微生物学报  2023, Vol. 63 Issue (2): 805-820   DOI: 10.13343/j.cnki.wsxb.20220483.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220483
中国科学院微生物研究所,中国微生物学会

文章信息

田莹莹, 王强, 赵京, 孙向辉, 姬燕培. 2023
TIAN Yingying, WANG Qiang, ZHAO Jing, SUN Xianghui, JI Yanpei.
黄河滩地和稻田土中铁还原菌、不产氧光合细菌分布机制
Distribution of ferric reducing bacteria and anoxygenic phototrophic bacteria in the Yellow River beach and paddy soil
微生物学报, 63(2): 805-820
Acta Microbiologica Sinica, 63(2): 805-820

文章历史

收稿日期:2022-06-28
网络出版日期:2022-08-30
黄河滩地和稻田土中铁还原菌、不产氧光合细菌分布机制
田莹莹1 , 王强2 , 赵京1 , 孙向辉1 , 姬燕培1     
1. 河南工学院材料科学与工程学院, 河南 新乡 453003;
2. 河南大学 作物逆境适应与改良国家重点实验室, 河南 开封 475001
摘要[目的] 探讨沿黄流域土壤中铁还原菌(ferric reducing bacteria, FeRB)、不产氧光合细菌(anoxygenic phototrophic bacteria, AnPB)的分布机制。[方法] 以沿黄流域(原阳段)为研究对象,采集黄河滩地和稻田土样,利用16S rRNA基因高通量测序和实时荧光定量分析技术,结合统计学分析,揭示FeRB、AnPB菌群结构、丰度和主要环境影响因子。[结果] 二者中的优势FeRB在科(属)水平为Hydrogenophilaceae (Thiobacillus)、Bacillaceae (Bacillus)、ClostridiaceaeRhodobactereace (Rhodobacter)、Geobacteraceae (Geobacter),优势AnPB为Rhodobactereace (Rhodobacter)、Chloroflexaceae (Chloronema)、Acetobacteraceae (Roseomonas)。AnPB中Rhodobacteraceae与FeRB中BacillaceaeClostridiaceae的相对丰度负相关;AnPB中SphingomonadaceaeHydrogenophilaceaeClostridiaceae的相对丰度亦负相关。土壤硝酸盐氮(NO3-N)与Rhodobactereace相对丰度负相关,与Geobacteraceae相对丰度正相关。二价铁(Fe2+)对FeRB、AnPB菌群组成的差异分别可解释13.5%、41.8%,pH对FeRB、AnPB菌群组成的差异分别可解释65.7%、42.8%。黄河滩地总细菌(total bacteria, BAC)、地(热)杆菌[Geo(thermo)bacter,GEO]、光合紫细菌(phototrophic purple bacteria, PPB)的拷贝数分别为2.52 (±3.43)×109、5.21 (±7.58)×107、2.9 (±3.70)×107 copies/g干土。稻田土中BAC、GEO、PPB拷贝数依次为3.82 (±1.29)×1010、3.05 (±2.44)× 108、4.31 (±0.90)×108 copies/g干土。0–1 cm土层中PPB拷贝数显著高于1–2 cm、2–3cm土层。Fe2+对BAC、GEO、PPB数量分布变异的解释度为81.5%。[结论] 土壤类型不同,潜在FeRB、AnPB物种组成不同,GEO、PPB丰度也不同。Fe2+对FeRB、AnPB分布起关键驱动作用。
关键词铁还原菌    不产氧光合细菌    稻田土    黄河滩地    
Distribution of ferric reducing bacteria and anoxygenic phototrophic bacteria in the Yellow River beach and paddy soil
TIAN Yingying1 , WANG Qiang2 , ZHAO Jing1 , SUN Xianghui1 , JI Yanpei1     
1. College of Materials Science and Engineering, Henan Institute of Technology, Xinxiang 453003, Henan, China;
2. State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, Henan, China
Abstract: [Objective] To explore the distribution of ferric reducing bacteria (FeRB) and anoxygenic phototrophic bacteria (AnPB) in the soil along the Yellow River. [Methods] Soil samples were collected from the beach and paddy fields at the Yuanyang section of the Yellow River. High-throughput sequencing of 16S rRNA gene and quantitative real-time PCR were combined with statistical analysis to reveal the structure and abundance of FeRB and AnPB and the main environmental factors affecting the bacteria. [Results] The dominant FeRB families (genera) were Hydrogenophilaceae (Thiobacillus), Bacillaceae (Bacillus), Clostridiaceae, Rhodobactereace (Rhodobacter) and Geobacteraceae (Geobacter). The dominant AnPB families (genera) were Rhodobactereace (Rhodobacter), Chloroflexaceae (Chloronema) and Acetobacteraceae (Roseomonas). The relative abundance of Rhodobacteraceae (AnPB) was negatively correlated with that of Bacillaceae and Clostridiaceae (FeRB). The relative abundance of Sphingomonadaceae (AnPB) was negatively correlated with that of Hydrogenophilaceae and Clostridiaceae (FeRB). Soil nitrate nitrogen (NO3-N) was negatively correlated with the relative abundance of Rhodobacteraceae but positively correlated with that of Geobacteraceae. Ferrous ions (Fe2+) explained 13.5% and 41.8% of the community variations of FeRB and AnPB, respectively; pH explained 65.7% and 42.8%, respectively. The number of total bacteria (BAC), Geo(thermo)bacter (GEO) and phototrophic purple bacteria (PPB) in the Yellow River beach was 2.52 (±3.43)×109, 5.21 (±7.58)×107 and 2.9 (±3.70)× 107 copies/g dry soil, respectively, and that in the paddy soil was 3.82 (±1.29)×1010, 3.05 (±2.44)×108 and 4.31 (±0.90)×108 copies/g dry soil, respectively. Moreover, the PPB in the upmost soil layer (0–1 cm) were significantly more than those in the 1–2 cm and 2–3 cm soil layers. Fe2+ explained 81.5% variations in the absolute abundance of BAC, GEO and PPB. [Conclusion] The potential community of FeRB and AnPB and the abundance of GEO and PPB varied between different soil types. Overall, Fe2+ played a key role in shaping the distribution pattern of FeRB and AnPB.
Keywords: ferric reducing bacteria    anoxygenic phototrophic bacteria    paddy soil    the Yellow River beach    

