微生物学报  2023, Vol. 63 Issue (4): 1356-1364   DOI: 10.13343/j.cnki.wsxb.20220672.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220672
中国科学院微生物研究所,中国微生物学会

文章信息

杨东亮, 毕冬琳, 杨晓莉, 柏家林, 李琼毅. 2023
YANG Dongliang, BI Donglin, YANG Xiaoli, BAI Jialin, LI Qiongyi.
TRIM家族蛋白在病毒感染中作用的研究进展
Role of TRIM family proteins in viral infection
微生物学报, 63(4): 1356-1364
Acta Microbiologica Sinica, 63(4): 1356-1364

文章历史

收稿日期:2022-09-08
网络出版日期:2022-11-22
TRIM家族蛋白在病毒感染中作用的研究进展
杨东亮1,2 , 毕冬琳1,2 , 杨晓莉1,2 , 柏家林2 , 李琼毅1,2     
1. 西北民族大学生命科学与工程学院, 甘肃 兰州 730030;
2. 西北民族大学生物医学研究中心 生物工程与技术国家民委重点实验室, 甘肃 兰州 730030
摘要:三基序蛋白家族(tripartite motif, TRIM)是参与不同细胞功能的一大类具有E3泛素连接酶活性的蛋白质,在宿主抗病毒免疫应答中发挥着重要的作用。TRIM家族蛋白可通过提高宿主固有免疫应答或直接降解病毒蛋白发挥抗病毒活性;部分病毒有时也可利用TRIM家族蛋白调控细胞因子表达促进自身感染。本文综述了TRIM家族蛋白在病毒复制中的作用及相关机制的研究进展,为研究病毒感染机制提供参考。
关键词三基序蛋白家族    E3泛素连接酶    脑心肌炎病毒    甲型流感病毒    乙型肝炎病毒    
Role of TRIM family proteins in viral infection
YANG Dongliang1,2 , BI Donglin1,2 , YANG Xiaoli1,2 , BAI Jialin2 , LI Qiongyi1,2     
1. College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, Gansu, China;
2. Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, Gansu, China
Abstract: The tripartite motif (TRIM) protein family is composed of a variety of proteins with E3 ubiquitin ligase activity. These proteins are involved in different cell processes and play a role in the host immune response to viral infection. The proteins of TRIM family can exert antiviral activity by enhancing host innate immune response or directly degrading viral proteins. In some cases, some viruses can use TRIM family proteins to regulate cytokine expression to promote their infections. This article reviews the research progress in the role of TRIM family proteins in viral replication and the related mechanisms, aiming to provide a reference for studying the mechanism of viral infection.
Keywords: tripartite motif    E3 ubiquitin ligase    encephalomyocarditis virus    influenza A virus    hepatitis B virus    

三基序蛋白家族(tripartite motif, TRIM)最早发现于非洲爪蟾核因子7 (Xenopus nuclear factor 7, XNF7)中[1],是一大类具有E3泛素连接酶活性的蛋白质[2]。大多数真核生物中均发现了TRIM家族蛋白,TRIM基因总数与生物的进化程度相关,进化程度越高,TRIM家族蛋白成员越多(表 1)[2]。TRIM家族蛋白参与机体多种生理病理过程,包括调节细胞内信号传导、细胞发育和凋亡、先天免疫应答、自噬和肿瘤发生[3-4]。目前,人体中已经发现80多种TRIM家族蛋白[5]。许多TRIM家族蛋白与Ⅰ型和Ⅱ干扰素表达关系密切,在宿主抗病毒感染中发挥着重要作用[6]

表 1. 各物种TRIM家族蛋白种类[2-5] Table 1. TRIM family proteins in different species[2-5]
Species Number of TRIM family proteins
Humans ≥80
Mice 64
Pigs ≥50
Worms 20
Flies ≤10

