微生物学报  2023, Vol. 63 Issue (6): 2047-2065   DOI: 10.13343/j.cnki.wsxb.20220587.
http://dx.doi.org/10.13343/j.cnki.wsxb.20220587
中国科学院微生物研究所,中国微生物学会

文章信息

张瀚云, 周瑾洁, 张翠景, 李猛. 2023
ZHANG Hanyun, ZHOU Jinjie, ZHANG Cuijing, LI Meng.
微生物互营产甲烷过程中的种间电子传递
Interspecies electron transfer during microbial syntrophic methanogenesis
微生物学报, 63(6): 2047-2065
Acta Microbiologica Sinica, 63(6): 2047-2065

文章历史

收稿日期:2022-08-03
网络出版日期:2023-01-04
微生物互营产甲烷过程中的种间电子传递
张瀚云1,2 , 周瑾洁1,2 , 张翠景1,2 , 李猛1,2     
1. 深圳大学古菌生物学研究中心, 广东 深圳 518060;
2. 深圳大学高等研究院, 广东 深圳 518060
摘要:甲烷作为全球第二大温室气体,是典型的可再生清洁能源,也是碳循环中的重要物质组成。大气中约74%的甲烷由产甲烷古菌和其他微生物的互营产生,种间电子传递(interspecies electron transfer, IET)是微生物菌群降低热力学能垒、实现互营产甲烷的核心过程。IET可分为间接种间电子传递(mediated interspecies electron transfer, MIET)和直接种间电子传递(direct interspecies electron transfer, DIET)两种类型,其中MIET依赖氢气、甲酸等载体完成电子的远距离传输,而DIET则依赖导电菌毛、细胞色素c等膜蛋白,通过微生物的直接接触实现电子传递。本文将从IET的研究历程出发,从电子传递机制、微生物种类、生态多样性等方面对微生物互营产甲烷过程中的两种IET类型进行比较,最后对未来待探索的方向进行展望。本综述有助于加深对微生物互营产甲烷过程中IET的理解,为解决由甲烷引发的全球气候变暖等生态问题提供理论支撑。
关键词微生物互营    种间电子传递    厌氧产甲烷    种间氢/甲酸传递    直接种间电子传递    
Interspecies electron transfer during microbial syntrophic methanogenesis
ZHANG Hanyun1,2 , ZHOU Jinjie1,2 , ZHANG Cuijing1,2 , LI Meng1,2     
1. Center for Archaea Biology, Shenzhen University, Shenzhen 518060, Guangdong, China;
2. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
Abstract: As the second most abundant greenhouse gas in the world, methane is a typical renewable energy source and an important material component in the key link of the carbon cycle. About 74% of atmospheric methane is produced by syntrophy between methanogenic archaea and other microorganisms, and interspecies electron transfer (IET) is the core process of methanogenic microbial communities to overcome the thermodynamic energy barrier. IET can be sorted into mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET). During MIET, microorganisms rely on electron shuttles such as hydrogen and formate for long-distance electron transport. However, during DIET, microbial communities establish direct connections and transport electrons through electrically conductive pili, cytochrome c and other membrane-bound proteins. This review will start from the research history of IET and then compare MIET and DIET in terms of electron transfer mechanism, related microbial species, and ecological distribution. Finally, we will summarize the future research directions. This review is expected to help deepen the understanding of IET during microbial syntrophic methanogenesis and lay a theoretical basis for solving ecological problems such as global warming caused by methane.
Keywords: microbial syntrophy    interspecies electron transfer    anaerobic methanogenesis    interspecies hydrogen/formate transfer    direct interspecies electron transfer    

甲烷是一种清洁的能源气体,也是仅次于CO2的第二大温室气体。大气中的甲烷来源主要可分为自然来源和人为来源[1-2]。甲烷排放的自然来源包括湿地、地质源、湖泊和河流、白蚁和野生动物等,其中湿地在自然来源中占主导地位,年排放量可达177–284 Tg[3]。人为来源包括水稻田、反刍动物、垃圾填埋场、生物质燃烧和化石燃料燃烧等[4]。自2007年起全球甲烷总排放量大幅度提高,目前大气中的甲烷浓度已达到了1.6 mg/L,几乎为工业化前水平的3倍,甲烷的实际排放量可能远远高于甲烷排放监测的数据[5-6]。为控制温室气体排放,应对全球气候变化,习近平总书记在2020年的联合国大会提出,中国力争在2030年实现“碳达峰”和2060年实现“碳中和”的“双碳”目标。因此,减少甲烷等温室气体的排放是备受关注的研究热点,也是减缓全球变暖的关键环节和重大举措。对碳循环中甲烷产生过程的研究响应了“碳达峰、碳中和”国策的要求,有利于应对当前气候变化等问题,具有重要的生态学意义。

Lan等研究表明,过去15年的甲烷增长主要来源于微生物[7],因此微生物产甲烷受到研究人员的密切关注。产甲烷古菌是目前已知的唯一产甲烷微生物。根据利用底物种类不同,产甲烷古菌主要分为甲基营养型(底物为甲醇、甲氨等甲基化合物)、乙酸营养型(底物为乙酸)和氢营养型(底物为氢气/CO2)三种类型[8-9]。随着研究的不断深入,一些新型甲烷生成途径,如甲基还原型[10]、长链烷基烃营养型[11]等被逐渐发现,说明产甲烷古菌代谢具有多样化特征。尽管如此,产甲烷菌可利用底物仍非常有限。因此,自然界中的产甲烷古菌通常与发酵菌、产酸菌等细菌协同合作,共同将复杂有机物逐步降解生成甲烷[12]。微生物菌群产甲烷过程可分为4步,即发酵、产酸、产乙酸和产甲烷[13-15]。发酵和产酸过程由发酵细菌完成,其可将蛋白质、多糖等大分子聚合物水解成对应的单体,然后把这些单体发酵为挥发性脂肪酸及醇类等小分子化合物;产乙酸过程主要由产乙酸菌将上一过程产生的小分子化合物进一步分解为甲酸、乙酸、氢气和CO2;产甲烷过程由产甲烷古菌利用甲酸、乙酸、氢气和CO2作为底物合成甲烷。然而,微生物菌群产甲烷过程并不是简单的物质传递。产乙酸菌对有机酸或醇类的降解在标准状态下是吸热过程,无法自发进行。产甲烷古菌可以利用其降解产物,从而驱动化学平衡向产物方向进行(表 1)。上述产乙酸菌和产甲烷古菌形成的合作关系称为互营,该过程也是甲烷释放的限速步骤[7]。种间电子传递(interspecies electron transfer, IET)是微生物菌群互营产甲烷的核心环节,在微生物互营产甲烷过程中起到了突破热力学障碍的关键作用[16]。由此,对微生物菌群互营产甲烷过程中IET的研究,有助于帮助人们理解地球碳循环和能量代谢的生物地球化学过程[17]

表 1. 典型微生物互营过程中的相关反应及能量变化[18-21] Table 1. Reactions involved in microbial syntrophy between bacteria and methanogen[18-21]
Substrate Reactions ∆G0 (kJ/mol)
Bacteria
 Benzoate C6H5COO+6H2O→3CH3COO+2H++3H2+CO2 +70.1
 Propionate C2H5COO+2H2O→CH3COO+CO2+3H2O +76.0
 Butyrate C3H7COO+2H2O→2CH3COO+H++2H2 +48.3
 Ethanol C2H5OH+H2O→CH3COO+H++2H2 +9.6
Methanogen
 H2 4H2+CO2→CH4+2H2O –131.7
 Formate 4HCOOH→CH4+3CO2+2H2O –144.5
 Acetate CH3COOH→CH4+CO2 –36.0
Syntrophy
 Benzoate 4C6H5COO+4H++18H2O→13CO2+15CH4 –624.0
 Propionate 4C2H5COO+4H++2H2O→7CH4+5CO2 –249.0
 Butyrate 2C3H7COO+2H++2H2O→5CH4+3CO2 –140.0
 Ethanol 2C2H5OH+2H2O →CH4+CO2 –196.5

1 IET的分类及发展历程

按照是否依赖电子载体,微生物IET可分为间接种间电子传递(mediated interspecies electron transfer, MIET)和直接种间电子传递(direct interspecies electron transfer, DIET)两种类型。其中,以氢气/甲酸等电子穿梭体,将电子由细菌传递至产甲烷古菌的IET方式为MIET,而DIET不依赖外界氧化还原载体,通过导电菌毛、细胞色素c等蛋白,实现细胞对细胞的直接电子传递。