铁(Fe)是地壳中含量第四丰富的元素。Fe的氧化还原耦合着碳(C)、氮(N)、硫(S)、磷(P)等元素的转化,是地球生物化学循环重要的驱动力[1-2]。土壤和沉积环境中有大量的代谢铁(Fe)微生物[3],主要包括铁还原细菌[ferric reducing bacteria,FeRB,如希瓦氏菌属(Shewanella)、地杆菌属(Geobacter)等,占2.8%]、光合铁氧化菌(photoferrotrophic bacteria,PFeOB,占0.2%)、微需氧铁氧化菌(占0.1%)及硝酸盐依赖铁氧化菌(占0.3%)[4],这可能得益于环境中持续进行的铁氧化还原过程。不产氧光合细菌(anoxygenic phototrophic bacteria, AnPB)为进行光合作用不产生氧气的微生物的总称,其中PFeOB为AnPB中能利用光能氧化二价铁(Fe2+)还原无机二氧化碳(CO2)的类群。稻田土中FeRB、AnPB种类多样、数量丰富[5-8],但有关稻田土中FeRB、AnPB菌群组成相关性、丰度和主要环境影响因子的研究还有待完善。

根据能量来源的不同,FeRB有呼吸型和发酵型两类。呼吸型FeRB,如地杆菌属(Geobacter)和厌氧粘细菌属(Anaeromyxobacter),能够通过还原三价铁(Fe3+)从有机质或H2氧化中获取能量;发酵型FeRB,如芽孢杆菌属(Bacillus)和梭菌属(Clostridium),在厌氧环境下代谢有机物生成有机酸或H2,并将少量电子传递给Fe3+使其还原和获得能量。Geobacter是土壤、河流底泥、入海口沉积物等各种厌氧环境中的优势微生物种群,是最早发现的能够氧化有机物同时利用Fe3+作为唯一电子受体介导Fe异化还原的FeRB[9]。FeRB在土壤有机质的转化[10-11]、有机氯污染脱氯[12]等过程中发挥着重要作用。近年来,学者们还发现以GeobacterAnaeromyxobacter和酸微菌科细菌(Acidimicrobiaceae sp. A6)为代表的FeRB还能够利用无机铵盐(NH4+)作为电子供体还原Fe3+为Fe2+,并生成氮气(N2)、硝酸盐态氮(NO3-N)、亚硝酸盐态氮(NO2-N)中的一种或多种[13],该过程被称为厌氧铁氨氧化(feammox)。研究报道,稻田土中发生的feammox反应以生成N2为主[14],但生境不同feammox反应生成的氮的种类也不一样。

土壤中含有种类丰富多样的AnPB。稻田土干湿交替的环境适宜AnPB生存[15]。AnPB在太阳辐照作用下可以氧化H2、Fe2+、硫化物、单质硫等还原CO2自养生长。某些AnPB代谢方式灵活多样,尤以紫色硫细菌(PSB)、紫色非硫细菌(PNSB)为主,二者统称为光合紫细菌(PPB)。PPB在环境中的有机质丰富时可以光合异养生长,在有机质缺乏的环境中又可以营光合自养生长,其中PNSB对氧气有一定的耐受能力,在辐射光能到达的稻田土表层广布[16]。光辐射作用下某些AnPB以Fe2+为电子供体还原CO2或碳酸氢盐(HCO3)生长的代谢被称为光合铁氧化(PFeOx)。PFeOx过程所生成的Fe3+可为微生物异化还原。目前,已分离的PFeOB有Rhodovulum iodosum[17]Rhodopseudomonas palustris TIE-1[18]Rhodobacter ferrooxidans SW2[19]Chlorobium ferrooxydans[20],主要来自于PSB、PNSB和绿硫菌(GSB)。Ha等[21]观察到江口突柄绿菌(Prosthecochloris aestaurii,属GSB)与硫还原地杆菌(G. sulfurreducens)之间紧密连接生长,且这种互营关系在多次传代培养过程中稳定,显示了AnPB与FeRB的互营潜力。Byrne等[22]发现,R. palustris TIE-1能利用光能氧化纳米磁铁矿(Fe3O4)中Fe2+,当与G. Sulfurreducens共培养时该反应可逆,表明高晶形化的Fe3O4可同时充当电子供体和受体被微生物利用。Berg等[23]提出,PFeOB、微需氧铁氧化菌、FeRB的作用形成了低Fe湖泊水柱中活跃而隐秘的Fe循环。自然界中微生物异化Fe还原和不产氧光合作用共存[24],并可能通过Fe循环耦联。学者们虽对FeRB、AnPB菌群进行了一些研究,但对二者物种组成间的相关性较少涉及,对影响它们的关键环境因子也不清楚。

河南省原阳县地处黄河中下游冲积平原,是优质大米的重要产区。黄河滩地和稻田土的土壤类型、理化因子水平不同,且都有周期性干湿交替的特性,是解析FeRB、AnPB分布规律的良好材料。本研究以沿黄流域(原阳段)黄河滩地、稻田土为研究对象,通过利用16S rRNA基因高通量测序、实时荧光定量分析技术,结合统计分析,揭示潜在FeRB、AnPB分布机制,为理解沿黄流域土壤中C、N、Fe元素转化过程提供理论支持。

1 材料与方法 1.1 研究区域及土壤样品的采集

所有土壤样品取自河南省原阳县黄河滩区(7°45′46″N,118°58′40″E)附近,采集时间为2021年11月。在黄河岸边泥沙冲击滩地采集3个点(S1、S2和S3),S1距离地上河堤200 m (有植被覆盖),S2距离地上河堤50 m (偶有淤泥),S3为地上河堤边缘(受黄河水影响相对大)。每采样点以1 cm为间隔采集3个分层样,以S1为例,分别记为S1_1、S1_2、S1_3。在黄河滩区附近(5 km)稻田亦选取3个采样点P1、P2、P3,按上述方法取分层土样,另选取P2田块旁干涸稻田排水沟渠(D1)和毗邻的稻田改作藕塘(D2,一年龄)采集表层1 cm土样。共获得20个土样,其中表层土样品8个。对所有土样中的总细菌(BAC)、地(热)杆菌(GEO)、PPB用实时荧光定量法定量。对8个表土样品通过测定16S rRNA基因序列进行微生物多样性分析,所得序列号上传至国家微生物科学数据中心(https://nmdc.cn/),登录号NMDC40024174− NMDC40024181。按照土样类型、采集位置分为2组,即稻田相关土壤(记为Paddy)和河滩地土壤(记为Sand)。所有土壤样品采集后放入无菌密封袋中运回实验室分析,不能立即分析的按监测方法需要分别存储在4 ℃与–80 ℃备用。