大部分TRIM家族蛋白从N端到C端依次由1个RING结构域、1到2个B-box结构域和一个盘绕线圈(coiled-coil, CC)结构域组成[7-8],这3个结构域序列高度保守,其命名也来源于此[6-9]。RING结构域(约162 bp)是从人类蛋白质与植物蛋白质中发现的一个锌指结合基序,由40–70个半胱氨酸和组氨酸残基组成[10-11]。RING结构域赋予TRIM蛋白E3连接酶活性,因此TRIM蛋白在细胞中可参与转录调控和细胞凋亡等生理病理过程[10]。研究证明RING结构域的E3泛素连接酶活性在TRIM蛋白的抗病毒功能中起着至关重要作用,RING结构域可以使TRIM蛋白通过泛素或者类泛素(ubiquitin-like, UBL)修饰调控宿主和病毒等多种底物[2-9]。B-box (约276 bp)是含有锌指模体的结构域[9],该结构域的氨基酸组成在不同TRIM家族成员之间保守性较高[6],并已证实与抗HIV感染相关[6]。CC结构域(约125 bp)是C端的卷曲结构,在体外CC可形成同源二聚体[12],促进高阶寡聚化或者与其他TRIMs形成异寡聚复合物[13],所以该结构域在稳定TRIM结构与功能中也发挥着重要作用[12]。此外,部分TRIM家族蛋白的C端还有一个PRY-SPRY结构域,可与病毒靶蛋白结合,与抗病毒作用相关[14]。TRIM家族蛋白根据PRY-SPRY结构域的差异又可分为C-I–C-XI 11类[15]。还有部分TRIM蛋白如TRIM66、TRIM76等由于缺乏RING结构域没有被分类(图 1),而TRIM20其PYRIN结构代替了N端的RING结构域[2]

图 1 TRIM家族蛋白的结构域[15] Figure 1 Domains of TRIM family proteins[15].

1 TRIM家族蛋白抑制病毒复制 1.1 TRIM家族蛋白对甲型流感病毒的抑制作用

甲型流感病毒(influenza A virus, IAV)是一种人兽共患病原体,在全世界范围内威胁人类与动物的健康[16-17]。甲型流感病毒的衣壳蛋白(nucleoprotein, NP)与病毒的RNA结合后生成病毒核蛋白(viral ribonuclear proteins, VRNPs),为病毒RNA合成所必需[18-19]。TRIM14可通过PRY-SPRY结构域与病毒NP相互作用,抑制NP的稳定性和IAV的复制(图 2),而缺失PRY-SPRY结构域的TRIM14突变体ΔS2对IAV的复制则失去抑制作用[17]。TRIM22也可抑制IAV的复制,其原理与降解NP相关[20]。TRIM22的表达量随病毒感染增加并与NP相互作用,通过RING结构域的E3泛素连接酶活性导致NP多泛素化,并经蛋白酶体相关途径降解NP,抑制了IAV的复制(图 2)[20]。TRIM32也是一种内在的IAV限制因子,通过与IAV聚合酶蛋白1 (polymerase basic protein 1, PB1)相互作用来调控IAV感染[21]。在IAV感染后TRIM32与PB1进入细胞核,并通过TRIM32的RING结构域介导K48连接的PB1泛素化,增强了PB1的降解,降低PB1活性,从而对IAV起到抑制作用(图 2)[21]。TRIM41的SPRY结构域可与NP相互作用调节IAV某一个蛋白的表达,而RING结构域则介导NP的泛素化促进其降解,进而限制IAV感染[22]

图 2 TRIM家族蛋白抑制IAV、HBV复制作用图[17-21] Figure 2 Inhibition of IAV and HBV replication by TRIM family proteins[17-21].

1.2 TRIM家族蛋白对乙型肝炎病毒的抑制作用

乙型肝炎病毒(hepatitis B virus, HBV)是一种双链DNA病毒,属于嗜肝DNA病毒科,是乙型肝炎的病原体,也是造成肝硬化和肝细胞癌的主要因素[23]。研究结果显示TRIM家族的部分蛋白可抑制HBV的复制,这为开发HBV感染的治疗提供了潜在靶点。TRIM21的SPRY结构域可与HBV DNA聚合酶(polymerase, Pol)的末端蛋白(terminal protein, TP)结构域互作,抑制HBV DNA Pol的活性,且这种负调控作用呈剂量依赖性;而TRIM21的RING结构域则介导了HBV DNA Pol中K260和K280的泛素化,促进HBV DNA Pol的降解进而抑制HBV的复制(图 2)[24]。TRIM41可抑制HBV的增强子Ⅰ (enhancerⅠ, ENⅠ)、增强子Ⅱ (enhancerⅡ, ENⅡ)和核心启动子(core promoter, CP)活性,特异性抑制HBV的转录,这种抑制依赖于TRIM41 RING结构域E3泛素连接酶活性和C端结构域的完整性[25],因此TRIM41通过不同的机制调控HBV ENⅠ和ENⅡ的活性,进而抑制HBV的转录与复制[25]

