微生物学报  2023, Vol. 63 Issue (3): 1230-1242   DOI: 10.13343/j.cnki.wsxb.20220552.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220552
中国科学院微生物研究所,中国微生物学会

文章信息

赵曜, 柳彩霞, 杨轶丹, 罗专溪, 王振红. 2023
ZHAO Yao, LIU Caixia, YANG Yidan, LUO Zhuanxi, WANG Zhenhong.
氮磷比对有机磷环境中微藻砷代谢的生态风险效应
Effect of N/P ratio on ecological risk of arsenic metabolism of microalgae in the presence of organic phosphorus
微生物学报, 63(3): 1230-1242
Acta Microbiologica Sinica, 63(3): 1230-1242

文章历史

收稿日期:2022-07-24
网络出版日期:2022-10-24
氮磷比对有机磷环境中微藻砷代谢的生态风险效应
赵曜1 , 柳彩霞2 , 杨轶丹1 , 罗专溪3 , 王振红1     
1. 闽南师范大学化学化工与环境学院 福建省现代分离分析科学与技术重点实验室 污染监测与控制福建省高校重点实验室, 福建 漳州363000;
2. 莆田市环境监测站, 福建 莆田 351100;
3. 华侨大学化工学院, 福建 厦门 361021
摘要[目的] 探究了以单酯磷d-葡萄糖-6-磷酸二钠(d-glucose-6-disodium phosphate, GP)为唯一磷源时含砷(As5+)水体中不同氮磷质量比对铜绿微囊藻(Microcystis aeruginosa)生长及砷代谢和微囊藻毒素(microcystins, MCs)释出的影响。[方法] 将氮磷饥饿状态的藻细胞于含砷水体中不同氮磷比条件下进行实验,通过测定藻细胞密度(OD680)、叶绿素a (chlorophyll a, Chla)、实际光合产率(Yield)、超氧化物歧化酶(superoxide dismutase, SOD)、砷的存在形态以及微囊藻毒素含量,分析该藻在砷胁迫下的生理响应以及砷代谢机制。[结果] 氮磷饥饿状态藻细胞对较高GP水平(0.1 mg/L)下的低氮磷比有更好的适应性,较低GP水平(0.02 mg/L)下的高氮磷比能显著促进培养初期藻细胞的OD680、Chla和Yield;SOD在培养初期与末期受氮磷比影响显著。GP环境下铜绿微囊藻经8 d培养后氮磷比为10:0.1介质中的砷表现为以亚砷酸盐(As3+)为主,占水体总砷(total arsenic, TAs)含量的78.8%,其余氮磷比环境中仍以As5+为主,藻体砷形态则均以As5+为主,氮磷比为1:0.1时有机砷占藻体TAs比例最高。藻细胞砷代谢受GP水平影响显著,较高GP环境(0.1 mg/L)下砷的代谢总量也更高,氮磷比为10:0.1时砷代谢以As5+的还原和As3+释出为主,低GP环境下(0.02 mg/L)砷代谢的甲基化水平提高。介质中MCs的含量与GP水平有关,较高GP的低氮磷比水体中MCs含量最低。[结论] 研究结果对全面了解有机磷源含砷水体中藻华暴发及砷生态风险的科学管控具有重要意义。
关键词有机磷    氮磷比    铜绿微囊藻    砷形态    藻毒素    
Effect of N/P ratio on ecological risk of arsenic metabolism of microalgae in the presence of organic phosphorus
ZHAO Yao1 , LIU Caixia2 , YANG Yidan1 , LUO Zhuanxi3 , WANG Zhenhong1     
1. Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Province Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, Fujian, China;
2. Putian Environmental Monitoring Station, Putian 351100, Fujian, China;
3. School of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
Abstract: [Objective] To explore the effect nitrogen/phosphorus (N/P) ratio on growth, arsenic (As) metabolism, and microcystins (MCs) release of Microcystis aeruginosa in arsenate (As5+)-polluted water when d-glucose-6-disodium phosphate (GP) was the only phosphorus source. [Methods] The experiment was carried out on N- and P-starved algal cells in As-containing water with different N/P ratios. The algal cell density (OD680), chlorophyll a (Chla), actual photosynthetic yield (Yield), superoxide dismutase (SOD) activity, and the content of As species and MCs were measured. Thereby, the physiological response of M. aeruginosa to As stress and the metabolic pathways of As were analyzed. [Results] The N- and P-starved algal cells can well adapt to the low N/P ratio in the case of high GP level (0.1 mg/L), and high N/P ratio in the instance of low GP level (0.02 mg/L) can significant improve the OD680, Chla, and Yield of the algal cells in the early stage of culture. The effect of N/P ratio on SOD activity was more significant at the beginning and end of culture. After 8 days of culture, arsenite (As3+) changed into the dominant As species in the medium with N/P ratio of 10:0.1, which made up 78.8% of the total As (TAs) in the water, but As5+ was still the main As species in the media with other N/P ratios. Meanwhile, As5+ was the dominant As species in algal cells for different N/P ratios, and in the case of N/P ratio at 1:0.1, the proportion of organic As in TAs in algal cells was the largest. As5+ metabolism in M. aeruginosa cells was significantly affected by GP level, and the high amount of metabolized As per cell was found in the instance of high GP level (0.1 mg/L). In the case of N/P ratio of 10:0.1, As metabolism was dominated by the reduction of As5+ and the release of As3+, and methylation level of As was elevated in the case of low GP level (0.02 mg/L). The concentration of MCs in the medium was related to GP level and the concentration was the lowest in the case of low N/P ratio and high GP level. [Conclusion] The results are of great significance for comprehensive understanding of harmful algal blooms and scientific management of As in As-polluted water under organic phosphorus conditions.
Keywords: organic phosphorus    N/P ratio    Microcystis aeruginosa    arsenic species    microcystins    