微生物IET的研究始于MIET的发现,1906年微生物学家Omelianski[22]发现了可以通过发酵乙醇产甲烷的Methanobacillus omelianskii。1967年,Bryant等[23]的研究证明,上述以乙醇为底物产甲烷的M. omelianskii实则由2种微生物组成,其中一种为氧化乙醇产生氢气的革兰氏阴性细菌(S菌株),另一种为能利用氢气而无法利用乙醇的产甲烷菌Methanobacterium ruminantium,二者以氢气为电子载体实现互营产甲烷,自此开启了种间氢传递的研究。1988年Thiele等[24]通过研究乳清厌氧消化器中的IET过程,证明甲酸也可作为微生物互营产甲烷IET的电子载体。长期以来,依赖氢气/甲酸的MIET被认为是自然界分布最广、最重要的细菌-产甲烷古菌IET方式,也是微生物菌群产甲烷过程的限速步骤[21]。此外,l-半胱氨酸[25]、硫化物[26]、醌类[27]、核黄素[28]、吩嗪[29]等具有氧化还原特性的物质均可作为电子载体介导种间电子传递。

相比于MIET,DIET的发现时间较晚。DIET的发现是源于对微生物胞外电子传递能力的拓展研究。自然界中以地杆菌(Geobacter)为代表的电化学活性微生物可将金属氧化物、固体电极、腐殖质等非可溶性大分子物质作为唯一电子受体,进行直接胞外电子传递[30]。在此基础上,2010年,Lovley教授团队[31]发现金属还原地杆菌Geobacter metallireducens可将氧化乙醇获得的电子直接传递给硫还原地杆菌Geobacter sulfurreducens,用于其还原延胡索酸生成琥珀酸,首次证实微生物之间存在DIET。2011年,该团队进一步对啤酒废水厌氧反应器中的产甲烷菌群进行研究,首次表明产甲烷的微生物团聚体有导电性,推测DIET存在于微生物互营产甲烷过程中[32]。随后,在2012年及2014年,该团队利用纯培养菌株构建了细菌与产甲烷古菌互营体系,发现G. metallireducens可将胞内电子通过DIET传递给产甲烷古菌Methanosarcina barkeri[33]Methanothrix harundinacea (formerly Methanosaeta)[34],用于后者转化CO2生成甲烷,为DIET存在于互营产甲烷过程提供了直接证据。自此,研究人员通过组学分析、实验室互营体系构建、数学建模、形态学观察等多种研究手段,对DIET机制、分布情况、电子传输效率等多个方向对DIET进行了深入研究[35],发现DIET过程可能在自然界产甲烷微生物菌群中分布广泛,并对微生物生理代谢意义重大。

综上所述,在微生物互营产甲烷过程中,IET是能量流动和底物代谢的关键驱动力。两类IET形式不同,且涉及的微生物种类及生境也具有差异性。本文重点对MIET和DIET进行对比,阐述了二者在传递机制、微生物种类、生态分布等方面的不同,总结了目前IET研究中亟待解决的问题,并对未来可能出现的研究热点进行展望。

2 互营产甲烷过程中的IET机制

由于细菌及产甲烷古菌的细胞膜均不具有导电性,微生物菌群IET需由具有氧化还原功能的膜蛋白、导电菌毛及位于周质空间的氢酶、甲酸脱氢酶等协助完成。以革兰氏阴性细菌为例,其与产甲烷菌进行IET过程如下:细菌氧化有机物后,从有机物获得的电子由胞内传递至位于细胞质膜的氧化还原蛋白,再以周质蛋白为载体传递至细胞外膜的跨膜蛋白复合体上,细胞外膜上的电子可以通过DIET或者MIET的方式传递至产甲烷古菌,由一系列氧化还原蛋白介导后传递至古菌细胞内,最终将CO2还原为甲烷[36-37]。一般情况下,IET过程中电子由低标准氧化还原电势向高标准氧化还原电势传递,例如,当甲酸或者氢气被消耗导致浓度降低时,其标准氧化还原电位会上升,高于氧化还原蛋白的标准氧化还原电势,此时电子可以由氧化还原蛋白传递至H+或H+/CO2,该过程释放的化学能以ATP形式储存。

2.1 MIET机制

IET的研究始于20世纪70年代末,直至近几年,人们才充分了解产甲烷菌群落中细菌和产甲烷古菌之间的电子传递机制。根据电子穿梭体的不同,MIET可分为两种机制[38]:(1) 以氢气或甲酸介导的种间氢/甲酸传递(图 1A);(2) 以腐殖物质、醌类、吩嗪等具有氧化还原特性的物质介导的MIET (图 1B)。

图 1 微生物互营产甲烷菌群中存在的IET过程示意图[35-36] Figure 1 IET mechanisms in microbial syntrophic methanogenesis[35-36]. A: Interspecies hydrogen/formate transfer. B: MIET mediated by other electron shuttles. C–D: DIET. E–F: DIET mediated by conductive materials. ESox: Oxidized electron shuttle; ESred: Reduced electron shuttle; GAC: Granular activated carbon (Purple: Bacterium; Gray: Methanogen).

2.1.1 种间氢/甲酸传递机制

在细菌与产甲烷古菌的种间氢/甲酸传递过程中,细菌需要释放来自有机底物氧化的电子,在周质空间中,氢酶将质子还原为氢气,甲酸脱氢酶将CO2还原为甲酸;然后,氢气/甲酸作为主要的电子载体将电子从细菌传递至产甲烷古菌;最后,产甲烷古菌以氢气/甲酸作为电子供体,还原CO2生成甲烷[39]。以脱硫弧菌和氢营养型产甲烷菌组成的互营产甲烷体系为例,其电子传递过程如下[40]:脱硫弧菌在细胞质中将乳酸氧化为乙酰辅酶A所释放的电子通过巯醇-二硫化氧化还原对、铁氧还原蛋白等电子载体运送到位于细胞质膜的电子传递链中,并耦合能量生成。进一步,电子通过电子传递链传递给位于周质空间的细胞色素c等氧化还原蛋白,再传递给氢酶、甲酸脱氢酶等用于生成氢气、甲酸并释放到胞外。在氢酶的作用下,氢气被氧化成H+,产甲烷古菌利用该过程释放的电子还原CO2生成甲烷。甲酸进入产甲烷古菌有两种途径,其可在甲酸氢解酶的作用下先转化为氢气和HCO3 (或CO2),随后转化为甲烷,也可以被甲酸脱氢酶直接氧化,将电子转移到辅酶F420上,然后被还原为甲烷[41]

2.1.2 依赖其他电子穿梭体的MIET机制

在一些厌氧生境中,IET产甲烷可由具有氧化还原特性的小分子物质(腐殖质、吩嗪、醌类化合物等)介导,这些电子穿梭体可由微生物自身合成,也可以是人工合成或自然存在的物质[42]。在这种MIET过程中,胞外电子穿梭体通过循环往复地发生氧化还原反应,从细菌接受电子再将其传递给产甲烷菌[43]。已有研究证明蒽醌-2-磺酸盐(anthraquinone-2-sulfonate, AQS)加速了厌氧消化过程中丁酸的降解和甲烷的生成[44],半胱氨酸可促进丙酸氧化菌Pelotomaculum与产甲烷古菌互营产甲烷[45],吩嗪中性红可以从细菌获得电子,并传递给Methanosarcina使厌氧消化过程的甲烷产量提高一个数量级,其机制是吩嗪中性红被还原后进入产甲烷古菌细胞膜,将电子传递给膜结合的异二硫键还原酶HdrED以补充CoM-SH和CoB-SH进行甲烷生成[29]。因此,电子穿梭体介导的MIET可以产生足够的能量来支持两种微生物的互营生长,在污染修复转化和微生物产电等领域具有应用潜力。然而,依赖电子穿梭体的IET机制尚未得到充分解析,其对互营产甲烷过程的驱动作用也存在争议。首先,研究表明典型电子穿梭体蒽醌-2, 6-二磺酸盐(anthraquinone-2, 6-disulfonate, AQDS)的加入会抑制甲烷产生,其原因是在以氢气为电子供体条件下,细菌醌还原过程较古菌产甲烷过程热力学更易发生。细菌对AQDS的呼吸作用将大幅抑制古菌产甲烷活性[46]。此外,多项研究证实醌类等电子穿梭体可直接加速细菌降解挥发性脂肪酸产生氢气[47-48],其通过促进氢气生成,还是本身作为电子穿梭体来完成IET过程,尚不明确。同时,虽有研究表明半胱氨酸可以促进厌氧消化产甲烷,且氢营养型产甲烷菌在该过程中发挥关节键作用[49],但半胱氨酸介导种间电子传递的分子机制并未全面讨论。因此,具氧化还原特性的小分子物质在IET中的作用有待于进一步探索。