1.2 土壤理化性质的测定

土壤中Fe2+、NH4+-N和NO3-N的测定采用新鲜土样,总铁(FeT)、总有机碳(TOC)和pH值的测定采用风干土样。土壤pH值采用电极电位法(水土比2.5:1)测定。土壤含水率(WC)用干燥法称重测定。土壤中FeT、Fe2+含量采用邻菲罗啉比色法测定[25]。土壤中TOC的测定采用湿式重铬酸钾分光光度法测定[26]。土壤中NH4+-N、NO3-N的测定采用2 mol/L KCl溶液浸提,其中NH4+-N采用靛酚蓝比色法,NO3-N采用紫外分光光度法。

1.3 铁还原菌、不产氧光合细菌群落组成

本研究利用Illumina MiSeq PE300平台(上海美吉生物医药科技有限公司)对土壤中潜在FeRB、AnPB的群落组成进行分析,所用引物为细菌16S rRNA基因V3–V4区的338F (5'-ACTCCTACGGGAGGCAGCAG-3')和806R (5'-GGACTACHVGGGTWTCTAAT-3')[27]。测序完成后,从细菌高通量测序结果中筛选出已知的FeRB、AnPB序列,进行重分析。根据E.Z.N.A. Soil DNA Kit (Omega Bio-tek)说明书抽提微生物总DNA,使用NanoDrop 2000测定DNA浓度和纯度。使用1%琼脂糖凝胶电泳检测DNA的提取质量。利用AxyPrep DNA Gel Extraction Kit (Axygen Biosciences)进行回收产物纯化,2%琼脂糖凝胶电泳检测,并用Quantus Fluorometer (Promega)对回收产物进行检测、定量。使用NEXTFLEX Rapid DNA-Seq Kit进行建库。利用Illumina MiSeq PE300平台进行测序。使用Fastq软件对原始测序序列进行质控,使用Flash软件进行拼接。使用QIIme2 (v2020.2)软件,利用DADA2算法对序列进行ASV聚类并剔除嵌合体。基于Silva 16S rRNA数据库(v138),利用RDP classifier贝叶斯算法对ASV代表序列进行物种分类学注释,置信度阈值为0.7,得到物种分类学注释结果。

1.4 铁还原菌、不产氧光合细菌的荧光定量

将纯化、质检后的DNA样本与大肠杆菌pMD18-T载体连接,进行蓝白斑筛选。构建好的质粒经测序鉴定无误后用紫外分光光度计(NanoDrop 2000)测定质粒OD260值,通过公式换算成拷贝数。10倍梯度稀释构建好的各质粒,分别选取总细菌(BAC) 16S rRNA基因(引物338F/806R)标准品的10−2−10−7稀释液,GeobacteraceaeGeothermobacteraceae 16S rRNA基因[引物Geo.564F (5'-AAGCGTTGTTCGGA WTTAT-3')/Geo.840R (5'-GGCACTGCAGGGGT CAATA-3')[28]]的10−4_10−8稀释液,PPB光合反应中心M亚基基因[引物pufM.557F (5'-CGCAC CTGGACTGGAC-3')/pufM.750R (5'-CCCATGG TCCAGCGCCAGAA-3')[29]]标准品的10−1-10−8稀释液用于制备标准曲线。

1.5 数据处理与统计

采用Excel 2010计算各试验原始数据的均值、标准差。利用Origin 8进行绘图。用R语言Psych数据包绘制相关性热图,其中对土壤基础理化指标与BAC、PPB、GEO拷贝数作Pearson相关性分析,对FeRB、AnPB菌群各组成物种之间及FeRB、AnPB菌群各组成与环境因子的相关性作Spearman相关性分析。对FeRB、AnPB群落结构,BAC、PPB、GEO拷贝数与环境变量的关系采用Canoco 5软件进行冗余分析(redundancy analysis, RDA)。

2 结果与分析 2.1 沿黄流域土壤主要理化性质

对比黄河滩地和稻田土发现,除WC (P=0.833)外,二者的其他土壤理化因子之间均呈极显著差异(P < 0.001)。具体为,稻田土中的Fe2+、FeT、NH4+-N、NO3-N、TOC含量均高于黄河滩地,但pH值小于黄河滩地(表 1)。对于分层土样,除NH4+-N (P < 0.05)外,0–1 cm、1–2 cm和2–3 cm土层间的其他理化因子均无显著性差异(P > 0.308),这主要是所采集的样品都相对位于土壤浅表层,土壤性质相对均匀。

表 1. 黄河滩地、稻田土理化性质 Table 1. Soil physicochemical properties of the Yellow River beach and paddy soil
Soil type Sample sites pH WC (%) Fe2+ (mg/g) FeT (mg/g) NH4+-N (g/g) NO3-N (g/g) TOC (mg/g)
Sand S1 8.63±0.38 33.72±21.89 0.14±0.10 0.81±0.25 2.04±1.74 1.13±1.05 5.49±4.58
S2 8.53±0.10 28.10±1.92 0.37±0.03 0.94±0.14 2.79±3.21 1.21±2.10 3.83±0.33
S3 8.80±0.17 22.09±4.10 0.25±0.01 0.76±0.06 0.65±0.64 ND 2.65±0.55
Paddy P1 7.95±0.04 45.25±12.52 0.57±0.12 2.56±0.51 8.89±2.58 26.09±9.08 22.10±1.69
P2 7.98±0.11 16.73±0.17 0.63±0.04 1.90±0.16 14.66±9.60 23.72±6.82 16.60±0.22
P3 8.01±0.07 19.93±0.99 0.67±0.05 2.14±0.02 13.19±5.23 10.64±0.89 16.79±0.26
D1 7.76 39.64 0.939 2.37 22.05 1.41 16.96
D2 7.85 36.34 0.74 2.04 22.00 1.04 17.50
ND: Not detected. Values for S1 to P3 are mean±standard deviation of three vertical soils, depth 0–3 cm. D1, D2 are measured value of surface layer of 0–1 cm.

