用面临诸多挑战。因此,未来的研究必须补充和改进现有的工作,以促进PSB生物肥料在农业系统的推广应用。

(1) 改进新的PSB筛选方法。目前,通过模拟试验和温室试验确实筛选到了优势PSB菌株,但田间施用效果不理想。未来在筛选PSB时需要考虑土壤的复杂性和PSB溶磷能力在时间和空间上对植物和土壤的影响,注重PSB与根际、根系的互动关系。

(2) 深入研究PSB作用机制。目前PSB研究主要集中在单一的溶磷机理上,未来应该运用多组学知识(如代谢组、转录组等)系统研究PSB在根际和植株体内的动态变化,分析PSB与根系分泌物、微生物群落之间在不同定殖阶段的相互关系。同时,利用细胞生物学知识分析PSB的生理响应机制也是一种有效途径。

(3) 设计新的微生物配方。采用多学科方法,设计创新的微生物配方(如微生物群)并开发辅助材料(如纳米材料)以提高其保质期和定殖效率,同时保持低成本和简单的制造工艺。在辅配使用农用化肥时应合理施用,并了解其对土壤PSB丰度和功能的影响。

References
[1] GILLER KE, DELAUNE T, SILVA JV, DESCHEEMAEKER K, van DE VEN G, SCHUT AGT, van WIJK M, HAMMOND J, HOCHMAN Z, TAULYA G, CHIKOWO R, NARAYANAN S, KISHORE A, BRESCIANI F, TEIXEIRA HM, ANDERSSON JA, van ITTERSUM MK. The future of farming: who will produce our food?[J]. Food Security, 2021, 13(5): 1073-1099 DOI:10.1007/s12571-021-01184-6.
[2] DEVI R, KAUR T, KOUR D, YADAV A, YADAV AN, SUMAN A, AHLUWALIA AS, SAXENA AK. Minerals solubilizing and mobilizing microbiomes: a sustainable approach for managing minerals' deficiency in agricultural soil[J]. Journal of Applied Microbiology, 2022, 133(3): 1245-1272 DOI:10.1111/jam.15627.
[3] CLARK M, TILMAN D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice[J]. Environmental Research Letters, 2017, 12(6): 064016 DOI:10.1088/1748-9326/aa6cd5.
[4] NARAYANAN M, PUGAZHENDHI A, MA Y. Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Mill sp. phytoremediation potential on metal-polluted soil under controlled conditions[J]. Frontiers in Plant Science, 2022, 13: 1017043 DOI:10.3389/fpls.2022.1017043.
[5] DE ZUTTER N, AMEYE M, BEKAERT B, VERWAEREN J, de GELDER L, AUDENAERT K. Uncovering new insights and misconceptions on the effectiveness of phosphate solubilizing rhizobacteria in plants: a meta-analysis[J]. Frontiers in Plant Science, 2022, 13: 858804 DOI:10.3389/fpls.2022.858804.
[6] TURNER BL, LAMBERS H, CONDRON LM, CRAMER MD, LEAKE JR, RICHARDSON AE, SMITH SE. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development[J]. Plant and Soil, 2013, 367(1): 225-234.
[7] RICHARDSON AE, SIMPSON RJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996 DOI:10.1104/pp.111.175448.
[8] HALLAMA M, PEKRUN C, LAMBERS H, KANDELER E. Hidden miners-the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems[J]. Plant and Soil, 2019, 434(1): 7-45.
[9] GARCÍA-FRAILE P, MENÉNDEZ E, RIVAS R. Role of bacterial biofertilizers in agriculture and forestry[J]. AIMS Bioengineering, 2015, 2(3): 183-205 DOI:10.3934/bioeng.2015.3.183.
[10] VALETTI L, IRIARTE L, FABRA A. Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria[J]. Applied Soil Ecology, 2018, 132: 1-10 DOI:10.1016/j.apsoil.2018.08.017.
[11] JAYBHAY SA, TAWARE SP, VARGHESE P. Microbial inoculation of Rhizobium and phosphate-solubilizing bacteria along with inorganic fertilizers for sustainable yield of soybean [Glycine max (L.) Merrill][J]. Journal of Plant Nutrition, 2017, 40(15): 2209-2216 DOI:10.1080/01904167.2017.1346678.