2.2 DIET机制

与MIET相比,DIET无需胞外电子穿梭体介导,其依赖导电菌毛、细胞色素c及/或其他膜蛋白完成细胞对细胞的直接电子传递(图 1C1F)。由于DIET发现时间较短,对于其机制的研究仍然处于初级阶段,并主要集中于对细菌释放电子机制的探索。随着研究的不断深入,更多参与DIET过程的关键膜蛋白被陆续发现,使得解析复杂的DIET机制成为可能。

2.2.1 细菌DIET释放电子机制

在DIET过程中,电子供体细菌将细胞质膜呼吸链中的电子,通过一系列具有氧化还原功能的周质蛋白传递给细胞外膜,再由导电菌毛及其他外膜蛋白传递至胞外。DIET机制复杂,目前研究较深入的介导DIET的功能蛋白是导电菌毛和细胞色素c。

导电菌毛是微生物进行DIET的关键蛋白。以地杆菌为代表的典型电活性细菌的导电菌毛属于Ⅳ型菌毛蛋白[50],其单体依赖其芳香族氨基酸的π-π堆积实现电子跃迁,具有类金属导电性[51]。当其中芳香族氨基酸突变为丙氨酸时,其无法导电,DIET能力随之丧失,因此菌毛中氨基酸种类及排布序列对于其是否导电及DIET能力至关重要[52-53]。目前通过转录组学分析及基因敲除手段确认了导电菌毛在G. metallireducensM. barkeri[54]Methanosarcina acetivorans[55]Mx. harundinacea[34]等古菌依赖DIET互营产甲烷过程中发挥关键作用。导电菌毛基因在众多可能存在DIET互营产甲烷的环境中过量表达,可作为自然环境中表征DIET的潜在指标[56]

多血红素细胞色素c (OMCs)是细菌进行DIET的另一类重要的氧化还原蛋白,位于细胞周质空间和细胞外膜,介导电子由细胞内膜向细胞外膜的跨膜运输,以及电子由细胞外膜向其他细胞的胞外运输。Summers等[31]敲除G. sulfurreducens中编码细胞色素c基因omcS后,发现其丧失了与G. metallireducens进行DIET的能力,表明细胞色素c在DIET中具有关键作用。在互营产甲烷过程中,G. metallireducens过量表达细胞色素c相关基因[55]

除了导电菌毛和OMCs外,还有其他的蛋白可能也参与了DIET,例如在G. metallireducensG. sulfurreducens的DIET中,G. metallireducens的鞭毛蛋白FliC、FliS、FliD及FliW高度表达[44],可能对微生物菌群聚集和电子传递起作用。

同时,有研究表明,删除G. metallireducens编码菌毛组装马达蛋白PilB的基因后,其仍可以进行DIET,G. metallireducens的细胞色素c可以在不存在导电菌毛条件下独立行使电子传递的功能[57]。然而该结论存在争议,如Ueki等[58]发现删除pilB基因后导电菌毛仍然表达,且该策略并不能构建缺失导电菌毛的G. metallireducens菌株。最近也有研究表明,G. metallireducens在编码导电菌毛单体pilA基因缺失下仍可以与Methanobacterium进行DIET[59]。因此,明确导电菌毛及其他可能参与DIET过程的关键基因功能是揭示DIET机制的研究基础和前提。此外,电子供体菌G. metallireducens在面对不同类型的电子受体微生物(G. sulfurreducens, M. barkeri, M. acetivorans)时,虽然编码孔蛋白、导电菌毛的基因在所有DIET体系中至关重要,但其全局基因表达模式差异显著,说明G. metallireducens在面对不同电子受体的微生物时可能会采取不同的电子传递策略[60]。目前我们对DIET机制的认识仅是冰山一角,不同类型微生物在不同条件下的DIET机制还有待深入研究。

2.2.2 产甲烷菌依赖DIET吸收电子机制

对于产甲烷菌,由于已证实具有DIET能力的古菌种类少,且古菌遗传操作系统的使用难度大,对其依赖DIET吸收电子的作用机制研究更为困难。目前只对甲烷八叠球菌属中的M. barkeriMethanosarcina mazeiM. acetivorans的电子吸收机制有初步研究。首先,M. barkeri在进行DIET时,编码F420H2脱氢酶(Fpo)和异源二硫化物还原酶(HdrABC)的基因过量表达,表明M. barkeri可能通过膜蛋白Fpo吸收胞外质子,及通过HdrABC实现胞内电子传递。虽然部分位于M. barkeri细胞膜上的蛋白表达量提高,但目前尚无足够证据确定该产甲烷菌用于接收胞外电子的膜蛋白类别[61]M. acetivorans可能依赖细胞膜多血红素细胞色素c (MmcA)直接吸收来源于G. metallireducens的电子。同时,M. acetivorans古菌菌毛对DIET过程至关重要,而其单体FlaB富含芳香族氨基酸也预示该菌毛可能具有导电性[55]。另外,转录组学研究表明Rnf、Fpo及HdrED等膜蛋白在M. acetivorans依赖DIET吸收胞外电子过程中均可能起到关键作用[55]。而对于另一类甲烷八叠球菌属古菌M. mazei,虽然该菌细胞膜上含有多血红素细胞色素c,但其并未直接参与到与G. metallireducens的DIET中[62]

2.2.3 非生物导电材料可替代蛋白行使DIET功能

一些非生物导电材料可替代微生物的导电膜蛋白功能实现DIET。非生物导电材料包括导电碳材料、导电矿物材料和导电高分子材料等[63]。导电碳材料以颗粒活性炭(granular activated carbon, GAC)为代表,生物碳、碳布、碳毡等也能以相似的机制驱动DIET发生。导电矿物材料包括磁铁矿(Fe3O4)、赤铁矿(Fe2O3)、二氧化钛等。导电高分子材料主要为生物相容性的导电聚合物,如聚苯胺和聚吡咯。GAC和磁铁矿是目前机制研究较为清晰的材料,本文以GAC和磁铁矿为例,介绍了导电材料在促进DIET过程中替代某些功能蛋白的作用机制。

GAC是一种导电碳介质,其比表面积大,导电性强,微生物可以吸附于GAC表面,与之交换电子,实现远距离的电子传输[33]。Liu等[33]利用基因敲除技术排除了GAC促进种间氢/甲酸介导MIET的可能性,并发现了在GAC存在的情况下,DIET无需导电菌毛和相关的OMCs即可进行,说明GAC可以代替细菌导电菌毛的功能完成其与产甲烷菌之间的DIET。多项研究表明,依赖GAC建立的细胞之间的电连接减少了用于生产DIET关键蛋白导电菌毛和额外细胞色素的能量消耗[64],因此向厌氧反应器中添加GAC可提高DIET效率,进而增加甲烷产量。Sun等[65]在厌氧消化过程中加入GAC后提高了挥发性脂肪酸转化为甲烷的速率,且与DIET相关的GeobacterSyntrophomonasMethanosaeta的相对丰度升高,表明添加GAC后DIET增强。此外,生物炭、碳毡、碳布等导电碳材料也可加速微生物菌群形成DIET,其驱动机制与GAC相似[66]

与GAC相比,磁铁矿等导电矿物材料粒径较小,在自然界分布广泛。Kato[67]以乙酸或乙醇为底物,通过对比磁铁矿存在与否时稻田土壤中富集的产甲烷微生物生长状况和甲烷产率,发现磁铁矿会刺激Geobacter spp.的生长并提高甲烷产率。随后Tang等[68]研究表明在G. metallireducensM. barkeri共培养物体系中添加磁铁矿也可提高甲烷产率,证实了磁铁矿的存在对甲烷生成有促进作用。Liu等[69]研究发现,在G. metallireducensG. sulfurreducens依赖DIET互营体系中,磁铁矿可黏附在G. sulfurreducens的导电菌毛上,且G. sulfurreducens编码细胞色素c相关基因表达量降低,其OmcS基因缺陷型菌株可以和G. metallireducens形成共培养体系,但其导电菌毛PilA突变菌株不能与G. metallireducens形成共培养体系。这些研究说明磁铁矿促进DIET的机制是代替细胞外膜多血红素细胞色素c等蛋白驱动电子的胞外传递,但其无法代替导电菌毛。磁铁矿介导的DIET在土壤和沉积物中普遍发生,这种IET方式不仅可用于有效生物能源的开发,还可能对现代微生物的功能和微生物电子传递机制的早期演化有重要意义。

3 可通过IET产甲烷的典型微生物

大多数产酸、产乙酸细菌都可以进行氢气/甲酸介导的MIET (表 2)。目前研究较为深入的依赖MIET互营细菌有互营杆菌属(Syntrophobacter)及脱硫弧菌属(Desulfovibrio),而氢/甲酸营养型的产甲烷古菌包含MethanococcalesMethanobacterialesMethanomicrobialesMethanopyrales目。