砷是一种广泛存在于自然界的类金属元素,因其致癌性而被美国有毒物质与疾病登记处联合机构(Joint Agency of the U.S. Toxic Substances and Disease Registry, ATSDR)列为优先污染物[1]。淡水中砷的浓度一般为0.5–5 000 µg/L[2],世界卫生组织(World Health Organization, WHO)规定饮用水中砷含量为10 µg/L。目前已有超过1亿人口面临饮用水砷含量过高的问题,全球70多个国家都出现地下水砷超标的报道,中国也是砷污染最为严重的国家之一[3]。地表水中砷一般以无机砷酸盐形态存在[4]。砷因与磷具有相似的化学结构而被认为可通过磷通道进入生物体内。铜绿微囊藻(Microcystis aeruginosa)作为蓝藻水华优势藻种之一,在环境中分布广泛[5],并对砷具有较高耐受性[6],可通过代谢将毒性较高的无机砷(As3+, As5+)转化为毒性较低的一甲基砷(monomethyl arsenic, MMA)、二甲基砷(dimethyl arsenic, DMA)、砷甜菜碱及砷糖等有机砷[7]

近年来随地表水体外源性磷的有效管控,内源性有机磷在水体富营养化方面的贡献日益突出[8],一些湖泊的底泥中有机磷含量占总磷的50%–90%[9]。单酯磷作为水体有机磷的主要形态之一可占总溶解态有机磷的61%[10-11]。微藻能将有机磷转化为无机磷实现对磷的利用以维持自身生命活动,并由此对水体中有机磷的转化起重要作用[12]。研究表明铜绿微囊藻能利用β-甘油磷酸钠(βP)、脱氧核糖核酸(DNA)、卵磷脂、三磷酸腺苷(ATP)、d-葡萄糖-6-磷酸二钠(GP)等溶解性有机磷作为唯一磷源进行增殖[13]。目前由于氮肥的持续消耗而对全球的氮循环也造成了极大的影响[14-15],在受人类活动影响较大的水体中氮含量可高达10 mg/L[16],因此越来越多的研究强调氮对微藻生长的影响[17],研究表明硝态氮浓度过高会使浮游微藻占据优势地位[18]。而微藻生长不仅与环境中的氮磷营养盐浓度有关而且受氮磷比的控制[19]。通常认为藻类生长所需的最佳氮磷比为16:1,即Redfield值[20],但因藻种差异其对氮磷比的需求也各不相同[19]。有研究发现无机磷源下铜绿微囊藻在氮磷比为4.5时生长最佳,而巨颤藻(Oscillatoria princeps)则在0.45时生长最好[21];强壮硬毛藻(Chaetomorpha valida)在氮磷比为8和16时比生长率最高[20]。因此我们有理由推测以有机磷作为唯一磷源时仍存在对微藻生长的最佳氮磷比。

微藻对砷的代谢不仅受环境中磷的存在形态与其浓度的影响,而且与氮磷比有关[22-25]。低磷或有机磷环境均可以促进微藻对砷的吸收累积与转化。研究表明GP磷源下铜绿微囊藻对As5+具有较强的还原与水生态风险[10]。无机磷源下氮磷比为4时铜绿微囊藻对As5+有更高的吸收累积[26],且高氮磷比环境中更能促进铜绿微囊藻的甲基化[25]。目前关于有机磷源下高氮磷比对微藻生长及砷代谢的影响仍相对较少,不利于我们对富营养化水体水华暴发及含砷水环境中砷生物地球化学循环及其水生态风险的全面认识和科学管控。为此本文选取生物体内普遍存在的单酯磷GP作为有机磷源,探讨其与无机态硝酸盐氮(NO3)在不同比例下对含砷水环境中铜绿微囊藻生长及砷代谢的影响,以全面认识有机磷源下水体藻华发生及可能存在的水生态风险并为其科学管控提供相应理论支撑。

1 材料与方法 1.1 微藻的来源与预处理

铜绿微囊藻(M. aeruginosa) FACHB-905用BG11培养基于光照培养箱中进行培养,培养条件为:光照强度:3 000 lx,光暗比:16 h: 8 h,温度:25 ℃,每天振摇3次。取对数生长期的铜绿微囊藻分装于无菌离心管中,经4 000 r/min离心10 min留下藻体,并用无菌水洗涤3次弃去上清液,以除去附着在藻体上的氮磷,将离心后的藻体在无菌条件下接种到含无氮无磷的BG11中,进行72 h的饥饿培养,使藻细胞处于氮磷缺乏状态[27]

1.2 氮磷比对铜绿微囊藻砷代谢影响实验

将经饥饿培养后的处于氮磷缺乏状态的铜绿微囊藻离心分离去除上清液,并经无菌去离子水清洗2次后,按一定体积和藻密度接种至含100 μg/L As5+的以GP为磷源、NO3为氮源的不同初始氮磷比(表 1)的培养液中,连续培养8 d (初始藻密度为1×106 cells/mL)。分别于0、2、4、6、8 d进行样品采集,测定藻细胞光密度(OD680)、叶绿素a (Chla)、实际光合产率(yield)、超氧化物歧化酶(SOD)活性,同时于第8天离心收集藻体,分别测定水体及藻体内的砷形态含量及水体中的藻毒素含量。

表 1. 培养介质中初始氮磷比及其浓度 Table 1. The initial N/P ratios and its concentration in the culture medium
Experiment Initial concentration (mg/L)
1.00:0.10 10.00:0.10 4.00:0.02 10.00:0.02
N (NaNO3) 1 10 4 10
P (GP) 0.10 0.10 0.02 0.02
N: P 10 100 200 500
The experimental phosphorus concentration is set according to the standard limits of Class Ⅰ and Ⅱ water in “Surface Water Environmental Quality Standard GB3838—2002” and the arsenic concentration is set according to the standard limits of Class Ⅳ and Ⅴ water in “Surface Water Environmental Quality Standard GB3838—2002”.