[12] ALIYAT FZ, MALDANI M, EI GUILLI M, NASSIRI L, IBIJBIJEN J. Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: calcium, iron, and aluminum phosphates[J]. Microorganisms, 2022, 10(5): 980 DOI:10.3390/microorganisms10050980.
[13] MANZOOR M, ABBASI MK, SULTAN T. Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization-mineralization and plant growth promotion[J]. Geomicrobiology Journal, 2017, 34(1): 81-95 DOI:10.1080/01490451.2016.1146373.
[14] LI YB, LI Q, GUAN GH, CHEN SF. Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content[J]. PeerJ, 2020, 8: e9062 DOI:10.7717/peerj.9062.
[15] LI N, SHENG KY, ZHENG QY, HU DN, ZHANG L, WANG JW, ZHANG WY. Inoculation with phosphate-solubilizing bacteria alters microbial community and activates soil phosphorus supply to promote maize growth[J]. Land Degradation & Development, 2023, 34(3): 777-788.
[16] ZHANG J, WANG PC, FANG L, ZHANG QA, YAN CS, CHEN JY. Isolation and characterization of phosphate-solubilizing bacteria from mushroom residues and their effect on tomato plant growth promotion[J]. Polish Journal of Microbiology, 2017, 66(1): 57-65 DOI:10.5604/17331331.1234994.
[17] WANG P, WU SH, WEN MX, WANG Y, WU QS. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus[J]. Scientia Horticulturae, 2016, 205: 97-105 DOI:10.1016/j.scienta.2016.04.023.
[18] CHEN J, FENG K, HANNULA SE, KUZYAKOV Y, LI YD, XU H. Interkingdom plant-microbial ecological networks under selective and clear cutting of tropical rainforest[J]. Forest Ecology and Management, 2021, 491: 119182 DOI:10.1016/j.foreco.2021.119182.
[19] MA Y, RAJKUMAR M, OLIVEIRA RS, ZHANG C, FREITAS H. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils[J]. Journal of Hazardous Materials, 2019, 379: 120813 DOI:10.1016/j.jhazmat.2019.120813.
[20] ZHU FL, QU LY, HONG XG, SUN XQ. Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from daqiao Saltern on the coast of Yellow Sea of China[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2011: 615032.
[21] SHAFFIQUE S, KHAN MA, WANI SH, IMRAN M, KANG SM, PANDE A, ADHIKARI A, KWON EH, LEE IJ. Biopriming of maize seeds with a novel bacterial strain SH-6 to enhance drought tolerance in Korea[J]. Plants, 2022, 11(13): 1674 DOI:10.3390/plants11131674.
[22] HE T, XU ZJ, WANG JF, WANG FP, ZHOU XF, WANG LL, LI QS. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization[J]. Chemosphere, 2022, 287: 132209 DOI:10.1016/j.chemosphere.2021.132209.
[23] HUANG F, LI K, WU RR, YAN YJ, XIAO RB. Insight into the Cd2+ biosorption by viable Bacillus cereus RC-1 immobilized on different biochars: roles of bacterial cell and biochar matrix[J]. Journal of Cleaner Production, 2020, 272: 122743 DOI:10.1016/j.jclepro.2020.122743.
[24] CHEN HM, ZHANG JW, TANG LY, SU M, TIAN D, ZHANG L, LI Z, HU SJ. Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria[J]. Environment International, 2019, 127: 395-401 DOI:10.1016/j.envint.2019.03.068.
[25] SOLANO-ALVAREZ N, VALENCIA-HERNÁNDEZ JA, RICO-GARCÍA E, TORRES-PACHECO I, OCAMPO-VELÁZQUEZ RV, ESCAMILLA-SILVA EM, ROMERO-GARCÍA AL, ALPUCHE-SOLÍS ÁG, GUEVARA-GONZÁLEZ RG. A novel isolate of Bacillus cereus promotes growth in tomato and inhibits Clavibacter michiganensis infection under greenhouse conditions[J]. Plants, 2021, 10(3): 506 DOI:10.3390/plants10030506.