表 2. 典型互营产甲烷过程的微生物种类及IET方式 Table 2. Microorganisms and IET patterns in typical syntrophic methanogenesis
Electron-donating partner Electron-accepting partner Electron donor IET pattern References
S organism M. ruminantium Ethanol H2-MIET [23]
Desulfovibrio vulgaris Methanobacterium formicicum Ethanol, lactate Formate-MIET [73]
Syntrophomonas wolfei M. barkeri Butyrate Formate-MIET [74]
Pelobacter carbinolicus M. barkeri Ethanol H2-MIET [61]
Pelotomaculum Methanobacteriaceae Propionate Cysteine-mediated MIET [45]
Desulfotomaculum thermobenzoicum Methanobacterium thermoautotrophicum Propionate H2/Formate-MIET [75]
G. metallireducens M. barkeri Ethanol DIET [33-34]
G. metallireducens Mx. harundinacea Ethanol DIET [34]
G. metallireducens M. acetivorans Ethanol DIET [55]
Geobacteraceae M. mazei Ethanol DIET [76]
G. metallireducens Methanosarcina horonobenesis Ethanol DIET [77]
Desulfovibrio sp. Mx. harundinacea Lactate DIET [78]
Desulfovibrio sp. Methanobacterium electrotrophus Lactate DIET [78]
Rhodoferrax ferrireducens Mx. harundinacea Glucose DIET [62]
Rhodopseudomonas palustris M. barkeri Sodium thiosulfate (source of energy: light) DIET [70]

相比于MIET,可进行DIET的微生物种类较为局限(表 2)。在DIET中可以充当电子供体的微生物有G. metallireducensDesulfovibrio等。最新研究表明,发酵细菌Rhodoferrax ferrireducens是一种高效电活性微生物,可作为电子供体进行DIET[62]Rhodopseudomonas palustris能进行光合作用,从硫代硫酸钠获得电子与产甲烷菌进行DIET[70]。具有DIET能力的产甲烷菌主要分布于乙酸营养型产甲烷菌中,包含甲烷丝菌属(Methanothrix)及甲烷八叠球菌属(Methanosarcina)中,如Mx. harundinaceaM. mazeiM. acetivoransM. horonobensisM. barkeriMethanosarcina vacuolata[38]。最新研究发现,严格甲酸营养型产甲烷古菌Methanobacterium也具有DIET能力[78]。此外,通过外源添加导电材料,可观察到大量可能具有胞外电子传递能力的电化学活性微生物的快速富集,例如:ProteiniclasticumPseudomonasSyntrophomonasMethanobacteriumMethanosarcinaMethanothrixMethanospirillum等,暗示自然界可能存在大量未发现的具有DIET潜能的细菌与产甲烷古菌[71-72]

事实上,产甲烷互营微生物菌群中的IET方式具有很高的灵活性。一方面,典型依赖MIET与产甲烷古菌互营的细菌,如Syntrophus acidtrophius[79]具有DIET能力,其菌毛具有导电性[80];脱硫弧菌Desulfovibrio则是种间氢/甲酸传递的模式菌株,且最近发现其具备DIET能力[78]。另一方面,而对于产甲烷菌而言,M. barkeri既可以与Pelobacter进行依赖氢气的MIET[61],又可与G. metallireducens进行DIET[33-34]。此外,目前尚未有专性氢营养型产甲烷微生物具有DIET能力的报道,但专性甲酸营养型Methanobacterium electrotrophus却具备DIET能力,说明在甲酸营养环境中也可以进行DIET。由此,自然界中微生物的真实IET模式可能是多种IET方式共存,与环境条件、其他微生物类别等多种条件密切相关。

4 通过不同IET方式产甲烷的生态分布

微生物互营产甲烷发生在沉积物、热泉、动物胃肠道、稻田以及生物反应器等多种厌氧环境中[81-85]。自然界中,微生物主要以氢营养型和乙酸营养型产甲烷,而在青藏高原、海岸带海草床和红树林等生态环境中,微生物以甲基营养型产甲烷[86-87]。由于通过2种IET方式产甲烷的典型微生物存在差异性,DIET和MIET具有不同的生态分布偏好。在含有复杂有机化合物的天然厌氧环境中,氢气/甲酸是发酵细菌进行底物水平磷酸化过程中最常见的代谢产物。因此,MIET可能分布在绝大部分自然产甲烷环境中;而在硫酸盐、硝酸盐等营养较为贫瘠的自然环境中,由于产酸菌、产乙酸菌等缺乏电子受体,环境中更易发生DIET[35]。目前尚缺乏准确区分MIET与DIET的有效手段,主要通过微生物多样性分析、功能基因表达水平评估、外源添加助电子传递的导电材料观察菌群响应等方式,来判断该环境中MIET与DIET的分布情况。

4.1 种间氢/甲酸传递产甲烷的生态分布

通过调查氢/甲酸营养型产甲烷菌的分布,可间接推测MIET的生态分布。MIET分布较为广泛,以反刍动物瘤胃、海底沉积物等为典型分布环境。反刍动物的瘤胃中可以产生甲烷,是全球甲烷排放的重要来源,约占全球甲烷排放总量的16%[88]。种间氢传递是瘤胃微生物菌群互营产甲烷的主要IET方式。由于反刍动物多以富含纤维素类的物质为食,因此其瘤胃中含有丰富的能降解纤维素的微生物,例如琥珀丝状菌Fibrotacter succinogenes、白色瘤胃球菌Ruminococcus albus、黄色瘤胃球菌Ruminococcus flavefaciens等,它们以纤维素、纤维二糖、木聚糖、葡萄糖等有机物为底物,发酵产生琥珀酸、乙酸、甲酸、乳酸和少量氢气[89-90]。瘤胃中氢营养型产甲烷菌MethanobacteriumMethanothermobacterMethanospirillum[91]将利用上述纤维素降解菌产生的氢气作为电子供体产甲烷。该过程降低了瘤胃中的氢分压[92],进一步促进了纤维素的降解和甲烷的生成。此外瘤胃中的真菌和原生动物[93]与产甲烷古菌之间也可以进行氢传递,因此对瘤胃中MIET的调控是减少甲烷排放的关键。通过其他可以利用氢气的瘤胃微生物(同型产乙酸菌、丙酸形成菌、硝酸盐/亚硝酸盐还原菌、硫酸盐还原菌)与产甲烷菌进行竞争,可以减少瘤胃中甲烷的排放[94]。同型产乙酸菌可以通过利用戊糖、己糖、醇类等有机物异养生长,也可以利用氢气、CO2、CO等无机物自养生长。产甲烷菌和同型产乙酸菌的共同底物是氢气和CO2,因此促进同型产乙酸菌的自养生长是产甲烷的竞争途径。然而,在热力学上CO2转化为甲烷较转化为乙酸更有利,可通过为同型产乙酸菌提供葡萄糖、甘油等有利底物[95]、降低瘤胃pH值[96]、增加其在瘤胃中的密度[97-98]等策略来提高其竞争力。丙酸形成菌、硝酸盐/亚硝酸盐还原菌和硫酸盐还原菌在以氢气为电子供体时具有热力学优势,但由于其丰度低或缺乏必需底物,在正常瘤胃环境中的代谢受到限制。添加延胡索酸和苹果酸等丙酸前体[99]或组合功能互补的产丙酸菌群作为添加剂[100]均是提高瘤胃中丙酸生成途径的有效策略。鉴于瘤胃中硝酸盐和硫酸盐含量低,使用硝酸盐或硫酸盐作为添加剂是提高硝酸盐还原菌和硫酸盐还原菌活性的可选策略。

海底沉积物是极端缺氧的环境,氢营养型产甲烷菌如甲烷球菌目Methanococcales和甲烷微菌目Methanomicrobiales等在该环境中丰度较高[101]。Strapoc等[102]对Illinois海域东部海底沉积物中原位微生物群落和高纯度产甲烷富集物的16S rRNA基因分析表明,古菌Methanocorpusculum是优势属,细菌涉及AlphaproteobacteriaFirmicutesBacteroideteSpirochaetes;并通过建立产甲烷微生物对沉积物中的煤降解生物模型说明该海域中氢营养型产甲烷在该位置的煤有机物生物降解过程中占主导地位。

4.2 依赖DIET互营产甲烷的生态分布

DIET主要在电子受体匮乏的自然环境中分布[35],水稻田土壤等自然环境及厌氧反应器等人工环境是目前DIET研究的主要对象。

水稻田中排放的甲烷占全球甲烷排放量的30%[103],其中含有堆肥、根系分泌物、秸秆残体等丰富的有机质,微生物主要通过厌氧分解有机质产甲烷[104]。产甲烷水稻土中Geobacter是代谢最活跃的细菌类别[105-106]。水稻田中约70%的甲烷由甲烷八叠球菌目Methanosarcinales等乙酸营养型产甲烷菌产生,30%的甲烷由甲烷杆菌目Methanobacteriales、甲烷微菌目Methanomicrobiales等氢营养型产甲烷菌产生[107-108]。宏基因组及转录组学分析表明,水稻田土壤中GeobacterMethanothrix丰度高,且介导DIET的导电菌毛、细胞色素c等蛋白及乙酸型产甲烷菌的还原CO2途径基因高度表达,说明DIET可能是该环境产甲烷菌群的主要IET方式[106]。此外,磁铁矿的加入会促进水稻田土壤微生物中Geobacter的生长和甲烷产量的增加,暗示水稻田中富含具有DIET能力的电活性细菌与产甲烷古菌[67]