1.3 测定与分析方法 1.3.1 微藻细胞密度

取一定量的藻液至紫外分光光度计(UV-5100B型,上海元析仪器有限公司)于波长680 nm处测定其藻细胞光密度(OD680)。

1.3.2 叶绿素荧光特性

取一定量的藻液,在黑暗条件下暗适应10 min后,利用高级浮游植物荧光仪(PHYTO-PAM,Walz)对藻液中的叶绿素a (Chla)和实际光合产率(Yield)进行测定。

1.3.3 超氧化物歧化酶(SOD)活性

取一定量的藻液,离心后弃去上清液,加0.05 mol/L PBS (pH 7.8)冰浴破碎,4 ℃ 1 000 r/min离心20 min,上清液为SOD粗提液。用氮蓝四唑法测定其SOD活性[28],其中,SOD活性测定采用公式(1)计算。

公式(1)

其中Ack为照光对照管的吸光度;AE为样品管的吸光度;V为样品液总体积(mL);C为藻细胞个数(cell);Vt为测定时的待测样品用量(mL)。

1.3.4 砷形态

将8 d藻液离心,藻体用去离子水清洗2次,冷冻干燥藻体,后经1%的优级纯硝酸破碎,对上清液与藻细胞制备液用0.22 μm一次性醋酸纤维注射器式滤膜进行过膜处理。后参考Zhu等[29]的方法用HPLC-ICP-MS对两者As3+、DMA、MMA、As5+形态含量进行测定,结果参考Che等[25]的方法计算单个细胞砷代谢含量。

1.3.5 微囊藻毒素含量

参考国家标准《GB/T 20466—2006水中微囊藻毒素的测定》,结合实际条件利用高效液相色谱(high performance liquid chromatography, HPLC, Agilent1200),其中分离柱使用C18色谱柱,流动相为0.1%三氟乙酸水溶液: 甲醇为35:65,流速为1 mL/min,紫外检测波长为238 nm。

1.4 数据处理与分析

采用数据统计软件IBM SPSS Statistics 24进行单因素方差分析(analysis of variance, ANOVA),图形采用GraphPad Prism 7.0制作,数据以平均值±SD表示。用以下公式计算藻细胞OD680与Chla的比生长率(公式2)。

公式(2)

其中XtX0分别为时间t和初始时的OD680或Chla值,t为某时间段。

2 结果与讨论 2.1 铜绿微囊藻的生长 2.1.1 OD680

铜绿微囊藻在有机磷源下不同氮磷比的含砷水体中由OD680得到的µOD680图 1所示。可以看出,4种氮磷比环境下µOD680则均表现出随时间呈先上升之后下降的趋势,于第4天时µOD680最高,且不同氮磷比之间存在显著性差异(P < 0.05),表现为:氮磷比为4.00:0.02和10.00:0.02也即低GP含量时的比生长率最高,为0.36 d−1,氮磷比为1.00:0.10时比生长率最低,为0.28 d−1,到第6天时µOD680显著降低且氮磷比为1.00:0.10时的µOD680显著高于其他氮磷比环境,直至第8天时4种氮磷比间无显著差异。这说明GP环境下较高的氮磷比(100–500)对氮磷饥饿状态下藻细胞生长的促进作用与低氮磷比相比有一个延迟效应,增长到峰值以后则由于环境中磷的缺乏使得生长受限并进而表现出相对抑制,这与Guo等[30]研究发现的在含砷环境中,磷限制会抑制藻细胞生长的结论相一致。总体表现为前6天内氮磷比为1.00:0.10时的µOD680与其余3种氮磷比间的显著差异,且在8 d内随时间变化不大,其平均值为:0.25 d−1。氮磷比为10.00:0.10及低GP环境下的µOD680间随时间均无显著差异,可能是因为超出了藻体对氮磷比的生长限制进而表现为随氮的增加或GP的减少对生长无显著影响。

图 1 不同氮磷比含砷水体中铜绿微囊藻μOD680随时间变化 Figure 1 Changes of μOD680 for Microcystis aeruginosa in As-polluted water with different N/P ratios. Data are means±standard deviation (n=3). Different letters represent significant differences in different treatments (P < 0.05).

2.1.2 叶绿素a (Chla)

有机磷源的含砷环境中不同氮磷比时铜绿微囊藻的生长由Chla得到的比生长率µChla随时间变化如图 2所示。可以看出,不同氮磷比环境下µChla在第2天和第4天均相对较高,且低氮磷比(1.00:0.10)显著低于其他氮磷比环境(P < 0.05),为0.34 d−1,是其他氮磷比环境下的77.3%;之后则随时间呈降低趋势,且不同氮磷比间无显著差异。这说明GP环境下低氮磷比(1.00:0.10)较其他高氮磷比环境相比在培养初期会抑制铜绿微囊藻Chla的合成,这种抑制效应随时间显著降低;高氮磷比更利于GP环境下Chla的合成,但在第6天开始表现出抑制效应,说明高氮磷比环境下较高氮的水平对饥饿藻细胞在生长初期具有显著促进作用。较高GP (0.10 mg/L)环境下提高氮水平可显著增加铜绿微囊藻的µChla,低GP (0.02 mg/L)时氮水平对藻体µChla无显著影响,说明GP环境下磷的水平对饥饿藻细胞Chla的合成影响较大,这与Mamun等的结论相一致[31]

图 2 不同氮磷比含砷水体中铜绿微囊藻μChla随时间变化 Figure 2 Changes of μChla for Microcystis aeruginosa in As-polluted water with different N/P ratios. Data are means±standard deviation (n=3). Different letters represent significant differences in different treatments (P < 0.05).