[26] PRZEMIENIECKI SW, KUROWSKI TP, KOTLARZ K, KRAWCZYK K, DAMSZEL M, PSZCZÓŁKOWSKA A, KACPRZAK-SIUDA K, CHAREŃSKA A, MASTALERZ J. Bacteria isolated from treated wastewater for biofertilization and crop protection against Fusarium spp. pathogens[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(1): 1-11 DOI:10.1007/s42729-018-0001-9.
[27] RAYMOND NS, GÓMEZ-MUÑOZ B, van der BOM FJT, NYBROE O, JENSEN LS, MÜLLER-STÖVER DS, OBERSON A, RICHARDSON AE. Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment[J]. New Phytologist, 2021, 229(3): 1268-1277 DOI:10.1111/nph.16924.
[28] CANARINI A, KAISER C, MERCHANT A, RICHTER A, WANEK W. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli[J]. Frontiers in Plant Science, 2019, 10: 157 DOI:10.3389/fpls.2019.00157.
[29] KUMAR A, RAI LC. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain[J]. 3 Biotech, 2017, 7(3): 199 DOI:10.1007/s13205-017-0810-x.
[30] HAO JH, KNOLL AH, HUANG F, SCHIEBER J, HAZEN RM, DANIEL I. Cycling phosphorus on the archean earth: part Ⅱ. Phosphorus limitation on primary production in archean ecosystems[J]. Geochimica et Cosmochimica Acta, 2020, 280: 360-377 DOI:10.1016/j.gca.2020.04.005.
[31] RAWAT P, DAS S, SHANKHDHAR D, SHANKHDHAR SC. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68 DOI:10.1007/s42729-020-00342-7.
[32] XING PF, ZHAO YB, GUAN DW, LI L, ZHAO BS, MA MC, JIANG X, TIAN CF, CAO FM, LI J. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community[J]. Genes, 2022, 13(11): 1922 DOI:10.3390/genes13111922.
[33] KUMARI A, KAPOOR KK, KUNDU BS, MEHTA RK. Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization[J]. Plant, Soil and Environment, 2008, 54(2): 72-77 DOI:10.17221/2783-PSE.
[34] DING YQ, YI ZL, FANG Y, HE SL, LI YM, HE KZ, ZHAO H, JIN YL. Multi-omics reveal the efficient phosphate-solubilizing mechanism of bacteria on rocky soil[J]. Frontiers in Microbiology, 2021, 12: 761972 DOI:10.3389/fmicb.2021.761972.
[35] de OLIVEIRA MENDES G, MURTA HM, VALADARES RV, da SILVEIRA WB, da SILVA IR, COSTA MD. Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization[J]. Minerals Engineering, 2020, 155: 106458 DOI:10.1016/j.mineng.2020.106458.
[36] TIMOFEEVA A, GALYAMOVA M, SEDYKH S. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture[J]. Plants (Basel, Switzerland), 2022, 11(16): 2119.
[37] WU XJ, RENSING C, HAN DF, XIAO KQ, DAI YX, TANG ZX, LIESACK W, PENG JJ, CUI ZL, ZHANG FS. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes[J]. mSystems, 2022, 7(1): e0110721 DOI:10.1128/msystems.01107-21.
[38] LUDUEÑA LM, ANZUAY MS, MAGALLANES- NOGUERA C, TONELLI ML, IBAÑEZ FJ, ANGELINI JG, FABRA A, MCINTOSH M, TAURIAN T. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119[J]. Research in Microbiology, 2017, 168(8): 710-721 DOI:10.1016/j.resmic.2017.07.001.
[39] ZENG QW, WU XQ, WEN XY. Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in Pseudomonas frederiksbergensis JW-SD2[J]. Current Microbiology, 2016, 72(2): 198-206 DOI:10.1007/s00284-015-0938-z.
[40] PRABHU N, BORKAR S, GARG S. Phosphate solubilization mechanisms in alkaliphilic bacterium Bacillus marisflavi FA7[J]. Current Science, 2018, 114(4): 845-853 DOI:10.18520/cs/v114/i04/845-853.
[41] LI CK, LI QS, WANG ZP, JI GN, ZHAO H, GAO F, SU M, JIAO JG, LI Z, LI HX. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite[J]. Scientific Reports, 2019, 9: 15291 DOI:10.1038/s41598-019-51804-7.