厌氧消化是降解复杂有机质为可再生清洁能源的理想方式。Morita等[32]发现厌氧消化器中形成的微生物团聚体具有高导电性,其利用氢气/甲酸的速率低于乙醇代谢速率,通过16S rRNA基因分析表明,该团聚体中Geobacter占25%,乙酸营养型产甲烷菌占所有产甲烷菌的90%,说明DIET可能是厌氧消化器中的主要IET方式。在厌氧消化产甲烷过程中,通过添加GAC[33]、碳布[109]、碳毡[110]等导电材料,可大幅提高甲烷产量。已有研究表明向厌氧消化器中加入GAC后提高了其中乳酸和丙酸的含量,进而提高了甲烷产量[111],其中的Geobacter和能进行DIET的产甲烷古菌丰度明显增加[112],并且编码导电菌毛、细胞色素c等DIET相关蛋白的基因过量表达[113],其可能原因是GAC驱动了DIET进程。Cruz等[114]在厌氧消化的产甲烷污泥中加入磁铁矿可将产甲烷率提高33%。Chen等[115]在含有高盐度有机废水的厌氧消化器中加入磁铁矿,可促进微生物形成更紧密的生物膜,增加了甲烷产率。很多乙酸营养型产甲烷菌都具有DIET能力,而专性氢营养型产甲烷菌尚未发现有DIET能力,这说明DIET的分布可能被低估。

此外,滨海湿地也可能存在DIET过程。滨海湿地是介于海洋和陆地的过渡区[116],储存了大量由人类活动产生的含碳物质。尽管Geobacter在该生态系统中没有优势地位,但最近的研究验证了在滨海湿地中占主导地位的DesulfovibrioMethanobacterium之间存在DIET现象[78],为证明DIET存在于滨海湿地提供了有力证据。但DIET在其他环境的生态分布有待于进一步探索。

5 总结与展望 5.1 通过不同IET方式产甲烷的优势与局限性

在产甲烷环境的微生物互营体系中,IET可以突破互营体系中的能量壁垒,是关键的限速过程。不同的IET方式在微生物互营产甲烷过程中的优势和局限性存在差异(表 3)。

表 3. 互营产甲烷过程中MIET和DIET的对比 Table 3. Comparison of MIET and DIET in syntrophic methanogenesis
Items MIET DIET
Mechanisms Rely on electron shuttles including hydrogen/Formate, quinones, phenazine and so on for electron transport Rely on conductive pili, cytochrome c or conductive material for electron transport
Typical environments Rumen, marine sediments, etc Rice paddy soil, anaerobic reactor, coastal wetland, etc
Advantages Long-distance electron transport through the diffusion of electron shuttles The close physical contact between the conductive pili and cytochrome c improves the efficiency of electron transport without complex enzymatic reaction
Limitations The electron transport efficiency is controlled by the concentration, dissolution rate and diffusion rate of the electron shuttle The electron transport efficiency is limited by the distribution and activity of redox proteins such as conductive pili and cytochrome c

MIET可通过氢气、甲酸等电子穿梭体的扩散实现长距离的电子传递,但由于氢气和甲酸在土壤介质中的扩散速率和溶解速率较低且受环境影响因素大,MIET会因此受到抑制[117]。此外,在厌氧消化器中,进行MIET的氢营养型产甲烷菌利用氢气能力减弱,环境中H+的积累造成厌氧反应器酸化,进而降低甲烷产量。在MIET中,种间甲酸传递可能是主要的IET方式,Thiele等[24]Desulfovibrio vulgarisM. formicicum的产甲烷体系中发现相比种间氢传递,种间甲酸传递可能占主导地位。Boone等[74]通过计算微生物间氢气和甲酸的扩散速度,发现在自然界常见的氢气浓度下,氢气的扩散速度不能与甲烷的合成速度相对应,但甲酸的扩散速度可以与其相吻合。Shrestha等[118]发现在某些微生物互营体系中,甲酸的扩散系数是氢气的3倍。因此,以甲酸为载体的MIET可能对微生物互营产甲烷更为重要。

相比于MIET,DIET是更高效的IET方式。DIET无需消耗额外能量用于合成电子介体,且不受电子介体种类及扩散效率的限制。进行DIET的微生物可通过紧密的物理接触形成团聚体,进行直接的电子传输,其电子传递速率主要取决于细菌和产甲烷古菌之间的电势差[34]。DIET减小了环境因素对IET的限制,提高了电子传递效率,可能成为微生物互营产甲烷过程中关键的IET方式,但依赖DIET的产甲烷过程会受到微生物种类及细胞色素c等氧化还原蛋白活性的制约。

5.2 亟待解决的问题及未来研究热点

近年来,对微生物互营产甲烷中IET的探索已取得了一些研究进展,但由于互营产甲烷微生物难于纯培养,IET的研究进展较为缓慢,现有以下问题还未解决:(1) 探索IET的微观机理,从分子生物学水平明确电子传递链的各个组成部分及电子传递通路;(2) 对于互营产甲烷DIET的研究局限于实验室构建的人造体系,其在自然界中的分布及对甲烷释放的影响仍存在争议;(3) 如何定量表征自然环境中DIET与MIET的分布权重。在未来一段时间内,DIET的研究很可能成为微生物电子传递研究的核心组成部分,随着宏基因组、转录组分析的发展并结合厌氧培养、分子生物学和同位素示踪法等技术的运用,对微生物互营产甲烷的研究可以集中于以下几个方面:(1) 通过对不同点位样品宏基因组数据组装的蛋白序列进行比对,并对可能参与DIET的高表达蛋白所含共有结构域进行挖掘,分析不同点位的微生物多样性,预测DIET在自然系统中的生态分布。目前,本课题组正在以我国东南沿海6个站位的红树林沉积物宏基因组数据为研究对象,进行红树林湿地中DIET的分布调查。(2) 利用厌氧培养技术分离纯化新的产甲烷菌或利用基因工程的方法改造已分离的产甲烷菌,发掘更多有高效IET能力的微生物。(3) 通过转录组、基因组测序寻找与IET相关基因的差异表达,借助基因敲除技术对关键基因在IET中的功能进行验证,从微观探明微生物胞内及种间电子传递通路。(4) 设计开发具有高效传递电子传递能力且利于回收的新型导电材料,并将其用于厌氧反应器中DIET的优化,提高甲烷产率。对这些方向的研究有助于将DIET耦合的厌氧产甲烷用于新能源的生产和甲烷减排等实际问题的解决,同时为深入探究微生物驱动的生物地球化学元素循环过程提供参考。