2.1.3 实际光合产率(Yield)

铜绿微囊藻在有机磷源的含砷环境中不同氮磷比时其Yield随时间变化如图 3所示。Yield作为反映藻细胞在实际环境下光合作用效率的核心生理指标,对不同类型胁迫响应敏感,与Chla、营养盐(特别是氮盐)比例和光照等有关[32]。有研究表明,在良好的生理状态下藻体Yield是一个稳定的值,约为0.65[33]。从图 3可以看出,不同氮磷比环境下Yield在前2天不同氮磷比之间无显著差异,从第4天开始Yield值在不同GP水平下表现出显著差异(P < 0.05),低GP (0.02 mg/L)时的Yield显著高于高GP环境(0.10 mg/L),到第6天和第8天时则正好相反,高GP环境下Yield更高,这可能是由于较高氮磷比环境下的低GP含量到第6天时呈现不足而导致藻细胞Yield显著降低,而高GP环境下氮磷比相对较低,环境中GP含量在维持藻细胞增殖方面略有优势。总体均表现为GP水平对Yield的显著影响,相同GP时N的影响均不显著,第6天时不同氮磷比下的藻细胞生长潜能均受到抑制。

图 3 不同氮磷比含砷水体中铜绿微囊藻Yield随时间变化 Figure 3 Changes of Yield for Microcystis aeruginosa in As-polluted water with different N/P ratios. Data are means±standard deviation (n=3). Different letters represent significant differences in different treatments (P < 0.05).

2.1.4 超氧化物歧化酶(SOD)

超氧化物歧化酶(SOD)对藻细胞的氧化与抗氧化平衡起着关键作用,受环境胁迫时藻细胞内的自由基如O2等会增强[34],而SOD则能消除O2以避免藻细胞的生理活动受到扰乱[35]。有机磷源含砷环境中不同氮磷比时铜绿微囊藻SOD活性随时间变化如图 4所示。可以看出,不同氮磷比环境下SOD活性在第0天存在显著性差异(P < 0.05),其中氮磷比为10.00:0.02处理组的SOD活性最高,可达(3.61±0.08)×10−7 U/cell,表现出对高氮低磷环境的敏感性;而2 d与4 d不同氮磷比之间无显著性差异;到6 d和8 d时SOD活性在不同氮磷比下则又表现出显著差异(P < 0.05),其中氮磷比为1.00:0.10组的SOD活性在6 d较其他处理组显著更高,表现出对较高磷水平下氮限制的较好响应,且与第6天不同氮磷比间的µOD680趋势一致,而氮磷比为10.00:0.02处理组的SOD活性在8 d显著更高,表现出对高氮水平下磷限制的较好响应。可以看出与OD680、Chla、Yield所反映的藻细胞生长受GP水平影响显著不同的是GP环境下藻细胞SOD活性对氮磷比更为敏感。这与Luo等[36]研究得出GP环境下铜绿微囊藻的SOD更为敏感具有一致性。

图 4 不同氮磷比含砷水体中铜绿微囊藻SOD随时间变化 Figure 4 Changes of SOD for Microcystis aeruginosa in As-polluted water with different N/P ratios. Data are means±standard deviation (n=3). Different letters represent significant differences in different treatments (P < 0.05).

2.2 水体和藻体内不同形态砷的含量 2.2.1 水体砷形态

有机磷源的含As5+水体中不同氮磷比环境下铜绿微囊藻经8 d培养后水体中的砷形态变化如图 5所示,可以看出:除10.00:0.10环境下的As以还原性的As3+为主要形态,占总砷(TAs)含量的78.8%外,其余3个比例下的As均仍以As5+为主,同时甲基化的DMA和MMA在不同氮磷比环境下也均有检出,且以氮磷比为1.00:0.10时甲基化砷含量最高,占水体TAs含量的17.0%。氮磷比为4.00:0.02与10.00:0.02环境下水体中不同形态砷间无显著差异,说明低GP环境下(0.02 mg/L)氮含量的变化没有影响水体中砷的存在形态,而高GP环境下(0.1 mg/L)较低N则相对促进了水体中砷的转化,具体表现为氮磷比为1.00:0.10的环境促进砷的甲基化,而氮磷比为10.00:0.10则显著提高了As5+的还原,增加了As的水生态环境风险,表明相对较高的GP源下N的增高也即氮磷比增加可显著促进As5+的还原,但不会促进甲基化。与前期研究结果不同的是GP磷源下仅氮磷比为10.00:0.10的介质中会产生较高的还原性As3+,说明在磷浓度为0.1 mg/L时氮会影响介质中As的存在形态,这与Che等[25]的研究结果相一致。

图 5 铜绿微囊藻培养8 d后不同氮磷比水体中As形态 Figure 5 Arsenic species in different N/P ratios media after 8 days culture of Microcystis aeruginosa. Different letters indicate significant differences among the same As species; The majuscule A and B represents the difference in As5+, the lowercase a and b stands for the difference in As3+, majuscule X and Y stands for DMA difference.