[42] KALAYU G. Phosphate solubilizing microorganisms: promising approach as biofertilizers[J]. International Journal of Agronomy, 2019, 2019: 1-7.
[43] UDAONDO Z, DUQUE E, DADDAOUA A, CASELLES C, ROCA A, PIZARRO-TOBIAS P, RAMOS JL. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries[J]. Environmental Microbiology, 2020, 22(8): 3561-3571 DOI:10.1111/1462-2920.15138.
[44] BARGAZ A, ELHAISSOUFI W, KHOURCHI S, BENMRID B, BORDEN KA, RCHIAD Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus[J]. Microbiological Research, 2021, 252: 126842 DOI:10.1016/j.micres.2021.126842.
[45] HUANG B, YAN DD, OUYANG CB, ZHANG DQ, ZHU JH, LIU J, LI Y, WANG QX, HAN QL, CAO AC. Chloropicrin fumigation alters the soil phosphorus and the composition of the encoding alkaline phosphatase PhoD gene microbial community[J]. Science of the Total Environment, 2020, 711: 135080 DOI:10.1016/j.scitotenv.2019.135080.
[46] HEUCK C, SMOLKA G, WHALEN ED, FREY S, GUNDERSEN P, MOLDAN F, FERNANDEZ IJ, SPOHN M. Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests[J]. Biogeochemistry, 2018, 141(2): 167-181 DOI:10.1007/s10533-018-0511-5.
[47] BERGKEMPER F, SCHÖLER A, ENGEL M, LANG F, KRÜGER J, SCHLOTER M, SCHULZ S. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems[J]. Environmental Microbiology, 2016, 18(6): 1988-2000 DOI:10.1111/1462-2920.13188.
[48] RAO DECS, RAO KV, REDDY TP, REDDY VD. Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview[J]. Critical Reviews in Biotechnology, 2009, 29(2): 182-198 DOI:10.1080/07388550902919571.
[49] JORQUERA M, MARTÍNEZ O, MARUYAMA F, MARSCHNER P, DELA LUZ MORA M. Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria[J]. Microbes and Environments, 2008, 23(3): 182-191 DOI:10.1264/jsme2.23.182.
[50] YAHYA M, ISLAM EU, RASUL M, FAROOQ I, MAHREEN N, TAWAB A, IRFAN M, RAJPUT L, AMIN I, YASMIN S. Differential root exudation and architecture for improved growth of wheat mediated by phosphate solubilizing bacteria[J]. Frontiers in Microbiology, 2021, 12: 744094 DOI:10.3389/fmicb.2021.744094.
[51] MOLINA MA, RAMOS JL, ESPINOSA-URGEL M. Plant-associated biofilms[J]. Reviews in Environmental Science and Biotechnology, 2003, 2(2): 99-108.
[52] LUCERO CT, LORDA GS, LUDUEN LM, ANZUAY MS, TAURIAN T. Motility and biofilm production involved in the interaction of phosphate solubilizing endophytic strains with peanut, maize and soybean plants[J]. Rhizosphere, 2020, 15: 100228 DOI:10.1016/j.rhisph.2020.100228.
[53] MORIKAWA M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species[J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 1-8 DOI:10.1263/jbb.101.1.
[54] CHEN SM, WAGHMODE TR, SUN RB, KURAMAE EE, HU CS, LIU BB. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(1): 136 DOI:10.1186/s40168-019-0750-2.
[55] CHANDRASEKARAN M, CHUN SC, OH JW, PARAMASIVAN M, SAINI RK, SAHAYARAYAN JJ. Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in Korea as a novel plant probiotic bacterium (PPB): implications from total phenolics, flavonoids, and carotenoids content for fruit quality[J]. Agronomy, 2019, 9(12): 838 DOI:10.3390/agronomy9120838.
[56] BISWAS JK, BANERJEE A, RAI M, NAIDU R, BISWAS B, VITHANAGE M, DASH MC, SARKAR SK, MEERS E. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion[J]. Geoderma, 2018, 330: 117-124 DOI:10.1016/j.geoderma.2018.05.034.
[57] XIE JG, YAN ZQ, WANG GF, XUE WZ, LI C, CHEN XW, CHEN DF. A bacterium isolated from soil in a Karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Frontiers in Microbiology, 2021, 11: 625450 DOI:10.3389/fmicb.2020.625450.