References
[1] WHALEN S. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science, 2005, 22(1): 73-94. DOI:10.1089/ees.2005.22.73
[2] KARAKURT I, AYDIN G, AYDINER K. Sources and mitigation of methane emissions by sectors: a critical review. Renewable Energy, 2012, 39(1): 40-48. DOI:10.1016/j.renene.2011.09.006
[3] READY DS, SMITH P, CHRISTENSEN TR, JAMES RH, CLARK H. Methane and global environmental change. Annual Review of Environment and Resources, 2018, 43(1): 165-192. DOI:10.1146/annurev-environ-102017-030154
[4] KHARITONOV S, SEMENOV M, SABREKOV A, KOTSYURBENKO O, ZHELEZOYA A, SCHEGOLKOVA N. Microbial communities in methane cycle: modern molecular methods gain insights into their global ecology. Environments, 2021, 8(2): 1-30.
[5] TOLLEFSON J. Scientists raise alarm over dangerously fast growth in atmospheric methane. Nature, 2022. DOI:10.1038/d41586-022-00312-2
[6] ROSENTRETER JA, BORGES AV, DEEMER BR, HOLGERSON MA, LIU S, SONG C, MELACK J, RAYMOND PA, DUARTE CM, ALLEN GH. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14(4): 225-230. DOI:10.1038/s41561-021-00715-2
[7] LAN X, BASU S, SCHWIRTZKE S, BRUHWILER LMP, DLUGOKENCKY EJ, MICHEL SE, SHERWOOD OA, TANS PP, THONING K, ETIOPE G, ZHUANG Q, LIU L, OH Y, MILLER JB, PÉTRON G, VAUGHN BH, CRIPPA M. Improved constraints on global methane emissions and sinks using δ13C-CH4. Global Biogeochemical Cycles, 2021, 35(6): e2021GB007000.
[8] GARCIA JL, PATEL BK, OLLIVIER B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 2000, 6(4): 205-226. DOI:10.1006/anae.2000.0345
[9] HA PT, LINDEMANN SR, SHI L, DOHNALKOVA AC, FREDRICKSON JK, MADIGAN MT, BEYENAL H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications, 2017, 8(1): 13924. DOI:10.1038/ncomms13924
[10] SOROKIN DY, MAKAROVA KS, ABBAS B, FERRER M, GOLYSGIN PN, GALINSKI EA, CIORDIA S, MENA MC, MERKEL AY, WOLF YI, van LOOSDRECHT MCM, KOONIN EV. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiology, 2017, 2(8): 17081. DOI:10.1038/nmicrobiol.2017.81
[11] ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PÉREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature, 2022, 601(7892): 257-262. DOI:10.1038/s41586-021-04235-2
[12] SIEBER JR, MCINERNEY MJ, GUNSALUS RP. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology, 2012, 66: 429-452. DOI:10.1146/annurev-micro-090110-102844
[13] SCHINK B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 1997, 61(2): 262-280.
[14] LIU PF, LU YH. A review of syntrophic fatty acids oxidation in anoxic paddy soil. Microbiology China, 2013, 40(1): 109-122. (in Chinese)
刘鹏飞, 陆雅海. 水稻土中脂肪酸互营氧化的研究进展. 微生物学通报, 2013, 40(1): 109-122. DOI:10.13344/j.microbiol.china.2013.01.005
[15] FANG XY, Li JB, Rui JP, Li X. Research progress in biochemical pathways of methanogenesis. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9. (in Chinese)
方晓瑜, 李家宝, 瑞俊鹏. 产甲烷菌生化代谢途径研究进展. 应用与环境生物学报, 2015, 21(1): 1-9.
[16] ZHANG J, LU YH. A review of interspecies electron transfer in syntrophic-methanogenic associations. Microbiology China, 2015, 42(5): 920-927. (in Chinese)
张杰, 陆雅海. 互营氧化产甲烷微生物种间电子传递研究进展. 微生物学通报, 2015, 42(5): 920-927. DOI:10.13344/j.microbiol.china.150077
[17] STAMS AJ, PLUGGE CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 2009, 7(8): 568-577. DOI:10.1038/nrmicro2166
[18] MÜLLER N, WORM P, SCHINK B, STAMS AJ, PLUGGE CM. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environmental Microbiology Reports, 2010, 2(4): 489-499. DOI:10.1111/j.1758-2229.2010.00147.x
[19] LI X, MCINERNEY MJ, STAHL DA, KRUMHOLZ LR. Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate. Microbiology, 2011, 157(10): 2912-2921. DOI:10.1099/mic.0.051284-0
[20] GIEG LM, FOWLER SJ, BERDUGO-CLAVIJO C. Syntrophic biodegradation of hydrocarbon contaminants. Current Opinion in Biotechnology, 2014, 27: 21-29. DOI:10.1016/j.copbio.2013.09.002
[21] MCINERNEY MJ, SIEBER JR, GUNSALUS RP. Syntrophy in anaerobic global carbon cycles. Current Opinion in Biotechnology, 2009, 20(6): 623-632. DOI:10.1016/j.copbio.2009.10.001
[22] OMELIANSKI W. Über methanbildung in der natur bei biologischen prozessen. Zentralblatt für Bakteriologie Parasitenkunde Ⅱ, 1906, 15: 673-687.
[23] BRYANT MP, WOLIN EA, WOLIN MJ, WOLFE RS. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie, 1967, 59(1): 20-31.
[24] THIELE JH, ZEIKUS JG. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Applied and Environmental Microbiology, 1988, 54(1): 20-29. DOI:10.1128/aem.54.1.20-29.1988
[25] KADEN J, S GALUSHKO A, SCHINK B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Archives of Microbiology, 2002, 178(1): 53-58. DOI:10.1007/s00203-002-0425-3
[26] BIEBL H, PFENNIG N. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology, 1978, 117(1): 9-16. DOI:10.1007/BF00689344
[27] SMITH JA, NEVIN KP, LOVLEY DR. Syntrophic growth via quinone-mediated interspecies electron transfer. Frontiers in Microbiology, 2015, 6: 121.
[28] HUANG L, LIU X, YE Y, CHEN M, ZHOU S. Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture. Environmental Microbiology, 2020, 22(1): 243-254. DOI:10.1111/1462-2920.14842
[29] BECKMANN S, WELTE C, LI XM, OO YM, KROENINGER L, HEO Y, ZHANG MM, RIBEIRO D, LEE M, BHADBHADE M, MARJO CE, SEIDEL J, DEPPENMEIER U, MANEFIELD M. Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation. Energy & Environmental Science, 2016, 9(2): 644-655.
[30] RICHTER K, SCHICKLBERGER M, GESCHER J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied and Environmental Microbiology, 2012, 78(4): 913-921. DOI:10.1128/AEM.06803-11
[31] SUMMERS ZM, FOGARTY HE, LEANG C, FRANKS AE, MALVANKAR NS, LOVLEY DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 2010, 330(6009): 1413-1415. DOI:10.1126/science.1196526
[32] MORITA M, MALVANKAR NS, FRANKS AE, SUMMERS ZM, GILOTEAUX L, ROTARU AE, ROTARU C, LOVLEY DR. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio, 2011, 2(4): e00159-e00111.
[33] LIU FH, ROTARU AE, SHRESTHA PM, MALVANKAR NS, NEVIN KP, LOVLEY DR. Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science, 2012, 5(10): 8982-8989.
[34] ROTARU AE, SHRESTHA PM, LIU FH, SHRESTHA M, SHRESTHA D, EMBREE M, ZENGLER K, WARDMAN C, NEVIN KP, LOVLEY DR. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 2014, 7(1): 408-415.
[35] LOVLEY DR. Syntrophy goes electric: direct interspecies electron transfer. Annual Review of Microbiology, 2017, 71: 643-664. DOI:10.1146/annurev-micro-030117-020420
[36] HUANG LY, LIU X, ZHOU SG. Direct interspecies electron transfer of microbes: mechanism and application. Acta Pedologica Sinica, 2018(6): 1313-1324. (in Chinese)
黄玲艳, 刘星, 周顺桂. 微生物直接种间电子传递: 机制及应用. 土壤学报, 2018(6): 1313-1324.
[37] LAN JY, JIANG HM, LI X. Research advances in direct interspecies electron transfer within microbes. Chinese Journal of Applied Ecology, 2021, 32(1): 358-368. (in Chinese)
兰建英, 蒋海明, 李侠. 微生物种间直接电子传递研究进展. 应用生态学报, 2021, 32(1): 358-368. DOI:10.13287/j.1001-9332.202101.032
[38] NOZHEVNIKOVA AN, RUSSKOVA YI, LITTI YV, PARSHINA SN, ZHURAVLEVA EA, NIKITINA AA. Syntrophy and interspecies electron transfer in methanogenic microbial communities. Microbiology, 2020, 89(2): 129-147. DOI:10.1134/S0026261720020101
[39] SHEN L, ZHAO Q, WU X, LI X, LI Q, WANG Y. Interspecies electron transfer in syntrophic methanogenic consortia: from cultures to bioreactors. Renewable and Sustainable Energy Reviews, 2016, 54: 1358-1367. DOI:10.1016/j.rser.2015.10.102
[40] MEYER B, KUEHL J, DEUTSCHBAUER AM, PRICE MN, ARKIN AP, STAHL DA. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. Journal of Bacteriology, 2013, 195(5): 990-1004. DOI:10.1128/JB.01959-12
[41] WU WM, HICKEY RF, JAIN MK, ZEIKUS JG. Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum. Archives of Microbiology, 1993, 159(1): 57-65. DOI:10.1007/BF00244265