2.2.2 藻体砷形态

有机磷源下不同氮磷比的含砷环境中铜绿微囊藻经8 d培养后藻体中砷的形态及含量如图 6所示。可见不同氮磷比环境下藻体累积TAs含量无显著差异,其均值为(117.00±7.51) µg/g,说明GP下藻体对砷的累积受氮磷比影响不大。从不同形态组成来看As5+为藻体砷主要存在形态,占TAs含量的85.0%以上,其中以氮磷比为1.00:0.10时As5+占比最低且有DMA的检出,其余3种氮磷比下均无DMA检出,且As5+占TAs含量的97.3%;4种氮磷比环境下藻体内均有微量MMA的检出。氮磷比为1.00:0.10较其他氮磷比相比时藻体中有机砷含量最高,占胞内TAs的12.65%,As3+含量最低,而10.00:0.10时As3+含量最高,说明较高的GP浓度(0.1 mg/L)氮的变化会影响藻体砷的转化,低的氮磷比(1.00:0.10)更有利于藻体对As的甲基化,而较高的氮磷比(10.00:0.10)则更有利于As的还原。这与先前研究证实GP环境下氮磷比为9.88:1.00时,藻体内有较多的As3+[37],同时无机磷环境下氮磷比为20.00:0.20和10.00:0.20时更能促进铜绿微囊藻砷的代谢[20]具有一致性。究其原因,可能是由于GP较高时藻体可能需要分泌更多的代谢物对其进行转化并进而促进砷的转化,同时较高的氮可能促使藻体更多氨基酸的合成, 谷胱甘肽含量增多并进而加速As的还原[27],具体有待于进一步深入研究。较低GP浓度(0.02 mg/L)时不同氮磷比环境下藻体内不同砷形态间均无显著差异,说明该磷环境下氮的变化没有影响藻体内As的转化,这可能是因为低GP环境下藻体蛋白合成受限,氮的增高并不能促使更多的氨基酸或蛋白的生成,藻体的生长代谢受到磷的限制。与先前研究证实相同无机磷环境下(0.2 mg/L)氮的增高(4–20 mg/L)无显著改变藻体内的砷形态组成结果一致[24]

图 6 铜绿微囊藻培养8 d后不同氮磷比藻体中As形态 Figure 6 The intracellular As speciation at different N/P ratios conditions after 8 days culture of Microcystis aeruginosa. Different letters indicate significant differences among the same As species; The lowercase a and b stands for the difference in As3+, majuscule X and Y stands for MMA difference.

2.3 铜绿微囊藻的砷代谢途径

以GP为唯一磷源不同氮磷比的含砷环境中,铜绿微囊藻经8 d培养后单个藻细胞的砷代谢总量与代谢途径如图 7所示。可以看出:较高GP环境下(0.1 mg/L)藻细胞砷代谢总量(6.38 fg/cell)比较低GP环境(0.02 mg/L)高出很多,是低GP环境下的5倍,且两种水平GP环境下不同氮磷比间藻细胞的砷代谢总量无显著差异,说明环境中GP的含量对藻细胞的As代谢有着重要影响,而氮磷比对其影响不大,高的GP环境更有利于藻细胞的砷代谢;相同氮水平下(10 mg/L) GP的增加可显著提高藻体砷的代谢。这与先前研究得到的较高无机磷环境下(0.2 mg/L)氮的增加对砷的代谢与转化影响较小结果相一致,但与环境中无机磷水平的增高会抑制微藻的砷代谢不同[38-39],可能是由于磷源不同而导致,环境中有机态GP水平的升高可促进铜绿微囊藻的砷代谢。从砷的代谢路径来看氮磷比为100:0.10时藻细胞以对砷的转化为主,尤其是As5+的还原与排泄(占代谢TAs的81%),而砷的甲基化过程则相对较低,其余氮磷比环境下藻细胞砷代谢以As5+在胞内的累积为主,占代谢TAs的52%–61%。环境中较高的硝酸盐氮与GP水平(10.00:0.10)促使藻细胞氮代谢增高,细胞内氮的还原与氨基酸的合成促使较多还原型谷胱甘肽酶的产生进而使得As的还原被加速[36]

图 7 铜绿微囊藻培养8 d后不同氮磷比环境中单个藻细胞的砷代谢途径 Figure 7 Arsenic metabolism pathway per cell in different N/P ratios media after 8 days culture of Microcystis aeruginosa.

高GP环境下氮的增加可促进砷的转化尤其是As5+的还原与释出被显著促进,而低GP环境下氮的增加(10 mg/L)降低了砷的转化,As5+的还原得到显著抑制,为低氮(4 mg/L)时的53%,甲基化过程被相对促进,是低氮时的1.25倍,说明氮对藻细胞砷代谢的影响受环境中GP浓度的影响。高GP环境下的高氮磷比会提高藻细胞As3+的释出,其释出量为代谢总量的80.97%,大大增高了水环境中As的生态风险,这与我们前期研究发现具有相同氮磷比(9.88:1.00)的GP环境下As3+的释出风险更高[22]和Che等[25]得出的在氮与无机磷不同比例的环境中,增加氮的水平会增强As的转化,较高无机磷环境下(0.2 mg/L)氮的增加对砷的转化影响不大相一致。而低GP环境下的高氮磷比则会抑制As5+的还原与As3+的释出,显著降低砷的生态风险。说明含砷水体中,铜绿微囊藻对砷的代谢不仅受环境中磷浓度的影响,而且氮对砷代谢的影响也与环境中磷的水平密切相关。