2.2 沿黄流域土壤铁还原菌、不产氧光合细菌组成 2.2.1 FeRB、AnPB主要组成物种

选取相对丰度较多的前二十属,在科(属)上对FeRB进行群落组成分析,结果如图 1A所示。8个土样中优势FeRB在科(属)水平是Hydrogenophilaceae (Thiobacillus)、Bacillaceae (Bacillus)、Clostridiaceae (主要是Clostridium_sensu_stricto_1、Clostridium_sensu_stricto_8、Clostridium_sensu_stricto_10、Clostridium_sensu_ stricto_13属,占86.87%)、Geobacteraceae (Geobacternorank_f_Geobacteraceae属);稻田土中优势FeRB还包括Anaeromyxobacteraceae (Anaeromyxobacter)、Geothermobacteraceae (Geothermobacter);黄河滩地还包括Pseudomonadaceae (Pseudomonas)、Comamonadaceae (Rhodoferax)、Desulfuromonadaceae (Desulfuromonas)。AnPB菌群共有8属,分属8个科,结果如图 1B所示。Rhodobactereace (Rhodobacter)是所有土样中的优势AnPB;稻田土中优势AnPB还包括Chloroflexaceae (Chloronema)、Acetobacteraceae (Roseomonas);黄河滩地还包括Comamonadaceae (Rhodoferax)、Sphingomonadaceae (Erythrobacter),可能是河滩砂质土壤具有更佳的透气性和相对高的氧气含量,更适宜它们生长。黄河滩地S1_1表面覆盖一薄层生物膜,含水率高(58.83%),可能形成了适宜Chloronema的微环境,使得Chloronema在S1_1点成为绝对优势AnPB。

图 1 科(属)水平潜在FeRB (A)、AnPB (B)菌群组成 Figure 1 Potential FeRB (A) and AnPB (B) at family (genus) level.

2.2.2 FeRB、AnPB组成物种的相关性

FeRB、AnPB群落组成物种间相关性采用Spearman秩相关性分析法检验,结果如图 2所示。AnPB中Chloroflexaceae与FeRB中的Rhodobacteraceae显著负相关(P < 0.05),但与Geobacteraeace极显著正相关(P < 0.01);AnPB中Rhodobacteraceae与FeRB中的Comamonadaceae (P=0.039)、Paenibacillaceae (P=0.039)显著正相关,但与GeobacteraeaceBacillaceae显著负相关(P < 0.05)、与Clostridiaceae极显著负相关(P < 0.01);AnPB中Sphingomonadaceae与FeRB中的HydrogenophilaceaeClostridiaceae显著负相关(P < 0.05),与BacillaceaeGeothermobacteraeace极显著负相关(P < 0.01),但与DesulfuromonadaceaeTrueperaceae极显著正相关(P < 0.01);AnPB中Comamonadaceae与FeRB中的GeobacteraeaceHydrogenophilaceaeClostridiaceaeAnaeromyxobacteraceae显著负相关(P < 0.05),但与Deinococcaceae极显著正相关(P < 0.01)。

图 2 FeRB、AnPB组成物种间的相关性 Figure 2 Correlation between compositions of FeRB and AnPB. Solid line: FeRB; Dashed line: AnPB.

2.2.3 FeRB、AnPB组成物种与土壤性质的相关性

图 3A所示,Hydrogenophilaceae相对丰度与pH极显著负相关(P < 0.01),与Fe2+、FeT、NH4+-N、TOC显著正相关(P < 0.05);Pseudomonadaceae相对丰度与WC显著负相关(P < 0.01);Geothermobacteraceae相对丰度与pH显著负相关(P < 0.05),与Fe2+显著正相关(P < 0.05);Anaeromyxobacteraceae相对丰度与pH显著负相关(P < 0.05),与FeT显著正相关(P < 0.05);Geobacteraceae相对丰度与NO3-N显著正相关(P < 0.05);Deinococcaceae相对丰度与pH显著正相关(P < 0.05),与TOC显著负相关(P < 0.05);Desulfuromonadaceae相对丰度与pH显著正相关(P < 0.05),与Fe2+、FeT、NH4+-N、TOC显著负相关(P < 0.05);Desulfomicrobiaceae相对丰度与pH极显著负相关(P < 0.01),与Fe2+、NH4+-N显著正相关(P < 0.01),与TOC极显著正相关(P=0.010);Trueperaceae相对丰度与pH显著正相关(P < 0.05),与Fe2+极显著负相关(P < 0.01),与FeT、NH4+-N、TOC显著负相关(P < 0.05)。综上所述,非优势FeRB,如DeinococcaceaeDesulfuromonadaceaeDesulfomicrobiaceaeTrueperaceae在菌群中的相对丰度往往与多种土壤理化因子相关;优势FeRB (除Hydrogenophilaceae外),如呼吸型GeothermobacteraceaeAnaeromyxobacteraceaeGeobacteraceae和发酵型BacillaceaeClostridiaceae的相对丰度主要与单一土壤理化因子有关或甚至与土壤理化因子变化无关。

图 3 FeRB (A)、AnPB (B)与环境因子的相关性 Figure 3 Correlation of community of FeRB (A) and AnPB (B) and environmental factors.

图 3B所示,Rhodobacteraceae相对丰度与NO3-N显著负相关(P < 0.05);Sphingomonadaceae相对丰度与pH显著正相关(P < 0.05),与Fe2+、NH4+-N极显著负相关(P < 0.01),与FeT、TOC显著负相关(P < 0.05);Comamonadaceae相对丰度与pH显著正相关(P < 0.05),与TOC显著负相关(P < 0.05);其他属AnPB相对丰度与土壤理化因子无关。因此,除SphingomonadaceaeComamonadaceae外,其他优势和非优势AnPB的相对丰度与土壤理化因子无关,或仅受单一土壤理化因子影响(如Rhodobacteraceae)。

2.2.4 RDA分析

前向选择结果显示Fe2+、pH对FeRB组成变异的可解释度分别为13.5%、65.7%,对AnPB组成变异的可解释度分别为41.8%、42.8%,是驱动沿黄流域土壤中FeRB、AnPB菌群结构差异的最关键的2个环境因子。选取对物种组成变异贡献位于前四的环境因子与潜在FeRB、AnPB进行RDA分析。pH、Fe2+、NO3-N、FeT对FeRB组成变异的可解释度为87.0%,其中RDA1可解释74.68% (图 4A);pH、Fe2+、NH4+-N、FeT为影响AnPB组成最重要的4个环境变量,它们可解释的变异占85.5%,其中RDA1可解释80.33% (图 4B),说明了Fe、N元素在塑造FeRB、AnPB菌群结构中的重要作用。

图 4 FeRB (A)、AnPB (B)与主要环境因子冗余分析 Figure 4 Redundancy analysis of FeRB (A) and AnPB (B) and main environmental factors.