1.3 TRIM家族蛋白对其他病毒的抑制作用

TRIM5α可影响逆转录病毒复制周期的早期阶段和晚期阶段,其多聚化可以形成细胞质体(cytoplasmic body),在限制病毒感染中起着重要的作用[26]。TRIM5α可以与人类免疫缺陷病毒(human immunodeficiency virus, HIV)蛋白酶NS2B/3结合,促进NS2B/3的K48泛素化和蛋白酶体降解,抑制病毒复制[27]。此外,TRIM5α还可以促进Ⅰ型干扰素分泌起到抗黄病毒感染的作用[27]

Ⅰ型单纯疱疹病毒(herpes simplex virus, HSV-1)是一种含包膜的双链DNA病毒[28],该病毒不仅感染率高,致死率也高达97%,并且对接触者存在潜在的威胁[29]。TRIM22是一种新型HSV感染限制因子,通过增加组蛋白占有率和异染色质来限制缺乏病毒反式激活因子的病毒感染细胞多肽0单纯疱疹病毒1 (herpes simplex virus 1 virus deficient in the viral transactiva-tor infected cell polypeptide 0, ICP0-null HSV-1)病毒复制,从而抑制病毒早期的复制。此外TRIM22还抑制其他DNA病毒,包括β-和γ-疱疹病毒的代表性成员,TRIM22中的等位基因突变表现出不同程度的抗疱疹病毒活性,因此TRIM22基因变异可能导致人类对HSV-1的易感性不同,是一种新型的HSV限制因子[30]。在呼吸道合胞病毒(respiratory syncytial virus, RSV)感染过程中,TRIM22与JAK-STAT1/2通路中的JAK1相互作用,通过促进其磷酸化激活IFN信号通路,抑制病毒复制[31]

在传染性法氏囊病病毒(infectious bursal disease virus, IBDV)感染禽细胞中,TRIM25为宿主限制性因子,可与IBDV结构蛋白VP3相互作用并通过RING结构域的E3泛素连接酶活性介导VP3的K27多泛素化和蛋白酶体降解而抑制IBDV的复制[32]

乙型脑炎病毒(Japanese encephalitis virus, JEV)是亚太地区病毒性脑炎的主要病原,致死率在30%左右,常伴有永久性神经元障碍[33]。TRIM52是一种潜在的新型抗病毒蛋白,通过其E3连接酶活性以蛋白酶体依赖的方式降解NS2A,发挥抑制JEV感染的作用[34]

在猪繁殖与呼吸综合症病毒(porcine reproductive and respiratory syndrome, PRRSV)感染后,猪的TRIM21 (pTRIM21)蛋白可通过其RING结构域的E3泛素连接酶活性与蛋白酶体途径抑制PRRSV的复制,但该抑制作用并不影响病毒的吸附和侵入过程[35]

本课题组前期研究发现,TRIM21可通过促进IFN-γ的表达抑制脑心肌炎病毒(encephalomyocarditis virus, EMCV)的复制,同时TRIM21还可促进炎症因子IL-6的表达,因此TRIM21可能激活炎症信号通路进而抑制EMCV的复制[36]。在后期研究中,我们还需进一步验证TRIM21诱导IL-6分泌的确切机制以及TRIM21与病毒蛋白是否存在相互作用。

2 TRIM家族蛋白促进病毒的复制

目前发现还有部分TRIM家族蛋白可促进病毒的复制。TRIM26的SPRY结构域与丙型肝炎病毒(hepatitis C virus, HCV)的NS5B蛋白C端结构域相互作用,介导其K27的泛素化,增强了NS5B与NS5A的相互作用,进而增强了HCV基因组复制[37]