2.4 水体中微囊藻毒素含量

GP磷源时不同氮磷比的含砷环境中铜绿微囊藻经8 d培养后介质中MCs含量如图 8所示。可以看出除氮磷比为1.00:0.10时MCs含量显著较低外(P < 0.05),其余氮磷比环境中的MCs无显著差异,说明该磷源下较低的氮磷比可以抑制藻体MCs的释出。这与先前研究指出无机氮磷环境下铜绿微囊藻产毒最低时的氮磷比为1.00:0.60,而产毒最高时的氮磷比为60.00:0.60具有一致性[40]。较高的GP环境中(0.1 mg/L)氮的增加可显著促进藻体MCs的释出,而低GP时(0.02 mg/L)氮的增加并不会促进介质中MCs的释出,相同N水平下(10 mg/L) GP含量的变化也不会显著影响藻体MCs的释出。与该藻在无机氮磷环境下磷为0.6 mg/L时随氮浓度的增加(1–60 mg/L)产毒增高一致[40]。先前研究指出N作为MCs的组成元素之一其含量的增高会促进藻体MCs的释出[41],P尽管不是MCs的组成元素但能促进藻细胞生长进而影响MCs的释放[42],高IP环境可促进藻体MCs的产生,而高DOP (β甘油磷酸钠)环境虽不影响MCs产量但会诱发胞内MCs的释出[12]。可以看出GP环境下N对藻体MCs释出的影响与环境中GP的水平有关,高GP环境下N的增高可促进MCs的释出,而低GP时N的影响降低。因此对水体MCs的管控不仅要考虑N水平的高低而且还要了解环境中P的形态与水平。

图 8 不同氮磷比下环境介质中微囊藻毒素含量 Figure 8 MCs concentration in different N/P ratios media. Data are means±standard deviation (n=3). Different letters represent significant differences in different treatments (P < 0.05).

3 结论

(1) 有机磷源含砷水体中的铜绿微囊藻生长受GP水平的影响敏感,较低GP水平(0.02 mg/L)下藻细胞的OD680、Chla和Yield在前4天内具有显著促进作用且不受氮水平的变化影响,较高GP水平下低氮磷比(1.00:0.10)在培养初期藻细胞生长虽相对缓慢,但生长潜力具有较好的持续性,而Yield超过较高GP水平。藻细胞的SOD于培养初期及末期受氮磷比影响显著。

(2) 不同氮磷比的含As5+水体经铜绿微囊藻8 d培养后,介质中除氮磷比为10.00:0.10环境中的砷以还原性As3+占优势外,其余氮磷比环境中仍以As5+为主,且均有少量As3+及微量有机砷的检出。藻体内As形态则均以As5+为主,有机砷在氮磷比为1.00:0.10时占比最高。

(3) 藻细胞砷代谢受GP含量影响显著,其代谢总量在较高GP (0.1 mg/L)时是低GP (0.02 mg/L)时的5倍;其中氮磷比为10.00:0.10时藻细胞的砷代谢以As5+的还原和As3+的释出为主,而其余氮磷比时砷代谢均以As5+累积为主;低GP环境下(0.02 mg/L)藻细胞对砷的甲基化水平提高。