[58] GARCÍA-CÁRDENAS E, ORTIZ-CASTRO R, RUIZ-HERRERA LF, VALENCIA-CANTERO E, LÓPEZ-BUCIO J. Micrococcus luteus LS570 promotes root branching in Arabidopsis via decreasing apical dominance of the primary root and an enhanced auxin response[J]. Protoplasma, 2022, 259(5): 1139-1155 DOI:10.1007/s00709-021-01724-z.
[59] OJUEDERIE O, OLANREWAJU O, BABALOLA O. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture[J]. Agronomy, 2019, 9(11): 712 DOI:10.3390/agronomy9110712.
[60] ORTIZ-CASTRO R, CAMPOS-GARCÍA J, LÓPEZ- BUCIO J. Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides[J]. Journal of Plant Growth Regulation, 2020, 39(1): 254-265 DOI:10.1007/s00344-019-09979-w.
[61] SHARMA P. Role and significance of biofilm-forming microbes in phytoremediation—a review[J]. Environmental Technology & Innovation, 2022, 25: 102182.
[62] AL-ALI A, DERAVEL J, KRIER F, BÉCHET M, ONGENA M, JACQUES P. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42[J]. Environmental Science and Pollution Research, 2018, 25(30): 29910-29920 DOI:10.1007/s11356-017-0469-1.
[63] GHOSH R, BARMAN S, MANDAL NC. Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate[J]. Scientific Reports, 2019, 9: 5477 DOI:10.1038/s41598-019-41726-9.
[64] BOUKHELATA N, TAGUETT F, KACI Y. Characterization of an extracellular polysaccharide produced by a Saharan bacterium Paenibacillus tarimensis REG 0201M[J]. Annals of Microbiology, 2019, 69(2): 93-106 DOI:10.1007/s13213-018-1406-3.
[65] CHERCHALI A, BOUKHELATA N, KACI Y, ABROUS-BELBACHIR O, DJEBBAR R. Isolation and identification of a phosphate-solubilizing Paenibacillus polymyxa strain GOL 0202 from durum wheat (Triticum durum Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters[J]. Biocatalysis and Agricultural Biotechnology, 2019, 19: 101087 DOI:10.1016/j.bcab.2019.101087.
[66] WATNICK P, KOLTER R. Biofilm, city of microbes[J]. Journal of Bacteriology, 2000, 182(10): 2675-2679 DOI:10.1128/JB.182.10.2675-2679.2000.
[67] YI YM, HUANG WY, GE Y. Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate[J]. World Journal of Microbiology and Biotechnology, 2008, 24(7): 1059-1065 DOI:10.1007/s11274-007-9575-4.
[68] NASCIMENTO FX, ROSSI MJ, GLICK BR. Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant-bacterial interactions[J]. Frontiers in Plant Science, 2018, 9: 114 DOI:10.3389/fpls.2018.00114.
[69] CHOUYIA FE, ROMANO I, FECHTALI T, FAGNANO M, FIORENTINO N, VISCONTI D, IDBELLA M, VENTORINO V, PEPE O. P-solubilizing Streptomyces roseocinereus MS1B15 with multiple plant growth-promoting traits enhance barley development and regulate rhizosphere microbial population[J]. Frontiers in Plant Science, 2020, 11: 1137 DOI:10.3389/fpls.2020.01137.
[70] ALEMNEH AA, ZHOU Y, RYDER MH, DENTON MD. Is phosphate solubilizing ability in plant growth-promoting rhizobacteria isolated from chickpea linked to their ability to produce ACC deaminase?[J]. Journal of Applied Microbiology, 2021, 131(5): 2416-2432 DOI:10.1111/jam.15108.
[71] VÍLCHEZ JI, TANG QM, KAUSHAL R, WANG W, LV SH, HE DX, CHU ZQ, ZHANG H, LIU RY, ZHANG HM. Genome sequence of Bacillus megaterium strain YC4-R4, a plant growth-promoting rhizobacterium isolated from a high-salinity environment[J]. Genome Announcements, 2018, 6(25): e00527-18.