[42] ODEN EE, KAPPLER A, BAUER I, JIANG J, PAUL A, STOESSER R, KONISHI H, XU H. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience, 2010, 3(6): 417-421. DOI:10.1038/ngeo870
[43] MA JL, MA C, TANG J, ZHOU SG, ZHUANG L. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer. Progress in Chemistry, 2015(12): 1833-1840. (in Chinese)
马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递: 机制及应用. 化学进展, 2015(12): 1833-1840.
[44] CAI G, ZHU G, ZHOU M, LV N, WANG R, LI C, LI J, PAN X. Syntrophic butyrate-oxidizing methanogenesis promoted by anthraquinone-2-sulfonate and cysteine: distinct tendencies towards the enrichment of methanogens and syntrophic fatty-acid oxidizing bacteria. Bioresource Technology, 2021, 332: 125074. DOI:10.1016/j.biortech.2021.125074
[45] ZHUANG L, MA J, TANG J, TANG Z, ZHOU S. Cysteine-accelerated methanogenic propionate degradation in paddy soil enrichment. Microbial Ecology, 2017, 73(4): 916-924. DOI:10.1007/s00248-016-0882-x
[46] CERVANTES FJ, van der Velde S, LETTINGA G, FIELD JA. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiology Ecology, 2000, 34(2): 161-171. DOI:10.1111/j.1574-6941.2000.tb00766.x
[47] ATILANO-CAMINO MM, LUÉVANO-MONTAÑO CD, GARCIA -GONZÁLEZ A, OLIVO-ALANIS DS, ÁlLVAREZ-VALENCIA LH, GARCÍA -REYES RB. Evaluation of dissolved and immobilized redox mediators on dark fermentation: driving to hydrogen or solventogenic pathway. Bioresource Technology, 2020, 317: 123981. DOI:10.1016/j.biortech.2020.123981
[48] del ANGEL-ACOSTA YA, ALVAREZ LH, GARCIA-REYES RB, GARZA-GONZÁLEZ MT, Carrillo-Reyes J. Addition of electron shuttling compounds and different pH conditions for hydrogen production by a heat-treated sludge. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101507. DOI:10.1016/j.bcab.2020.101507
[49] LIU H, CHEN YG. Enhanced methane production from food waste using cysteine to increase biotransformation of l-monosaccharide, volatile fatty acids, and biohydrogen. Environmental Science & Technology, 2018, 52(6): 3777-3785.
[50] REGURA G, MCCARTHY KD, MEHTA T, NICOLL JS, TUOMINEN MT, LOVLRY DR. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435(7045): 1098-1101. DOI:10.1038/nature03661
[51] MALVANKAR NS, VARGAS M, NEVIN KP, FRANKS AE, LEANG C, KIM BC, INOUE K, MESTER T, COVALLA SF, JOHNSON JP, ROTELLO VM, TUOMINEN MT, LOVLEY DR. Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology, 2011, 6(9): 573-579. DOI:10.1038/nnano.2011.119
[52] VARGAS M, MALVANKAR NS, TREMBLAY PL, LEANG C, SMITH JA, PATEL P, SNOEYENBOS-WEST O, Nevin KP, LOVLEY DR. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio, 2013, 4(2): e00105-e00113.
[53] UEKI T, NEVIN KP, ROTARU AE, WANG LY, WARD JE, WOODARD TL, LOVLEY DR. Geobacter strains expressing poorly conductive pili reveal constraints on direct interspecies electron transfer mechanisms. MBio, 2018, 9(4): e01273-e01218.
[54] ROTARU AE, SHRESTHA PM, LIU F, MARKOVAITE B, CHEN S, NEVIN KP, LOVLEY DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 2014, 80(15): 4599-4605. DOI:10.1128/AEM.00895-14
[55] HOLMES DE, ZHOU J, UEKI T, WOODARD T, LOVLEY DR. Mechanisms for electron uptake by Methanosarcina acetivorans during direct interspecies electron transfer. MBio, 2021, 12(5): e0234421. DOI:10.1128/mBio.02344-21
[56] LOVLEY DR, HOLMES DE. Protein nanowires: the electrification of the microbial world and maybe our own. Journal of Bacteriology, 2020, 202(20): e00331-e00320.
[57] LIU X, ZHUO S, RENSING C, ZHOU S. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. The ISME Journal, 2018, 12(9): 2142-2151. DOI:10.1038/s41396-018-0193-y
[58] UEKI T, WALKER DJF, NEVIN KP, WARD JE, WOODARD TL, NONNENMANN SS, LOVLEY DR. Pili expression in Geobacter sulfurreducens lacking the putative gene for the PilB Pilus assembly motor. BioRxiv, 2021. DOI:10.1101/2021.07.10.451916
[59] ZHENG S, LIU F, WANG B, ZHANG Y, LOVLEY DR. Methanobacterium capable of direct interspecies electron transfer. Environmental Science & Technology, 2020, 54(23): 15347-15354.
[60] HOLMES D, ZHOU J, SMITH JA, WANG C, LIU X, LOVLEY D. Different outer membrane c-type cytochromes are involved in direct interspecies electron transfer to Geobacter or Methanosarcina species. MLife, 2022: 1-15. DOI:10.1002/mlf2.12037
[61] HOLMES DE, ROTARU AE, UEKI T, SHRESTHA PM, FERRY JG, LOVLEY DR. Electron and proton flux for carbon dioxide reduction in Methanosarcina barkeri during direct interspecies electron transfer. Frontiers in Microbiology, 2018, 9: 3109. DOI:10.3389/fmicb.2018.03109
[62] YEE MO, ROTARU AE. Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes. Scientific Reports, 2020, 10(1): 372. DOI:10.1038/s41598-019-57206-z
[63] BARUA S, DHAR BR. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresource Technology, 2017, 244(pt 1): 698-707.
[64] ZHAO Z, ZHANG Y, WOODARD TL, NEVIN KP, LOVLEY DR. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresource Technology, 2015, 191: 140-145. DOI:10.1016/j.biortech.2015.05.007
[65] SUN WX, FU SF, ZHU R, WANG ZY, ZOU H, ZHENG Y. Improved anaerobic digestion efficiency of high-solid sewage sludge by enhanced direct interspecies electron transfer with activated carbon mediator. Bioresource Technology, 2020, 313: 123648. DOI:10.1016/j.biortech.2020.123648
[66] CHEN S, ROTARU AE, SHRESTHA PM, MALVANKAR NS, LIU F, FAN W, NEVIN KP, LOVLEY DR. Promoting interspecies electron transfer with biochar. Scientific Reports, 2014, 4: 5019. DOI:10.1038/srep05019
[67] KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi) onductive iron-oxide minerals. Environmental Microbiology, 2012, 14(7): 1646-1654. DOI:10.1111/j.1462-2920.2011.02611.x
[68] TANG J, ZHUANG L, MA J, TANG Z, YU Z, ZHOU S. Secondary mineralization of ferrihydrite affects microbial methanogenesis in Geobacter- Methanosarcina cocultures. Applied and Environmental Microbiology, 2016, 82(19): 5869-5877. DOI:10.1128/AEM.01517-16
[69] LIU F, ROTARU AE, SHRESTHA PM, MALVANKAR NS, NEVIN KP, LOVLEY DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environmental Microbiology, 2015, 17(3): 648-655. DOI:10.1111/1462-2920.12485
[70] HUANG L, LIU X, ZHANG Z, YE J, RENSING C, ZHOU S, NEALSON KH. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. The ISME Journal, 2022, 16(2): 370-377. DOI:10.1038/s41396-021-01078-7
[71] PARK JH, KANG HJ, PARK KH, PARK HD. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresource Technology, 2018, 254: 300-311. DOI:10.1016/j.biortech.2018.01.095
[72] MA W, LI H, ZHANG W, SHEN C, WANG L, LI Y, LI Q, WANG Y. TiO2 nanoparticles accelerate methanogenesis in mangrove wetlands sediment. Science of the Total Environment, 2020, 713: 136602. DOI:10.1016/j.scitotenv.2020.136602
[73] BRYANT MP, CAMPBELL LL, REDDY CA, CRABILL MR. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Applied and Environmental Microbiology, 1977, 33(5): 1162-1169. DOI:10.1128/aem.33.5.1162-1169.1977
[74] BOONE DR, JOHNSON RL, LIU Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Applied and Environmental Microbiology, 1989, 55(7): 1735-1741. DOI:10.1128/aem.55.7.1735-1741.1989
[75] PLUGGE CM, BALK M, STAMS AJM. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov. a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2): 391-399. DOI:10.1099/00207713-52-2-391
[76] ZHENG S, ZHANG H, LI Y, ZHANG H, WANG O, ZHANG J, LIU F. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (Ⅲ)-reducing enrichment culture. Frontiers in Microbiology, 2015, 6: 941.
[77] YEE MO, SNOEYENBOS-WEST OL, THAMDRUP B, OTTOSEN LDM, ROTARU AE. Extracellular electron uptake by two Methanosarcina species. Frontiers in Energy Research, 2019, 7: 29. DOI:10.3389/fenrg.2019.00029