在EMCV中,TRIM13抑制其诱导的IFN-Ⅰ的表达[38]。本课题组前期研究发现TRIM13还抑制了由EMCV触发的炎症因子的表达,该作用可能通过与TRIM13抑制TBKⅠ的表达相关(图 3,结果待发表),从而抑制病毒诱导的IFN-β的表达,促进了病毒增殖[38]。Narayan等在研究中发现,用致死剂量的EMCV静脉注射感染野生型小鼠和TRIM13基因敲除小鼠(TRIM13–/–)后,在EMCV感染后,TRIM13–/–小鼠的存活时间明显长于野生型小鼠[39],可能与TRIM13缺失促进MDA5诱导IFN-β表达相关。在赤点石斑鱼神经坏死病毒(red spotted grouper nervous necrosis virus, RGNNV)中,TRIM13的RING结构域对其复制也有着影响,TRIM13不仅负调控抑制干扰素调节因子3 (IRF3)、IRF7和MDA5诱导的干扰素启动子活性,还可降低多种干扰素相关因子的表达。同时,TRIM13的过表达还不同程度调控促炎因子IL-6、IL-1β、TNF-α的表达,对RGNNV的复制有着较强的促进作用[40]。Li等在研究中发现,静脉注射HSV-1病毒后,TRIM13基因敲除(TRIM13–/–)小鼠脑内的HSV-1复制明显减少;且TRIM13–/–小鼠感染HSV-1的存活率显著高于野生小鼠[41],这一现象出现可能由于TRIM13–/–增强了病原DNA触发炎症细胞因子的产生,抑制HSV-1的复制。

图 3 TRIM13促进EMCV复制信号通路图 Figure 3 Signal pathway map of TRIM13 promoting EMCV.

盖塔病毒(Getah virus, GETV)是一种有包膜的RNA病毒。TRIM21可通过SPRY结构域与IRF3相互作用,导致转录因子IRF3的多聚泛素化和蛋白酶体降解,抑制IRF3的表达及其磷酸化,抑制IFN-β的表达促进GETV复制[42]

PRRSV给全球养猪业造成巨大经济损失,PRRSV感染后可诱导pTRIM26的表达,pTRIM26通过IRF3的激活负调控IFN-β的产生和参与先天抗病毒免疫反应,促进了PRRSV的感染[43-44]

3 总结与展望

具有E3泛素连接酶活性的TRIM家族蛋白在固有免疫应答中的作用备受研究人员的关注。越来越多的研究表明TRIM家族蛋白在病毒复制中存在双向作用。TRIM蛋白可作为固有免疫信号组成成分限制病毒复制,或者直接靶向降解病毒蛋白;但还有部分TRIM蛋白则作为促进病毒复制的有利工具被病毒利用。TRIM家族蛋白调节病毒复制作用的两重性还需进一步的研究和验证。阐明TRIM家族蛋白在病毒复制中的作用机制将为揭示病毒致病机理、病毒与免疫系统之间的相互作用提供参考。