2.3 沿黄流域土壤地(热)杆菌、光合紫细菌分布 2.3.1 地(热)杆菌、光合紫细菌丰度

黄河滩地BAC、GEO、PPB[以平均值(±标准差)表示]为2.52 (±3.43)×109、5.21 (±7.58)×107、2.9 (±3.70)×107 copies/g干土,稻田土中三者依次为3.82 (±1.29)×1010、3.05 (±2.44)×108、4.31 (±0.90)×108 copies/g干土(图 5A)。在黄河滩地、稻田土中GEO相对丰度(GEO%)分别为1.40 (±1.96)%、0.74 (±0.37)%,PPB相对丰度(PPB%)分别为1.40 (±0.51)%、1.26 (±0.49)% (图 5B)。SPSS统计结果显示,BAC、GEO、PPB拷贝数在稻田土中极显著高于黄河滩地(P < 0.01),而GEO%、PPB%在2种类型土壤中无显著性差异。垂直分布上,0–1 cm土层中PPB数量为3.62 (±2.67)×108 copies/g干土,显著高于1–2 cm土层的8.21 (±8.83)×107 copies/g干土(P < 0.05)和2–3 cm土层的7.19 (±7.48)×107 copies/g干土(P < 0.05),但1–2 cm、2–3 cm土层间无显著性差异。

图 5 总细菌、地(热)杆菌、光合紫细菌拷贝数(A)和相对丰度(B) Figure 5 Copies (A) and relative abundance (B) of BAC, GEO and PPB.

2.3.2 地(热)杆菌、光合紫细菌与土壤理化因子的相关性

采用Pearson相关性分析方法检验BAC、GEO、PPB丰度与土壤理化因子的相关性,结果如图 6所示。WC与BAC、GEO、PPB及其他理化因子均不相关。BAC、GEO、PPB与Fe2+、NH4+-N极显著正相关,与pH极显著负相关(P < 0.01),且PPB与FeT、TOC显著正相关(P < 0.05),GEO与FeT、NO3-N、TOC极显著正相关(P < 0.01)。上述结果显示,GEO、PPB丰度亦与Fe、N元素,尤其是与Fe2+、NH4+-N、NO3-N密切相关。

图 6 总细菌、地(热)杆菌、光合紫细菌拷贝数与环境因子相关性 Figure 6 Correlation of copies of BAC, GEO and PPB and environmental factors. *: P < 0.05; **: P < 0.01.

2.3.3 RDA分析

图 7可知,稻田土表层0–1 cm样品与较深的1–2 cm、2–3 cm土样差异较大,且表层稻田土又以D1、D2与其他点位(P1_1、P1_2、P1_3)差异大。RDA1可解释的变异为96.51%,其中Fe2+、NH4+-N、pH对RDA1的贡献最大,Fe2+、NH4+-N与RDA1正相关,pH与RDA1负相关。Fe2+对BAC、GEO、PPB数量变异的解释度为81.5%,可以认为是驱动BAC、GEO、PPB分布的最关键因子。

图 7 总细菌、地(热)杆菌、光合紫细菌拷贝数与环境因子冗余分析 Figure 7 Redundancy analysis of copies BAC, GEO and PPB and environmental factors.

3 讨论 3.1 沿黄流域土壤地(热)杆菌、光合紫细菌分布

FeRB、AnPB是土壤和沉积环境中普遍共存的功能微生物[3]。某些AnPB具有氧化Fe2+还原CO2的功能[17-20],可能与还原Fe3+的FeRB通过铁循环耦合[21-23],影响土壤中C、Fe、N元素的循环。为了解沿黄流域土壤中FeRB、AnPB分布机制,本研究采集了黄河(原阳段)河滩地和周边稻田土,分析了土壤中FeRB、AnPB菌群结构以及代表性GEO、PPB丰度和驱动上述功能菌分布的关键环境因子。

黄河滩地和稻田土中优势FeRB、AnPB主要包括Hydrogenophilaceae (Thiobacillus)、Bacillaceae (Bacillus)、Clostridiaceae (Clostridium_ sensu_stricto_1、Clostridium_sensu_stricto_8、Clostridium_sensu_stricto_10、Clostridium_sensu_ stricto_13,占86.87%)、Rhodobactereace (Rhodobacter)、Chloroflexaceae (Chloronema)、Acetobacteraceae (Roseomonas)。稻田土中PPB、GEO丰度较河滩土高一个数量级,这主要是稻田经过了农事活动肥力高,激发了多数异养微生物生长繁殖。PPB在土壤中的分布具有分层现象,表现为表层0–1 cm土中数量高,这主要是因为表层土中PPB能接受一定的太阳辐射可以光合自养生长,1–3 cm土层基本无光导致PPB生长受阻。GEO在土壤中主要受TOC影响最为显著,无明显分层,这与其氧化有机质还原Fe3+的异养代谢方式相符。Fe2+对BAC、PPB、GEO数量变异的解释度达81.5%,是驱动三者在土壤中分布多寡的最关键环境因子。NH4+-N、Fe2+、TOC对表层稻田土的影响大,NO3-N主要影响深层稻田土,这可能是由土壤中O2分布状况的差异导致的。在空气–土界面,土壤空隙中O2含量高,生物和非微生物的氧化还原反应强烈进行,耦合调控土壤中C、N、Fe等元素周转;较深层土壤中,O2传递受阻,厌氧微生物过程占主导,NH4+-N被无氧氧化成NO3-N。

3.2 优势FeRB、AnPB与土壤元素转化

水稻土中ClostridiumBacillus在细菌群落结构中占有重要地位[30]。一些Clostridium和具有还原Fe的功能,如从始成土的稻田中分离出的3株Bacillus菌株具有还原Fe3+功能,有效改善了石灰性土壤缺Fe状况[31]。有研究报道,ClostridiumBacillusGeobacter组成了Fe包被水稻根系中的优势微生物,约占总16S rRNA物种相对丰度的65%[32]。本研究中BacillaceaeClostridiaceae在黄河滩地、稻田土中的分布与环境因子无关,但低pH值时,BacillaceaeClostridiaceae相对丰度较高,这可能是因为BacillaceaeClostridiaceae为发酵型FeRB[33],它们本身代谢有机质产生有机酸和氢离子(H+),对低pH条件有较好的适应性。