[78] ZHENG S, LI M, LIU Y, LIU F. Desulfovibrio feeding Methanobacterium with electrons in conductive methanogenic aggregates from coastal zones. Water Research, 2021, 202: 117490. DOI:10.1016/j.watres.2021.117490
[79] SIEBER JR, LE HM, MCINERNEY MJ. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environmental Microbiology, 2014, 16(1): 177-188. DOI:10.1111/1462-2920.12269
[80] WALKER DJF, NEVIN KP, HOLMES DE, ROTARU AE, WARD JE, WOODARD TL, ZHU J, UEKI T, NONNENMANN SS, MCINERNEY MJ, LOVLEY DR. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. The ISME Journal, 2020, 14(3): 837-846. DOI:10.1038/s41396-019-0575-9
[81] SCHÜTZ H, SEILER W, CONRAD R. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 1989, 7(1): 33-53.
[82] ABBASI T, ABBASI SA. Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1696-1708. DOI:10.1016/j.rser.2011.11.017
[83] YUAN J, DING W, LIU D, XIANG J, LIN Y. Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Applied Microbiology and Biotechnology, 2014, 98(4): 1817-1829. DOI:10.1007/s00253-013-5104-6
[84] LIU Y, NI BJ, GANIGUÉ R, WERNER U, SHARMA KR, YUAN Z. Sulfide and methane production in sewer sediments. Water Research, 2015, 70: 350-359. DOI:10.1016/j.watres.2014.12.019
[85] ROLAND FAE, DARCHAMBEAU F, MORANA C, BOUILLON S, BORGES AV. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere, 2017, 168: 756-764. DOI:10.1016/j.chemosphere.2016.10.138
[86] DENG Y, LIU Y, DUMONT M, CONRAD R. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microbial Ecology, 2017, 73(1): 101-110. DOI:10.1007/s00248-016-0879-5
[87] ZHANG CJ, PAN J, LIU Y, DUAN CH, LI M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome, 2020, 8(1): 94. DOI:10.1186/s40168-020-00876-z
[88] LIU Y, WHITMAN WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189.
[89] FONDEVILA M, DEHORITY BA. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. Journal of Animal Science, 1996, 74(3): 678-684. DOI:10.2527/1996.743678x
[90] DEHORITY BA, TIRABASSO PA. Antibiosis between ruminal bacteria and ruminal fungi. Applied and Environmental Microbiology, 2000, 66(7): 2921-2927. DOI:10.1128/AEM.66.7.2921-2927.2000
[91] LECLERC M, DELGÈNES JP, GODON JJ. Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environmental Microbiology, 2004, 6(8): 809-819. DOI:10.1111/j.1462-2920.2004.00616.x
[92] DIMARCO AA, BOBIK TA, WOLFE RS. Unusual coenzymes of methanogenesis. Annual review of biochemistry, 1990, 59(1): 355-394. DOI:10.1146/annurev.bi.59.070190.002035
[93] HENDERSON G, COX F, GANESH S, JONKER A, YOUNG W, Global Rumen Census Collaborators, JANSSEN PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 2015, 5: 14567. DOI:10.1038/srep14567
[94] LAN W, YAMG C. Ruminal methane production: associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. The Science of the Total Environment, 2019, 654: 1270-1283. DOI:10.1016/j.scitotenv.2018.11.180
[95] CORD-RUWISCH R, SEITZ HJ, CONRAD R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Archives of Microbiology, 1988, 149(4): 350-357. DOI:10.1007/BF00411655
[96] van KESSEL JAS, RUSSELL JB. The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 1996, 20(4): 205-210. DOI:10.1111/j.1574-6941.1996.tb00319.x
[97] BOCCAZZI P, PATTERSON J. Using hydrogen-limited anaerobic continuous culture to isolate lowhydrogen threshold ruminal acetogenic bacteria. Food and Analytical Bacteriology, 2011, 1: 33-44.
[98] le VAN TD, ROBINSON JA, RALPH J, GREENING RC, SMOLENSKI WJ, LEEDLE JA, SCHAEFER DM. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Applied and Environmental Microbiology, 1998, 64(9): 3429-3436. DOI:10.1128/AEM.64.9.3429-3436.1998
[99] LI Z, LIU N, CAO Y, JIN C, LI F, CAI C, YAO J. Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. Journal of Animal Science and Biotechnology, 2018, 9: 21. DOI:10.1186/s40104-018-0235-3
[100] PHILIPPEAU C, LETTAT A, MARTIN C, SILBERBERG M, MORGAVI DP, FERLAY A, BERGER C, NOZIÈRE P. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high-or low-starch diets. Journal of Dairy Science, 2017, 100(4): 2637-2650. DOI:10.3168/jds.2016-11663
[101] FU L, XIN MX. Ecological diversity and industrial application of methanogens. Chinese Journal of Applied and Environmental Biology, 2009, 15(4): 574-578. (in Chinese)
傅霖, 辛明秀. 产甲烷菌的生态多样性及工业应用. 应用与环境生物学报, 2009, 15(4): 574-578.
[102] STRAPOC D, PICARDAL FW, TURICH C, SCHAPERDOTH I, MACALADY JL, LIPP JS, LIN YS, ERTEFAI TF, SCHUBOTZ F, HINRICHS KU, MASTALERZ M, SCHIMMELMANN A. Methane-producing microbial community in a coal bed of the Illinois Basin. Applied and Environmental Microbiology, 2008, 74(8): 2424-2432. DOI:10.1128/AEM.02341-07
[103] TIAN HQ, LU CQ, CIAIS P, MICHALAK AM, CANADELL JG, SAIKAWA E, HUNTZINGER DN, GURNEY KR, SITCH S, ZHANG BW, YANG J, BOUSQUET P, BRUHWILER L, CHEN GS, DLUGOKENCKY E, FRIEDLINGSTEIN P, MELILLO J, PAN SF, POULTER B, PRINN R, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 2016, 531(7593): 225-228. DOI:10.1038/nature16946
[104] CONRAD R. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 2009, 1(5): 285-292. DOI:10.1111/j.1758-2229.2009.00038.x
[105] HORI T, MÜLLER A, IGARASHI Y, CONRAD R, FRIEDRICH MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. The ISME Journal, 2010, 4(2): 267-278. DOI:10.1038/ismej.2009.100
[106] HOLMES DE, SHRESTHA PM, WALKER DJF, DANG Y, NEVINE KP, WOODARD TL, LOVLEY DR. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Applied and Environmental Microbiology, 2017, 83(9): e00223-e00217.
[107] CONRAD R, KLOSE M, NOLL M, KEMNITZ D, BODELIER PLE. Soil type links microbial colonization of rice roots to methane emission. Global Change Biology, 2008, 14(3): 657-669. DOI:10.1111/j.1365-2486.2007.01516.x
[108] ALPANA S, VISHWAKARMA P, ADHYA TK, INUBUSHI K, DUBEY SK. Molecular ecological perspective of methanogenic archaeal community in rice agroecosystem. The Science of the Total Environment, 2017, 596/597: 136-146. DOI:10.1016/j.scitotenv.2017.04.011
[109] FENG D, XIA A, HUANG Y, ZHU X, ZHU X, LIAO Q. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions. Journal of Hazardous Materials, 2022, 423(pt a): 127100.
[110] YANG Y, TSUKAHARA K, YAGISHITA T, SAWAYAMA S. Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose. Bioresource Technology, 2004, 94(2): 197-201. DOI:10.1016/j.biortech.2003.11.025
[111] WANG R, LI C, LV N, PAN X, CAI G, NING J, ZHU G. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion. Bioresource Technology, 2021, 324: 124671. DOI:10.1016/j.biortech.2021.124671
[112] YANG Y, ZHANG Y, LI Z, ZHAO Z, QUAN X, ZHAO Z. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. Journal of Cleaner Production, 2017, 149: 1101-1108. DOI:10.1016/j.jclepro.2017.02.156
[113] LEI Y, SUN D, DANG Y, FENG X, HUO D, LIU C, ZHENG K, HOLMES DE. Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. Water Research, 2019, 161: 570-580. DOI:10.1016/j.watres.2019.06.038
[114] CRUZ VIGGI C, ROSSETTI S, FAZI S, PAIANO P, MAJONE M, AULENTA F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental Science & Technology, 2014, 48(13): 7536-7543.
[115] CHEN Q, LIU C, LIU X, SUN D, LI P, QIU B, DANG Y, KARPINSKI NA, SMITH JA, HOLMES DE. Magnetite enhances anaerobic digestion of high salinity organic wastewater. Environmental Research, 2020, 189: 109884. DOI:10.1016/j.envres.2020.109884
[116] SUN Z, SUN W, TONG C, ZENG C, YU X, MOU X. China' oastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environment International, 2015, 79: 25-41. DOI:10.1016/j.envint.2015.02.017
[117] STORCK T, VIRDIS B, BASTONE DJ. Modelling extracellular limitations for mediated versus direct interspecies electron transfer. The ISME Journal, 2016, 10(3): 621-631. DOI:10.1038/ismej.2015.139
[118] SHRESTHA PM, ROTARU AE. Plugging in or going wireless: strategies for interspecies electron transfer. Frontiers in Microbiology, 2014, 5: 237.