(4) 铜绿微囊藻细胞在高氮磷比环境下向介质中释出的MCs含量显著高于低氮磷比环境。

References
[1] FU C, JIANG Y, BAI XF. Discussion on arsenic pollution from coal combustion and the limits of arsenic content in relative standards. Coal Quality Technology, 2009(6): 39-42. (in Chinese)
傅丛, 姜英, 白向飞. 燃煤砷危害及相关标准中砷含量限值指标探讨. 煤质技术, 2009(6): 39-42. DOI:10.3969/j.issn.1007-7677.2009.06.013
[2] SMEDLEY PL, KINNIBURGH DG. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17(5): 517-568. DOI:10.1016/S0883-2927(02)00018-5
[3] CHEN L, JIA M, HE RN, YU J, WU B. The sex dimorphism in accumulation and combined toxicity of arsenic and dichloroacetamide in adult zebrafish. Acta Scientiae Circumstantiae, 2021, 41(8): 3384-3393. (in Chinese)
陈玲, 贾敏, 何若男, 余静, 吴兵. 砷和二氯乙酰胺联合暴露下斑马鱼脏器富集及毒性的性别二态性研究. 环境科学学报, 2021, 41(8): 3384-3393. DOI:10.13671/j.hjkxxb.2021.0137
[4] LU X, WANG YY, QU CY, TANG X, TANG CJ. Detoxification mechanisms of arsenic in nitrification in water systems. Acta Microbiologica Sinica, 2022, 62(6): 2212-2225. (in Chinese)
卢璇, 王云燕, 瞿才燕, 唐溪, 唐崇俭. 水体硝化体系中砷的解毒机制探讨. 微生物学报, 2022, 62(6): 2212-2225. DOI:10.13343/j.cnki.wsxb.20220217
[5] BROOKS BW, LAZORCHAK JM, HOWARD MDA, JOHNSON MV V, MORTON SL, PERKINS DAK, REAVIE ED, SCOTT GI, SMITH SA, STEEVENS JA. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environmental Toxicology and Chemistry, 2016, 35(1): 6-13. DOI:10.1002/etc.3220
[6] RAHMAN S, KIM KH, SAHA SK, SWARAZ AM, PAUL DK. Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. Journal of Environmental Management, 2014, 134: 175-185. DOI:10.1016/j.jenvman.2013.12.027
[7] AZIZUR RAHMAN M, HASEGAWA H. Arsenic in freshwater systems: influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Applied Geochemistry, 2012, 27(1): 304-314. DOI:10.1016/j.apgeochem.2011.09.020
[8] YUAN HZ, TAI ZQ, LI Q, LIU EF. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake. Science of the Total Environment, 2020, 706: 136040. DOI:10.1016/j.scitotenv.2019.136040
[9] DONG DP, ZHANG TX, ZHANG DY, WANG QY, LI DF, WANG GX. Characteristics of organic phosphorus fractions in the sediments of the black water aggregation in Lake Taihu. Environmental Science, 2016, 37(11): 4194-4202. (in Chinese)
董丹萍, 章婷曦, 张丁予, 王巧云, 李德芳, 王国祥. 太湖湖泛易发区沉积物中有机磷形态分布特征. 环境科学, 2016, 37(11): 4194-4202. DOI:10.13227/j.hjkx.201603057
[10] WANG ZH, GUI HR, LUO ZX, ZHEN Z, YAN CZ, XING BS. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa. Environmental Pollution, 2019, 252: 1755-1763. DOI:10.1016/j.envpol.2019.06.126
[11] BELL DW, PELLECHIA PJ, INGALL ED, BENITEZ-NELSON CR. Resolving marine dissolved organic phosphorus (DOP) composition in a coastal estuary. Limnology and Oceanography, 2020, 65(11): 2787-2799. DOI:10.1002/lno.11552
[12] ZHANG Q, CHEN YC, WANG M, ZHANG JY, CHEN QW, LIU DS. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa. Water Research, 2021, 196: 117048. DOI:10.1016/j.watres.2021.117048
[13] HE D, CHAO JY, ZHANG YM, YANG F, WANG Y, GUO YM. Effects of the phytoplankton-derived particulate organic matter on the growth and phosphorus enrichment of phosphorus-deficiency Microcystis aeruginosa. China Environmental Science, 2016, 36(12): 3777-3783. (in Chinese)
何东, 晁建颖, 张毅敏, 杨飞, 王宇, 郭艳敏. 藻源性颗粒有机物对磷饥饿微囊藻磷富集与生长的影响. 中国环境科学, 2016, 36(12): 3777-3783. DOI:10.3969/j.issn.1000-6923.2016.12.032
[14] LING H. Nitrogen in the environment. World Science, 2019(4): 24-25. (in Chinese)
凌寒. 环境中的氮. 世界科学, 2019(4): 24-25. DOI:10.3969/j.issn.1000-0968.2019.04.009
[15] LI SX, CHEN CC. Influence of nitrogen fertilizer on environment and its control. Science & Technology Information, 2013, 11(16): 130. (in Chinese)
李松兴, 陈聪聪. 氮肥对环境的影响及防治. 科技资讯, 2013, 11(16): 130. DOI:10.3969/j.issn.1672-3791.2013.16.085
[16] XU Q, WU Y, LIAO MX, DENG TL. Advances on speciation analysis of nitrogen and phosphorus in aquatic environment. Rock and Mineral Analysis, 2008, 27(2): 137-140. (in Chinese)
徐青, 吴怡, 廖梦霞, 邓天龙. 水环境中氮磷形态分析方法研究进展. 岩矿测试, 2008, 27(2): 137-140. DOI:10.3969/j.issn.0254-5357.2008.02.013
[17] JEPPESEN E, MEERHOFF M, JACOBSEN BA, HANSEN RS, SØNDERGAARD M, JENSEN JP, LAURIDSEN TL, MAZZEO N, BRANCO CWC. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia, 2007, 581(1): 269-285. DOI:10.1007/s10750-006-0507-3
[18] FEUCHTMAYR H, MORAN R, HATTON K, CONNOR L, HEYES T, MOSS B, HARVEY I, ATKINSON D. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology, 2009, 46(3): 713-723. DOI:10.1111/j.1365-2664.2009.01644.x
[19] GAO W, CHENG GW, YAN CA, CHEN Y. Identifying spatiotemporal alteration of nitrogen to phosphorus ratio of Lake Dianchi and its driving forces during 1988-2018. Journal of Lake Sciences, 2021, 33(1): 64-73. (in Chinese)
高伟, 程国微, 严长安, 陈岩. 1988—2018年滇池氮磷比的时空演变特征与原因解析. 湖泊科学, 2021, 33(1): 64-73.
[20] HAN WJ, XU YT, JIANG YY, YAO YN, CAO XB, JIANG AL, CHEN LH, XING RL. Effects of N/P ratio, salinity and pH on growth and photosynthesis of sea weed Chaetomorpha valida. Journal of Dalian Ocean University, 2019, 34(6): 776-784. (in Chinese)
韩汶均, 许彦婷, 蒋阳杨, 姚亚楠, 曹学彬, 姜爱莉, 陈丽红, 邢荣莲. 氮磷比、盐度、pH对强壮硬毛藻生长和光合作用的影响. 大连海洋大学学报, 2019, 34(6): 776-784.
[21] MENG SL, QIU LP, HU GD, QU JH, FAN LM, SONG C, CHEN JC, XU P. Effect of nitrogen and phosphorus ratios on growth and competition of two blue-green algae. Journal of Agro-Environment Science, 2012, 31(7): 1438-1444. (in Chinese)