硫杆菌属(Thiobacillus)的许多种是土壤与水中最重要的化能自养菌。Thiobacillus ferrooxidans在厌氧条件下氧化1 mol单质S还原6 mol Fe3+生成6 mol Fe2+、1 mol SO42–和少量的SO32–,有氧情况下Fe2+被胞内Fe氧化酶立即再氧化而检测不到Fe2+生成[34]T. ferrooxidans还能通过Fe还原系统的硫氧化路径氧化硫代硫酸盐[35]。硫自养反硝化微生物利用元素S作为电子供体从水生环境中去除NO3,主要是T. denitrificans起作用。溶解性有机质(DOM)作为微生物光敏剂驱动T. denitrificans发生光电反硝化反应[36]T. denitrificans、G. sulfurreducens共培养体系中有机碳可以促进S的转化,驱动混合营养体系中发生基于单质S的反硝化反应[37]。本研究中,Hydrogenophilaceae (Thiobacillus)与pH极显著负相关(P < 0.01),与Fe2+、FeT正相关(P < 0.05),说明T. ferrooxidans可能是Thiobacillus中的优势种之一,偏酸性环境和高含量Fe2+会更适宜T. ferrooxidans生存。本研究还发现,Hydrogenophilaceae (Thiobacillus)与NH4+-N显著正相关,代表性序列ASV42在Thiobacillus属的序列数最多,其在稻田土中序列数为128.4±51.9 [平均值(±标准差)]。对ASV42进行在线比对,结果显示其与环境样本中一反硝化Thiobacillus (登录号MG801484.1)相似性大于99%,说明ASV42可能为具有脱N功能的T. denitrificans。推测T. ferrooxidansT. denitrificans是本研究中Hydrogenophilaceae (Thiobacillus)的重要组成物种。

Geobacter是最早发现的FeRB,是驱动元素地球生物化学循环的重要微生物。稻田土也是Geobacter的重要生境之一。Geobacter作为一种重要的胞外呼吸FeRB,能完成直接脱氯代谢,降低有机氯污染物毒性,生物炭可发挥固态电子穿梭体的功能加速还原脱氯[38]。淹水条件下,微生物介导Fe (III)还原会将吸附的As (V)释放到水中。研究表明生物炭提高了淹水稻田土中GeobacterAnaeromyxobacterClostridium 3种与As、Fe相关细菌丰度,促进了As (V)、Fe (III)还原,提高土壤溶液中As(III)释放[39]。因此,对As (V)、有机氯复合污染稻田的修复应谨慎选用生物炭。本研究中Geobacteraceae (Geobacter)与NO3-N显著正相关,Fe2+与NH4+-N极显著正相关,说明黄河滩地和稻田土中发生了以生成NO3-N为主要含氮产物的feammox。Clément等[40]最早发现了湿地生物利用Fe3+作为电子受体生成Fe2+同时氧化NH4+为NO2。现已证明,feammox参与了稻田、湿地、沉积物等的N转化过程,产生的N2损失量约为输入总N的3.1%–9.4%[28, 41-42]

与其他FeRB相比,Rhodobacter在黄河滩地中相对占比更大,在稻田土(除D1)中占比相对小,且随着河滩土TOC的减少其在总FeRB菌群中的占比增多。这可能是因为河滩土中有机质含量少,限制了其他FeRB增殖,而Rhodobactereace (Rhodobacter)在环境中有机质含量不足时可利用无机碳源满足自身生长需要,逐渐在FeRB中成为主导。研究发现,Rhodobacter是沉积物中一种关键的好氧反硝化类群[43],其可以NO3-N为电子受体,有机碳源为电子供体光合异养生长。汪银龙等[44]发现,Rhodobacter是汾河下游水体中nir S型反硝化细菌群落的三个主导菌属之一,某些采样点相对丰度高于98%,与NO3-N负相关,与NH4+-N正相关。活性污泥池中以氧化亚氮(N2O)输出的N占输入NH4+-N的0.001%–0.280%,所释放的N2O主要与NitrotogaCandidatus MicrothrixRhodobacter丰度相关,它们得益于污泥池中较高的NO3-N和DO[45]。本研究中Rhodobacter与NO3-N显著负相关,与上述研究一致,说明黄河滩地、稻田土中Rhodobacter属也具有反硝化脱N潜力。Richardson等[46]发现细胞色素c、b可能参与转移电子到Rhodobacter capsulatus周质NO3还原酶,且硝酸盐+丁酸盐组合较硝酸盐+苹果酸盐组合显著提高R. capsulatus硝酸盐还原速率达5倍以上。本研究中具有feammox功能的FeRB与反硝化RhodobacterT. denitrogen通过NO3的生成和利用耦合协同维持土壤N素循环。

本研究中沿黄流域黄河滩地、稻田土中与氧化NH4+相关的亚硝化单胞菌属(Nitrosomonas)共69条序列(稻田土共62条),主要参与氧化NH4+-N为NO2-N,分属亚硝酸盐细菌(NitrospiraCandidatus Nitrotoga)的序列共计480条(稻田土294条),主要参与氧化NO2-N为NO3-N。本研究中GeobacterAnaeromyxobacter可氧化NH4+-N提供NO2-N、NO3-N,但它们较反硝化类群的RhodobacterThiobacillus丰度低。鉴于此,认为所调查区域NH4+-N向NO2-N转化可能是硝化反硝化的限速步骤,一定程度上解释了Hydrogenophilaceae (Thiobacillus)与NH4+-N的正相关关系。综上所述,黄河滩地、稻田土中潜在FeRB、AnPB与土壤C、Fe、N、S元素循环可能存在如下作用机制(图 8)。

图 8 优势FeRB、AnPB与土壤元素转化的潜在作用机制 Figure 8 Potential microbial mechanism of soil element transformation mediated by dominant FeRB and AnPB. Norg: Organic nitrogen; Corg: Organic carbon.