References
[1] LI Y. Structural insight into the trim family of ubiquitin E3 ligases[D]. Beijing: Doctoral Dissertation of Tsinghua University, 2014 (in Chinese).
李洋. TRIM蛋白发挥泛素连接酶活性机制的结构研究[D]. 北京: 清华大学博士学位论文, 2014.
[2] van GENT M, SPARRER KMJ, GACK MU. TRIM proteins and their roles in antiviral host defenses. Annual Review of Virology, 2018, 5(1): 385-405. DOI:10.1146/annurev-virology-092917-043323
[3] HATAKEYAMA S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends in Biochemical Sciences, 2017, 42(4): 297-311. DOI:10.1016/j.tibs.2017.01.002
[4] ZHAN WH, ZHANG S. TRIM proteins in lung cancer: mechanisms, biomarkers and therapeutic targets. Life Sciences, 2021, 268: 118985. DOI:10.1016/j.lfs.2020.118985
[5] di RIENZO M, ROMAGNOLI A, ANTONIOLI M, PIACENTINI M, FIMIA GM. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death & Differentiation, 2020, 27(3): 887-902.
[6] OZATO K, SHIN DM, CHANG TH, MORSE HC. TRIM family proteins and their emerging roles in innate immunity. Nature Reviews Immunology, 2008, 8(11): 849-860. DOI:10.1038/nri2413
[7] SARDIELLO M, CAIRO S, FONTANELLA B, BALLABIO A, MERONI G. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evolutionary Biology, 2008, 8(1): 1-22. DOI:10.1186/1471-2148-8-1
[8] REYMOND A, MERONI G, FANTOZZI A, MERLA G, CAIRO S, LUZI L, RIGANELLI D, ZANARIA E, MESSALI S, CAINARCA S, GUFFANTI A, MINUCCI S, PELICCI PG, BALLABIO A. The tripartite motif family identifies cell compartments. The EMBO Journal, 2001, 20(9): 2140-2151. DOI:10.1093/emboj/20.9.2140
[9] van TOL S, HAGE A, GIRALDO MI, BHARAJ P, RAJSBAUM R. The TRIMendous role of TRIMs in virus-host interactions. Vaccines, 2017, 5(3): 23. DOI:10.3390/vaccines5030023
[10] FIORENTINI F, ESPOSITO D, RITTINGER K. Does it take two to tango? RING domain self-association and activity in TRIM E3 ubiquitin ligases. Biochemical Society Transactions, 2020, 48(6): 2615-2624. DOI:10.1042/BST20200383
[11] GIRALDO MI, HAGE A, van TOL S, RAJSBAUM R. TRIM proteins in host defense and viral pathogenesis. Current Clinical Microbiology Reports, 2020, 7(4): 101-114. DOI:10.1007/s40588-020-00150-8
[12] WANG HT, HUR S. Substrate recognition by TRIM and TRIM-like proteins in innate immunity. Seminars in Cell & Developmental Biology, 2021, 111: 76-85.
[13] KOLIOPOULOS MG, ESPOSITO D, CHRISTODOULOU E, TAYLOR IA, RITTINGER K. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. The EMBO Journal, 2016, 35(11): 1204-1218. DOI:10.15252/embj.201593741
[14] JAMES LC, KEEBLE AH, KHAN Z, RHODES DA, TROWSDALE J. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(15): 6200-6205. DOI:10.1073/pnas.0609174104
[15] CRAWFORD LJ, JOHNSTON CK, IRVINE AE. TRIM proteins in blood cancers. Journal of Cell Communication and Signaling, 2018, 12(1): 21-29. DOI:10.1007/s12079-017-0423-5
[16] DUWE S. Influenza viruses-antiviral therapy and resistance. GMS Infectious Diseases, 2017, 5: Doc04.
[17] WU XW, WANG JF, WANG SS, WU F, CHEN ZG, LI CF, CHENG GH, QIN FXF. Inhibition of influenza A virus replication by TRIM14 via its multifaceted protein-protein interaction with NP. Frontiers in Microbiology, 2019, 10: 344. DOI:10.3389/fmicb.2019.00344
[18] MARKLUND JK, YE QZ, DONG JH, TAO YJ, KRUG RM. Sequence in the influenza A virus nucleoprotein required for viral polymerase binding and RNA synthesis. Journal of Virology, 2012, 86(13): 7292-7297. DOI:10.1128/JVI.00014-12