[72] SRIVASTAVA S, SHARMA S. Metabolomic insight into the synergistic mechanism of action of a bacterial consortium in plant growth promotion[J]. Journal of Bioscience and Bioengineering, 2022, 134(5): 399-406 DOI:10.1016/j.jbiosc.2022.07.013.
[73] GHOSH SK, BERA T, CHAKRABARTY AM. Microbial siderophore-a boon to agricultural sciences[J]. Biological Control, 2020, 144: 104214 DOI:10.1016/j.biocontrol.2020.104214.
[74] KUMAR P, THAKUR S, DHINGRA GK, SINGH A, PAL MK, HARSHVARDHAN K, DUBEY RC, MAHESHWARI DK. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant[J]. Biocatalysis and Agricultural Biotechnology, 2018, 15: 264-269 DOI:10.1016/j.bcab.2018.06.019.
[75] ZHANG XJ, ZHAN YB, ZHANG H, WANG RH, TAO XL, ZHANG LP, ZUO YL, ZHANG L, WEI YQ, LI J. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting[J]. Bioresource Technology, 2021, 340: 125714 DOI:10.1016/j.biortech.2021.125714.
[76] WANG JH, LIU L, GAO XY, HAO JX, WANG ML. Elucidating the effect of biofertilizers on bacterial diversity in maize rhizosphere soil[J]. PLoS One, 2021, 16(4): e0249834 DOI:10.1371/journal.pone.0249834.
[77] D'HAESELEER P, GLADDEN JM, ALLGAIER M, CHAIN PSG, TRINGE SG, MALFATTI SA, ALDRICH JT, NICORA CD, ROBINSON EW, PAŠA-TOLIĆ L, HUGENHOLTZ P, SIMMONS BA, SINGER SW. Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass[J]. PLoS One, 2013, 8(7): e68465 DOI:10.1371/journal.pone.0068465.
[78] SBRANA C, AGNOLUCCI M, AVIO L, GIOVANNINI L, PALLA M, TURRINI A, GIOVANNETTI M. Mycorrhizal symbionts and associated bacteria: potent allies to improve plant phosphorus availability and food security[J]. Frontiers in Microbiology, 2022, 12: 797381 DOI:10.3389/fmicb.2021.797381.
[79] JIANG FY, ZHANG L, ZHOU JC, GEORGE TS, FENG G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. New Phytologist, 2021, 230(1): 304-315 DOI:10.1111/nph.17081.
[80] REQUENA N, PEREZ-SOLIS E, AZCÓN-AGUILAR C, JEFFRIES P, BAREA JM. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology, 2001, 67(2): 495-498 DOI:10.1128/AEM.67.2.495-498.2001.
[81] WANG Q, WANG JL, LI YZ, CHEN DW, AO JH, ZHOU WL, SHEN DC, LI QW, HUANG ZR, JIANG Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation[J]. Science of the Total Environment, 2018, 619/620: 1530-1537 DOI:10.1016/j.scitotenv.2017.10.064.
[82] KHAN H, AKBAR WA, SHAH Z, RAHIM HU, TAJ A, ALATALO JM. Coupling phosphate-solubilizing bacteria (PSB) with inorganic phosphorus fertilizer improves mungbean (Vigna radiata) phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil[J]. Heliyon, 2022, 8(3): e09081 DOI:10.1016/j.heliyon.2022.e09081.
[83] SMERCINA DN, EVANS SE, FRIESEN ML, TIEMANN LK. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere[J]. Applied and Environmental Microbiology, 2019, 85(6): e02546-e02518.
[84] XUE H, LOZANO-DURÁN R, MACHO AP. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum[J]. Plants (Basel, Switzerland), 2020, 9(4): 516.
[85] AYDI BEN ABDALLAH R, JABNOUN- KHIAREDDINE H, NEFZI A, MOKNI-TLILI S, DAAMI-REMADI M. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Solanum elaeagnifolium stems[J]. Journal of Phytopathology, 2016, 164(10): 811-824 DOI:10.1111/jph.12501.
[86] RODRIGUES-DOS SANTOS AS, REBELO-ROMÃO I, ZHANG HM, VÍLCHEZ JI. Discerning transcriptomic and biochemical responses of Arabidopsis thaliana treated with the biofertilizer strain Priestia megaterium YC4-R4: boosting plant central and secondary metabolism[J]. Plants, 2022, 11(22): 3039 DOI:10.3390/plants11223039.