孟顺龙, 裘丽萍, 胡庚东, 瞿建宏, 范立民, 宋超, 陈家长, 徐跑. 氮磷比对两种蓝藻生长及竞争的影响. 农业环境科学学报, 2012, 31(7): 1438-1444.
[22] ZHANG XY, WANG ZH, LUO ZX, CHEN Y, HUANG XG. Insights into the conversion of dissolved organic phosphorus favors algal bloom, arsenate biotransformation and microcystins release of Microcystis aeruginosa. Journal of Environmental Sciences, 2023, 125: 205-214. DOI:10.1016/j.jes.2021.11.025
[23] WANG NX, HUANG B, XU S, WEI ZB, MIAO AJ, JI R, YANG LY. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquatic Toxicology, 2014, 157: 167-174. DOI:10.1016/j.aquatox.2014.10.012
[24] WURL O, ZIMMER L, CUTTER GA. Arsenic and phosphorus biogeochemistry in the ocean: arsenic species as proxies for P-limitation. Limnology and Oceanography, 2013, 58(2): 729-740. DOI:10.4319/lo.2013.58.2.0729
[25] CHE FF, DU MM, YAN CZ. Arsenate biotransformation by Microcystis aeruginosa under different nitrogen and phosphorus levels. Journal of Environmental Sciences, 2018, 66: 41-49. DOI:10.1016/j.jes.2017.05.041
[26] ZHANG JL. Biotransformation of arsenic by Microcystis aeruginosa under different environmental conditions[D]. Kunming: Master's Thesis of Yunnan University, 2017 (in Chinese).
张佳丽. 不同环境条件下铜绿微囊藻对砷的生物转化[D]. 昆明: 云南大学硕士学位论文, 2017.
[27] KONG X, ZHANG SL, DAI W, ZHANG DJ, BI XD. Effects of nitrogen and phosphorus nutrients on the growth of Microcystis aeruginisa. Fisheries Science & Technology Information, 2020, 47(5): 296-300. (in Chinese)
孔欣, 张树林, 戴伟, 张达娟, 毕相东. 氮、磷营养盐对铜绿微囊藻生长的影响. 水产科技情报, 2020, 47(5): 296-300.
[28] PENG SX, DENG DG, HE P, XU XX, ZHANG CC, CAO J, LIU Q, ZHANG TT. Effects of Microcystis aeruginosa on the life history traits and SOD activity of Daphnia similoides sinensis. Environmental Science and Pollution Research, 2018, 25(30): 30696-30707.
[29] ZHU YG, SUN GX, LEI M, TENG M, LIU YX, CHEN NC, WANG LH, CAREY AM, DEACON C, RAAB A, MEHARG AA, WILLIAMS PN. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science & Technology, 2008, 42(13): 5008-5013.
[30] GUO PR, GONG Y, WANG C, LIU X, LIU JT. Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environmental Toxicology and Chemistry, 2011, 30(8): 1754-1759.
[31] MAMUN M, KWON S, KIM JE, AN KG. Evaluation of algal chlorophyll and nutrient relations and the N: P ratios along with trophic status and light regime in 60 Korea Reservoirs. The Science of the Total Environment, 2020, 741: 140451.
[32] CHEN MY, WANG ZH, LUO ZX. Stress effects of arsenate on two common freshwater green microalgae under different phosphorus regimes. Asian Journal of Ecotoxicology, 2020, 15(5): 218-227. (in Chinese)
陈敏怡, 王振红, 罗专溪. 不同磷源对砷胁迫下2种绿藻生长的影响. 生态毒理学报, 2020, 15(5): 218-227.
[33] LI JL. Studies on photosynthetic characteristics of phytoplankton in China Sea and the west Pacific[D]. Qingdao: Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2016 (in Chinese).
李俊磊. 中国近海与西太平洋浮游植物光合活性特征研究[D]. 青岛: 中国科学院研究生院(海洋研究所)博士学位论文, 2016.
[34] CALDWELL ELDRIDGE SL, WOOD TM, ECHOLS KR, TOPPING BR. Microcystins, nutrient dynamics, and other environmental factors during blooms of non-microcystin-producing Aphanizomenon flos-aquae in Upper Klamath Lake, Oregon, 2009. Lake and Reservoir Management, 2013, 29(1): 68-81.
[35] PENG GT, LIN SJ, FAN ZQ, WANG XR. Transcriptional and physiological responses to nutrient loading on toxin formation and photosynthesis in Microcystis aeruginosa FACHB-905. Toxins, 2017, 9(5): 168.
[36] LUO ZX, WANG ZH, LIU AF, YAN Y, WU YQ, ZHANG XY. New insights into toxic effects of arsenate on four Microcystis species under different phosphorus regimes. Environmental Science and Pollution Research, 2020, 27(35): 44460-44469.
[37] YU Q. Effects of high nitrogen on the growth of two submerged plants under low phosphorus condition[D]. Beijing: Master's Thesis of University of Chinese Academy of Sciences, 2015 (in Chinese).
于清. 低磷条件下高氮对两种沉水植物生长的影响[D]. 北京: 中国科学院大学硕士学位论文, 2015.
[38] WANG ZH, LUO ZX, YAN CZ, CHE FF, YAN YM. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes. Journal of Hazardous Materials, 2014, 276: 393-399.
[39] WANG ZH, LUO ZX, CHE FF, YAN YM, YAN CZ. Uptake and depuration kinetics of arsenatein Microcystis aeruginosaunder different phosphate regimes. China Environmental Science, 2015, 35(2): 533-538. (in Chinese)
王振红, 罗专溪, 车霏霏, 严雅萌, 颜昌宙. 不同磷水平下铜绿微囊藻对砷酸盐的吸收和净化. 中国环境科学, 2015, 35(2): 533-538.
[40] FU BR, LU N, MIAO B, WANG SY, ZUO SW, HE Z, ZHANG RJ. Effects of environmental factors on growth and toxin production of Microcystis aeraginosa. Journal of Liaoning University: Natural Sciences Edition, 2015, 42(1): 85-90. (in Chinese)
付保荣, 鲁男, 苗斌, 王淑妍, 左世文, 何哲, 张润洁. 环境因子对铜绿微囊藻生长和产毒的影响. 辽宁大学学报: 自然科学版, 2015, 42(1): 85-90.
[41] ZHOU YP, LI X, XIA QQ, DAI RH. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation. Science of the Total Environment, 2020, 700: 134501.
[42] SHI HX, QU JH, LIU HJ, (MOU/MU) YL, XIAO KT, WANG L. Isotope tracing study on the role of nitrogen in the production of microcystins. Chinese Science Bulletin, 2008, 53(4): 407-412. (in Chinese)
史红星, 曲久辉, 刘会娟, 牟瑛琳, 肖凯涛, 王凌. 微囊藻毒素产生过程中氮素作用的同位素示踪研究. 科学通报, 2008, 53(4): 407-412.
氮磷比对有机磷环境中微藻砷代谢的生态风险效应
赵曜 , 柳彩霞 , 杨轶丹 , 罗专溪 , 王振红