4 总结

本研究解析了沿黄流域(原阳段)土壤中FeRB、AnPB分布特征。研究结果发现,土壤类型不同潜在FeRB、AnPB物种组成、数量不同。Hydrogenophilaceae (Thiobacillus)、Bacillaceae (Bacillus)在稻田土和黄河滩地2种类型土壤中普遍存在且丰度高。此外,稻田土中Anaeromyxobacteraceae (Anaeromyxobacter)、Geothermobacteraceae (Geothermobacter)、Acetobacteraceae (Roseomonas)、Chloroflexaceae (Chloronema)相对丰度高,黄河滩地Rhodobactereace (Rhodobacter)、Pseudomonadaceae (Pseudomonas)、Comamonadaceae (Rhodoferax)、Desulfuromonadaceae (Desulfuromonas)相对丰度高。相关分析显示,某些AnPB、FeRB物种间的相对丰度呈负相关。荧光定量结果显示,肥力高的稻田土中GEO、PPB丰度显著高于黄河滩地,具光合作用的PPB在表层土中数量更高。pH、Fe2+、NH4+-N、NO3-N是直接或间接影响沿黄流域(原阳段)土壤中FeRB、AnPB菌群结构、丰度的重要环境因子,其中Fe2+是驱动FeRB、AnPB组成、数量分布的关键环境因子。RhodobacterThiobacillus、Bacillus、GeobacterAnaeromyxobacter物种间通过直接或间接作用介导土壤C、N、Fe元素循环。本研究揭示了沿黄流域不同土壤类型中FeRB、AnPB菌群结构和主要影响因子,对理解土壤元素耦合循环机制提供理论支持。