[87] VERMA S, AZEVEDO LCB, PANDEY J, KHUSHARIA S, KUMARI M, KUMAR D, KAUSHALENDRA, BHARDWAJ N, TEOTIA P, KUMAR A. Microbial intervention: an approach to combat the postharvest pathogens of fruits[J]. Plants, 2022, 11(24): 3452 DOI:10.3390/plants11243452.
[88] BORO M, SANNYASI S, CHETTRI D, VERMA AK. Microorganisms in biological control strategies to manage microbial plant pathogens: a review[J]. Archives of Microbiology, 2022, 204(11): 1-15.
[89] CHEN H, XIAO X, WANG J, WU LJ, ZHENG ZM, YU ZL. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea[J]. Biotechnology Letters, 2008, 30(5): 919-923 DOI:10.1007/s10529-007-9626-9.
[90] CHOUB V, WON SJ, AJUNA HB, MOON JH, CHOI SI, LIM HI, AHN YS. Antifungal activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides[J]. Horticulturae, 2022, 8(6): 557 DOI:10.3390/horticulturae8060557.
[91] KRISHNAN HB, KANG BR, HARI KRISHNAN A, KIM KY, KIM YC. Rhizobium etli USDA9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens but is impaired in symbiotic performance[J]. Applied and Environmental Microbiology, 2007, 73(1): 327-330 DOI:10.1128/AEM.02027-06.
[92] DAS K, PRASANNA R, SAXENA AK. Rhizobia: a potential biocontrol agent for soilborne fungal pathogens[J]. Folia Microbiologica, 2017, 62(5): 425-435 DOI:10.1007/s12223-017-0513-z.
[93] LIU J, QI WY, LI Q, WANG SG, SONG C, YUAN XZ. Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly[J]. 3 Biotech, 2020, 10(4): 1-11.
[94] SONI R, RAWAL K, KEHARIA H. Genomics assisted functional characterization of Paenibacillus polymyxa HK4 as a biocontrol and plant growth promoting bacterium[J]. Microbiological Research, 2021, 248: 126734 DOI:10.1016/j.micres.2021.126734.
[95] MA Y, DIAS MC, FREITAS H. Drought and salinity stress responses and microbe-induced tolerance in plants[J]. Frontiers in Plant Science, 2020, 11: 591911 DOI:10.3389/fpls.2020.591911.
[96] MA Y, VOSÁTKA M, FREITAS H. Editorial: beneficial microbes alleviate climatic stresses in plants[J]. Frontiers in Plant Science, 2019, 10: 595 DOI:10.3389/fpls.2019.00595.
[97] CHENG YY, NARAYANAN M, SHI XJ, CHEN XP, LI ZL, MA Y. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity[J]. Science of the Total Environment, 2023, 901: 166468 DOI:10.1016/j.scitotenv.2023.166468.
[98] KARIMZADEH J, ALIKHANI HA, ETESAMI H, POURBABAEI AA. Improved phosphorus uptake by wheat plant (Triticum aestivum L.) with rhizosphere Fluorescent Pseudomonads strains under water-deficit stress[J]. Journal of Plant Growth Regulation, 2021, 40(1): 162-178 DOI:10.1007/s00344-020-10087-3.
[99] HUSSAIN A, AHMAD M, MUMTAZ MZ, ALI S, SARFRAZ R, NAVEED M, JAMIL M, DAMALAS CA. Integrated application of organic amendments with Alcaligenes sp. AZ9 improves nutrient uptake and yield of maize (Zea mays)[J]. Journal of Plant Growth Regulation, 2020, 39(3): 1277-1292 DOI:10.1007/s00344-020-10067-7.
[100] KAUR T, DEVI R, KUMAR S, SHEIKH I, KOUR D, YADAV AN. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.)[J]. Heliyon, 2022, 8(4): e09326 DOI:10.1016/j.heliyon.2022.e09326.