[19] ZHAO MM, WANG LY, LI ST. Influenza A virus-host protein interactions control viral pathogenesis. International Journal of Molecular Sciences, 2017, 18(8): 1673. DOI:10.3390/ijms18081673
[20] di PIETRO A, KAJASTE-RUDNITSKI A, OTEIZA A, NICORA L, TOWERS GJ, MECHTI N, VICENZI E. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. Journal of Virology, 2013, 87(8): 4523-4533. DOI:10.1128/JVI.02548-12
[21] FU BS, WANG LY, DING H, SCHWAMBORN JC, LI ST, DORF ME. TRIM32 senses and restricts influenza A virus by ubiquitination of PB1 polymerase. PLoS Pathogens, 2015, 11(6): e1004960. DOI:10.1371/journal.ppat.1004960
[22] PATIL G, ZHAO MM, SONG K, HAO WZ, BOUCHEREAU D, WANG LY, LI ST. TRIM41-mediated ubiquitination of nucleoprotein limits influenza A virus infection. Journal of Virology, 2018, 92(16).
[23] HUANG CJ, WANG LHC, WANG YC. Identification of therapeutic targets for the selective killing of HBV-positive hepatocytes. Journal of Personalized Medicine, 2021, 11(7): 649. DOI:10.3390/jpm11070649
[24] MU T, ZHAO XQ, ZHU YN, FAN HX, TANG H. The E3 ubiquitin ligase TRIM21 promotes HBV DNA polymerase degradation. Viruses, 2020, 12(3): 346. DOI:10.3390/v12030346
[25] ZHANG SJ, GUO JT, WU JZ, YANG G. Identification and characterization of multiple TRIM proteins that inhibit hepatitis B virus transcription. PLoS One, 2013, 8(8): e70001. DOI:10.1371/journal.pone.0070001
[26] OHMINE S, SAKUMA R, SAKUMA T, THATAVA T, SOLIS GP, IKEDA Y. Cytoplasmic body component TRIM5 (alpha) requires lipid-enriched microdomains for efficient HIV-1 restriction. The Journal of Biological Chemistry, 2010, 285(45): 34508-34517. DOI:10.1074/jbc.M110.158188
[27] CHIRAMEL AI, MEYERSON NR, MCNALLY KL, BROECKEL RM, MONTOYA VR, MÉNDEZ-SOLÍS O, ROBERTSON SJ, STURDEVANT GL, LUBICK KJ, NAIR V, YOUSEFF BH, IRELAND RM, BOSIO CM, KIM K, LUBAN J, HIRSCH VM, TAYLOR RT, BOUAMR F, SAWYER SL, BEST SM. TRIM5α restricts Flavivirus replication by targeting the viral protease for proteasomal degradation. Cell Reports, 2019, 27(11): 3269-3283.e6. DOI:10.1016/j.celrep.2019.05.040
[28] DUARTE LF, FARÍAS MA, ÁLVAREZ DM, BUENO SM, RIEDEL CA, GONZÁLEZ PA. Herpes simplex virus type 1 infection of the central nervous system: insights into proposed interrelationships with neurodegenerative disorders. Frontiers in Cellular Neuroscience, 2019, 13: 46. DOI:10.3389/fncel.2019.00046
[29] TIAN WJ, ZHENG C, WANG XJ. Research progress of herpes simplex virus 1: etiology, prevention and control, and application. Life Science Research, 2020, 24(5): 425-430. (in Chinese)
田文骏, 郑成, 王晓佳. 单纯疱疹病毒Ⅰ型最新研究进展——病原学、防控及应用. 生命科学研究, 2020, 24(5): 425-430.
[30] REDDI TS, MERKL PE, LIM SY, LETVIN NL, KNIPE DM. Tripartite motif 22 (TRIM22) protein restricts herpes simplex virus 1 by epigenetic silencing of viral immediate-early genes. PLoS Pathogens, 2021, 17(2): e1009281. DOI:10.1371/journal.ppat.1009281
[31] WANG YS, CHEN YL, LIN Y, QUAN YQ, XIAO XP, ZHANG RL. TRIM22 inhibits respiratory syncytial virus replication by targeting JAK-STAT1/2 signaling. Journal of Medical Virology, 2021, 93(6): 3412-3419. DOI:10.1002/jmv.26436