References
[1] WANG XG, SUN LR, CHEN ZH, GUO DY, FAN HL, XU XF, SHI ZY, CHEN XN. Light inhibition of carbon mineralization associated with iron redox processes in calcareous paddy soil. Journal of Soils and Sediments, 2020, 20(8): 3171-3180. DOI:10.1007/s11368-020-02660-w
[2] MELTON ED, SWANNER ED, BEHRENS S, SCHMIDT C, KAPPLER A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 2014, 12(12): 797-808. DOI:10.1038/nrmicro3347
[3] WEBER KA, ACHENBACH LA, COATES JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 2006, 4(10): 752-764. DOI:10.1038/nrmicro1490
[4] OTTE JM, HARTER J, LAUFER K, BLACKWELL N, STRAUB D, KAPPLER A, KLEINDIENST S. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environmental Microbiology, 2018, 20(7): 2483-2499. DOI:10.1111/1462-2920.14260
[5] WANG XJ, YANG J, CHEN XP, SUN GX, ZHU YG. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal of Soils and Sediments, 2009, 9(6): 568-577. DOI:10.1007/s11368-009-0113-x
[6] HORI T, MÜLLER A, IGARASHI Y, CONRAD R, FRIEDRICH MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. The ISME Journal, 2010, 4(2): 267-278. DOI:10.1038/ismej.2009.100
[7] LUO D, MENG XT, ZHENG NG, LI YY, YAO HY, CHAPMAN SJ. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. Science of the Total Environment, 2021, 788: 147773-147783. DOI:10.1016/j.scitotenv.2021.147773
[8] KANTACHOTE D, NUNKAEW T, NITODA T, KANZAKI H. The use of rice straw broth as an appropriate medium to isolate purple nonsulfur bacteria from paddy fields. Electronic Journal of Biotechnology, 2012, 15(6). DOI:10.2225/vol15-issue6-fulltext-8
[9] LOVLEY DR, PHILLIPS EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480. DOI:10.1128/aem.54.6.1472-1480.1988
[10] LOVLEY DR, PHILLIPS EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 1986, 51(4): 683-689. DOI:10.1128/aem.51.4.683-689.1986
[11] ACHTNICH C, SCHUHMANN A, WIND T, CONRAD R. Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiology Ecology, 1995, 16(1): 61-69. DOI:10.1111/j.1574-6941.1995.tb00269.x
[12] GE JY, HUANG S, HAN I, JAFFÉ PR. Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6. Environmental Pollution, 2019, 247: 248-255. DOI:10.1016/j.envpol.2019.01.066
[13] DING BJ, LI ZK, ZHU HJ, CHEN S, QIN YB, YANG JH, HU YY. Insight into the mechanism of feammox in the surface soils of a riparian zone. Environmental Science, 2018, 39(4): 1833-1839. (in Chinese)
丁帮璟, 李正魁, 朱鸿杰, 陈湜, 覃云斌, 杨建华, 胡优优. 河岸带表层土壤的铁氨氧化(feammox)脱氮机制的探究. 环境科学, 2018, 39(4): 1833-1839.
[14] DING LJ, AN XL, LI S, ZHANG GL, ZHU YG. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environmental Science & Technology, 2014, 48(18): 10641-10647.
[15] FENG YZ, LIN XG, YU YC, ZHU JG. Elevated ground-level O3 changes the diversity of anoxygenic purple phototrophic bacteria in paddy field. Microbial Ecology, 2011, 62(4): 789-799. DOI:10.1007/s00248-011-9895-7
[16] NUNKAEW T, KANTACHOTE D, NITODA T, KANZAKI H. Selection of salt tolerant purple nonsulfur bacteria producing 5-aminolevulinic acid (ALA) and reducing methane emissions from microbial rice straw degradation. Applied Soil Ecology, 2015, 86: 113-120. DOI:10.1016/j.apsoil.2014.10.005
[17] WU WF, SWANNER ED, HAO LK, ZEITVOGEL F, OBST M, PAN YX, KAPPLER A. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum - implications for Precambrian Fe(II) oxidation. FEMS Microbiology Ecology, 2014, 88(3): 503-515. DOI:10.1111/1574-6941.12315
[18] JIAO YQ, KAPPLER A, CROAL LR, NEWMAN DK. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Applied and Environmental Microbiology, 2005, 71(8): 4487-4496. DOI:10.1128/AEM.71.8.4487-4496.2005
[19] EHRENREICH A, WIDDEL F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 1994, 60(12): 4517-4526. DOI:10.1128/aem.60.12.4517-4526.1994
[20] HEISING S, RICHTER L, LUDWIG W, SCHINK B. Chlorobium ferrooxidans sp. nov, a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain. Archives of Microbiology, 1999, 172(2): 116-124. DOI:10.1007/s002030050748
[21] HA PT, LINDEMANN SR, SHI L, DOHNALKOVA AC, FREDRICKSON JK, MADIGAN MT, BEYENAL H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications, 2017, 8: 13924-13930. DOI:10.1038/ncomms13924
[22] BYRNE JM, KLUEGLEIN N, PEARCE C, ROSSO KM, APPEL E, KAPPLER A. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science, 2015, 347(6229): 1473-1476. DOI:10.1126/science.aaa4834
[23] BERG JS, MICHELLOD D, PJEVAC P, MARTINEZ-PEREZ C, BUCKNER CRT, HACH PF, SCHUBERT CJ, MILUCKA J, KUYPERS MMM. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environmental Microbiology, 2016, 18(12): 5288-5302. DOI:10.1111/1462-2920.13587
[24] LAUFER K, NORDHOFF M, RøY H, SCHMIDT C, BEHRENS S, JøRGENSEN BB, KAPPLER A. Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment. Applied and Environmental Microbiology, 2015, 82(5): 1433-1447.
[25] LOVLEY DR, PHILLIPS EJ. Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 1987, 53(7): 1536-1540. DOI:10.1128/aem.53.7.1536-1540.1987
[26] LU RK. Agricultural Chemical Analysis Method of Soil[M]. China Agriculture Scientech Press, 2000 (in Chinese).
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[27] YANG CM, SUN JL, CHEN YY, WU J, WANG YL. Linkage between water soluble organic matter and bacterial community in sediment from a shallow, eutrophic lake, Lake Chaohu, China. Journal of Environmental Sciences, 2020, 98: 39-46. DOI:10.1016/j.jes.2020.05.023
[28] LI XF, HOU LJ, LIU M, ZHENG YL, YIN GY, LIN XB, CHENG L, LI Y, HU XT. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland. Environmental Science & Technology, 2015, 49(19): 11560-11568.
[29] ACHENBACH LA, CAREY J, MADIGAN MT. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Applied and Environmental Microbiology, 2001, 67(7): 2922-2926. DOI:10.1128/AEM.67.7.2922-2926.2001
[30] DING LJ, SU JQ, XU HJ, JIA ZJ, ZHU YG. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. The ISME Journal, 2015, 9(3): 721-734. DOI:10.1038/ismej.2014.159
[31] GHORBANZADEH N, LAKZIAN A, HAGHNIA GH, KARIMI AR. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils. Eurasian Soil Science, 2014, 47(12): 1266-1273. DOI:10.1134/S1064229314120059
[32] SCHEID D, STUBNER S, CONRAD R. Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. FEMS Microbiology Ecology, 2004, 50(2): 101-110. DOI:10.1016/j.femsec.2004.06.001
[33] ZHOU GW, YANG XR, SUN AQ, LI H, LASSEN SB, ZHENG BX, ZHU YG. Mobile incubator for iron(III) reduction in the gut of the soil-feeding earthworm Pheretima guillelmi and interaction with denitrification. Environmental Science & Technology, 2019, 53(8): 4215-4223.
[34] SUGIO T, DOMATSU C, MUNAKATA O, TANO T, IMAI K. Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 1985, 49(6): 1401-1406. DOI:10.1128/aem.49.6.1401-1406.1985
[35] KUROSAWA H, MAEDA K, YAMAMOTO E, NAKAMURA K, AMANO Y. Growth of Thiobacillus ferrooxidans utilized thiosulfate through the oxidation route with iron recycling. The Journal of General and Applied Microbiology, 1994, 40(6): 491-498. DOI:10.2323/jgam.40.491
[36] HUANG SF, CHEN M, DIAO YM, FENG QY, ZENG RJ, ZHOU SG. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification. Environmental Science & Technology, 2022, 56(7): 4632-4641.
[37] HAO W, ZHANG J, DUAN R, LIANG P, LI M, QI X, LI QC, LIU PP, HUANG X. Organic carbon coupling with sulfur reducer boosts sulfur based denitrification by Thiobacillus denitrificans. Science of the Total Environment, 2020, 748: 142445-142452. DOI:10.1016/j.scitotenv.2020.142445
[38] YU LP, YUAN Y, TANG J, WANG YQ, ZHOU SG. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 2015, 5: 16221-16231. DOI:10.1038/srep16221
[39] QIAO JT, LI XM, LI FB. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Journal of Hazardous Materials, 2018, 344: 958-967. DOI:10.1016/j.jhazmat.2017.11.025
[40] CLÉMENT JC, SHRESTHA J, EHRENFELD JG, JAFFÉ PR. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328. DOI:10.1016/j.soilbio.2005.03.027
[41] LIU X, WANG F, JIANG HL, YAO ZB. Anaerobic ammonium oxidation coupled to ferric iron reduction and its contribution to nitrogen loss in the sediment of Meiliang Bay, Lake Taihu. Ecology and Environmental Sciences, 2018, 27(8): 1481-1487. (in Chinese)
刘新, 王芳, 江和龙, 姚宗豹. 太湖梅梁湾沉积物中铁氧化氨作用及其脱氮贡献. 生态环境学报, 2018, 27(8): 1481-1487.
[42] YAO ZB, YANG L, SONG N, WANG CH, JIANG HL. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. Environmental Science and Pollution Research, 2020, 27(21): 25899-25907. DOI:10.1007/s11356-019-06793-5
[43] ZHOU SL, SUN Y, LI ZX, HUANG TL. Characteristics and driving factors of the aerobic denitrifying microbial community in Baiyangdian Lake, Xiong'an new area. Microorganisms, 2020, 8(5): 714-728. DOI:10.3390/microorganisms8050714
[44] WANG YL, FENG MQ, DONG XQ. Community composition of nir S-type denitrifying bacteria in the waters of the lower reaches of the Fenhe River and its relationship with inorganic nitrogen. Environmental Science, 2019, 40(8): 3596-3603. (in Chinese)
汪银龙, 冯民权, 董向前. 汾河下游水体nirS型反硝化细菌群落组成与无机氮关系. 环境科学, 2019, 40(8): 3596-3603.
[45] VIEIRA A, GALINHA CF, OEHMEN A, CARVALHO G. The link between nitrous oxide emissions, microbial community profile and function from three full-scale WWTPs. Science of the Total Environment, 2019, 651: 2460-2472. DOI:10.1016/j.scitotenv.2018.10.132
[46] RICHARDSON DJ, MCEWAN AG, PAGE MD, JACKSON JB, FERGUSON SJ. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3 reductase of Rhodobacter capsulatus and resolution of a soluble NO3 (-)-reductase: cytochrome-c552 redox complex. European Journal of Biochemistry, 1990, 194(1): 263-270. DOI:10.1111/j.1432-1033.1990.tb19452.x
黄河滩地和稻田土中铁还原菌、不产氧光合细菌分布机制
田莹莹 , 王强 , 赵京 , 孙向辉 , 姬燕培