[101] RAWAT P, SHANKHDHAR D, SHANKHDHAR SC. Synergistic impact of phosphate solubilizing bacteria and phosphorus rates on growth, antioxidative defense system, and yield characteristics of upland rice (Oryza sativa L.)[J]. Journal of Plant Growth Regulation, 2022, 41(6): 2449-2461 DOI:10.1007/s00344-021-10458-4.
[102] EI ATTAR I, TAHA K, EI BEKKAY B, EI KHADIR M, ALAMI IT, AURAG J. Screening of stress tolerant bacterial strains possessing interesting multi-plant growth promoting traits isolated from root nodules of Phaseolus vulgaris L.[J]. Biocatalysis and Agricultural Biotechnology, 2019, 20: 101225 DOI:10.1016/j.bcab.2019.101225.
[103] SHAH SH, HUSSAIN MB, AHMAD ZAHIR Z, HAQ TU, MATLOOB A. Thermal plasticity and cotton production enhancing attributes of phosphate- solubilizing bacteria from cotton rhizosphere[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(3): 3885-3900 DOI:10.1007/s42729-022-00937-2.
[104] KOVAL'SKAYA NY, LOBAKOVA ES, UMAROV MM. The formation of artificial nitrogen-fixing symbioses with rape (Brassica napus var. napus) plants in nonsterile soil[J]. Microbiology, 70(5): 606-612.
[105] SHAHRAKI A, MOHAMMADI-SICHANI M, RANJBAR M. Identification of lead-resistant rhizobacteria of Carthamus tinctorius and their effects on lead absorption of Sunflower[J]. Journal of Applied Microbiology, 2022, 132(4): 3073-3080 DOI:10.1111/jam.15410.
[106] LINU MS, ASOK AK, THAMPI M, SREEKUMAR J, JISHA MS. Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicumannuum L.) rhizosphere[J]. Communications in Soil Science and Plant Analysis, 2019, 50(4): 444-457 DOI:10.1080/00103624.2019.1566469.
[107] BHARDWAJ D, ANSARI MW, SAHOO RK, TUTEJA N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity[J]. Microbial Cell Factories, 2014, 13(1): 1-10 DOI:10.1186/1475-2859-13-1.
[108] STAMENKOVIĆ S, BEŠKOSKI V, KARABEGOVIĆ I, LAZIĆ M, NIKOLIĆ N. Microbial fertilizers: a comprehensive review of current findings and future perspectives[J]. Spanish Journal of Agricultural Research, 2018, 16(1): e09R01 DOI:10.5424/sjar/2018161-12117.
[109] MA Y. Seed coating with beneficial microorganisms for precision agriculture[J]. Biotechnology Advances, 2019, 37(7): 107423 DOI:10.1016/j.biotechadv.2019.107423.
[110] LEE SK, LUR HS, LO KJ, CHENG KC, CHUANG CC, TANG SJ, YANG ZW, LIU CT. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3[J]. Applied Microbiology and Biotechnology, 2016, 100(18): 7977-7987 DOI:10.1007/s00253-016-7582-9.
[111] BERNABEU PR, GARCÍA SS, LÓPEZ AC, VIO SA, CARRASCO N, BOIARDI JL, LUNA MF. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity[J]. World Journal of Microbiology and Biotechnology, 2018, 34(6): 81 DOI:10.1007/s11274-018-2461-4.
[112] LIFFOURRENA AS, LUCCHESI GI. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: preparation, characterization and potential use as plant inoculants[J]. Journal of Biotechnology, 2018, 278: 28-33 DOI:10.1016/j.jbiotec.2018.04.019.
[113] BERNINGER T, MITTER B, PREININGER C. Zeolite-based, dry formulations for conservation and practical application of Paraburkholderia phytofirmans PsJN[J]. Journal of Applied Microbiology, 2017, 122(4): 974-986 DOI:10.1111/jam.13360.
[114] SALEEMI M, KIANI MZ, SULTAN T, KHALID A, MAHMOOD S. Integrated effect of plant growth-promoting rhizobacteria and phosphate- solubilizing microorganisms on growth of wheat (Triticum aestivum L.) under rainfed condition[J]. Agriculture & Food Security, 2017, 6(1): 1-8.
[115] MUTHUKUMAR T, UDAIYAN K. Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil[J]. Journal of Forestry Research, 2018, 29(3): 663-673 DOI:10.1007/s11676-017-0497-1.