[32] WANG SY, YU MM, LIU AJ, BAO YL, QI XL, GAO L, CHEN YT, LIU P, WANG YL, XING LX, MENG LZ, ZHANG Y, FAN LJ, LI XY, PAN Q, ZHANG YP, CUI HY, LI K, LIU CJ, HE XJ, GAO YL, WANG XM. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathogens, 2021, 17(9): e1009900. DOI:10.1371/journal.ppat.1009900
[33] LI N, ZHANG ZR, ZHANG YN, LIU J, DENG CL, SHI PY, YUAN ZM, YE HQ, ZHANG B. A replication-defective Japanese encephalitis virus (JEV) vaccine candidate with NS1 deletion confers dual protection against JEV and West Nile virus in mice. Npj Vaccines, 2020, 5: 73. DOI:10.1038/s41541-020-00220-4
[34] FAN WC, WU MG, QIAN SH, ZHOU Y, CHEN HC, LI XM, QIAN P. TRIM52 inhibits Japanese encephalitis virus replication by degrading the viral NS2A. Scientific Reports, 2016, 6: 33698. DOI:10.1038/srep33698
[35] WEI Y, ZENG SY, ZOU CC, ZHANG H, OUYANG P, XUE CY, CAO YC. Porcine TRIM21 RING-finger E3 ubiquitin ligase is essential for anti-PRRSV activity. Veterinary Microbiology, 2021, 256: 109043. DOI:10.1016/j.vetmic.2021.109043
[36] ZHAO KX, XU SJ, GENG JJ, LIU Y, LI QY, FENG RF. Study on regulatory effects of TRIM21 in encephalomyocarditis virus proliferation. Chinese Journal of Cell Biology, 2019, 41(12): 2291-2299. (in Chinese)
赵克学, 许淑娟, 耿金静, 刘杨, 李琼毅, 冯若飞. TRIM21对脑心肌炎病毒的增殖调控作用研究. 中国细胞生物学学报, 2019, 41(12): 2291-2299.
[37] LIANG YS, ZHANG GG, LI QH, HAN L, HU XY, GUO Y, TAO WY, ZHAO XM, GUO MZ, GAN TY, TONG YM, XU YF, ZHOU Z, DING Q, WEI WS, ZHONG J. TRIM26 is a critical host factor for HCV replication and contributes to host tropism. Science Advances, 2021, 7(2): eabd9732. DOI:10.1126/sciadv.abd9732
[38] ZHAO KX. Effect of TRIM13 on EMCV proliferation in vitro and preliminary study of mechanism[D]. Lanzhou: Master's Thesis of Northwest University for Nationalities, 2020 (in Chinese).
赵克学. TRIM13对EMCV体外感染增殖的影响及机制初探[D]. 兰州: 西北民族大学硕士学位论文, 2020.
[39] NARAYAN K, WAGGONER L, PHAM ST, HENDRICKS GL, WAGGONER SN, CONLON J, WANG JP, FITZGERALD KA, KANG J. TRIM13 is a negative regulator of MDA5-mediated type I interferon production. Journal of Virology, 2014, 88(18): 10748-10757. DOI:10.1128/JVI.02593-13
[40] HUANG YH, YANG M, YU YP, YANG Y, ZHOU LL, HUANG XH, QIN QW. Grouper TRIM13 exerts negative regulation of antiviral immune response against nodavirus. Fish & Shellfish Immunology, 2016, 55: 106-115.
[41] LI XL, YU Z, FANG Q, YANG MJ, HUANG JY, LI Z, WANG JL, CHEN TY. The transmembrane endoplasmic reticulum-associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA-triggered inflammatory response. Science Advances, 2022, 8(4): eabh0496. DOI:10.1126/sciadv.abh0496
[42] WANG J. The molecular mechanism of TRIM21 and TRIM25 affecting GETV replication[D]. Beijing: Master's Thesis of Chinese Academy of Agricultural Sciences, 2021 (in Chinese).
王娟. TRIM21与TRIM25影响GETV复制的分子机制研究[D]. 北京: 中国农业科学院硕士学位论文, 2021.
[43] WANG P, ZHAO W, ZHAO K, ZHANG L, GAO CJ. TRIM26 negatively regulates interferon-β production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLoS Pathogens, 2015, 11(3): e1004726. DOI:10.1371/journal.ppat.1004726
[44] HUANG H, SHARMA M, ZHANG YB, LI CX, LIU K, WEI JC, SHAO DH, LI BB, MA ZY, CAO RB, QIU YF. Expression profile of porcine TRIM26 and its inhibitory effect on interferon-β production and antiviral response. Genes, 2020, 11(10): 1226. DOI:10.3390/genes11101226
TRIM家族蛋白在病毒感染中作用的研究进展
杨东亮 , 毕冬琳 , 杨晓莉 , 柏家林 , 李琼毅