微生物学报  2023, Vol. 63 Issue (6): 2136-2152   DOI: 10.13343/j.cnki.wsxb.20230255.
http://dx.doi.org/10.13343/j.cnki.wsxb.20230255
中国科学院微生物研究所,中国微生物学会

文章信息

田雪歌, 宋腾龙, 罗然, 吴泽宇, 王艳红. 2023
TIAN Xuege, SONG Tenglong, LUO Ran, WU Zeyu, WANG Yanhong.
高砷含水层参与腐殖酸-铁矿物转化的关键微生物群落及其对砷迁移转化的影响
Key microbial communities involved in humic acid-Fe mineral transformation in high arsenic aquifers and their effects on arsenic release
微生物学报, 63(6): 2136-2152
Acta Microbiologica Sinica, 63(6): 2136-2152

文章历史

收稿日期:2023-04-12
高砷含水层参与腐殖酸-铁矿物转化的关键微生物群落及其对砷迁移转化的影响
田雪歌1 , 宋腾龙2 , 罗然1 , 吴泽宇1 , 王艳红1,3     
1. 中国地质大学(武汉) 生物地质与环境地质国家重点实验室, 湖北 武汉 430074;
2. 中国地质大学(武汉)环境学院, 湖北 武汉 430074;
3. 中国地质大学(武汉) 长江流域环境水科学湖北省重点实验室, 湖北 武汉 430074
摘要[目的] 探究不同腐殖酸浓度下参与含砷水铁矿转化的微生物类群组成和丰度变化及对砷释放的影响,预测原位高砷含水层中功能微生物群参与有机质—含砷铁矿物转化过程对砷转化释放的作用。[方法] 对河套平原高砷地下水和同深度高砷沉积物中的铁还原功能群落进行富集培养,构建室内厌氧微宇宙体系,将富集菌群分别加入到实验室条件下合成的不同浓度腐殖酸(0、1.5、7、14 mg C/L)-含砷水铁矿体系中,通过体系中砷、铁形态及浓度的变化分析,结合高通量测序技术、X-射线衍射(X-ray diffractometer, XRD),探究不同条件下砷的释放固定和群落的演替。[结果] 高砷地下水组(G组)和沉积物组(S组)富集得到的铁还原功能群落具有明显差异,G组中以Aeromonadaceae为特殊优势菌群,而S组中以Shewanellaceae为特殊优势菌群。微宇宙实验结果显示,S组的铁还原量相对较高且速率较快;G组与S组中液相砷形态存在明显差异,整个培养期内G组均以As(Ⅴ)为主,而S组中前期以As(Ⅴ)为主,当反应到达20 d时液相As(Ⅲ)高达3.4 μmol/L,推测此时具有砷还原功能的群落占优势地位。当反应达到45 d时,G组和S组中液相砷在添加腐殖酸下均呈现不同程度的固定。不同腐殖酸浓度影响下砷的释放量不同,G组中砷释放量与腐殖酸浓度相一致,而S组中在腐殖酸浓度为7 mg C/L条件下砷释放量最低。X-射线衍射结果显示,S组铁矿物整体转化程度较高,但S组和G组均以针铁矿为主。冗余分析(redundancy analysis, RDA)结果显示,反应前后群落组成和相对丰度发生较大变化,砷添加和腐殖酸添加对群落组成变化具有显著影响。G组向苜蓿科(Comamonadaceae)、脱硫杆菌科(Desulfobacteraceae)、伯克氏菌科(Burkholderiaceae)等菌群变化,而S组中向优势群落Comamonadaceae、假单胞菌科(Pseudomonadaceae)、Burkholderiaceae等转变。[结论] 在不同浓度腐殖酸-含砷水铁矿体系中,高砷含水层关键微生物类群的组成和相对丰度会发生不同演替,从而对砷的迁移转化造成不同影响。
关键词高砷地下水    溶解性有机质    腐殖酸    含砷水铁矿    微生物群落    
Key microbial communities involved in humic acid-Fe mineral transformation in high arsenic aquifers and their effects on arsenic release
TIAN Xuege1 , SONG Tenglong2 , LUO Ran1 , WU Zeyu1 , WANG Yanhong1,3     
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, Hubei, China;
2. School of Environment, China University of Geosciences (Wuhan), Wuhan 430074, Hubei, China;
3. Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences (Wuhan), Wuhan 430074, Hubei, China
Abstract: [Objective] To investigate the variation of composition and abundance of microbial communities involved in the transformation of arsenic-bearing ferrihydrites under different humic acid concentrations and their effects on arsenic release, and to predict the role of functional microbial communities in participating the transformation processes of organic matter-arsenic-bearing iron minerals on arsenic release from high arsenic aquifers. [Methods] Iron-reducing microbial populations were enriched from a high arsenic groundwater and a high sediment sample from the same depth from Hetao Plain, Inner Mongolia Autonomous Region. Anaerobic microcosms were constructed by amendments of bacterial enrichment and different concentrations of humic acid (0, 1.5, 7, and 14 mg C/L) into arsenic-bearing ferrihydrites. The variation of arsenic and iron species during the 50-day incubation was monitored. The composition succession of microbial communities was analyzed by high-throughput sequencing, and the transformation of iron minerals was visualized by X-ray diffractometer (XRD). [Results] The iron-reducing functional communities enriched in the high arsenic groundwater group (group G) and the sediment group (group S) were significantly different, with Aeromonadaceae as the specific dominant family in group G while Shewanellaceae as the specific dominant family in group S. Results of microcosm experiments showed that the iron reduction rates and amount in group S were relatively faster and higher than those in group G. The liquid phase arsenic speciation in group G and group S were different. As(Ⅴ) was the dominant arsenic form in group G throughout the incubation period. In contrast, in group S, As(Ⅴ) was the main arsenic species in the early stage, and As(Ⅲ) became dominant and was up to 3.4 μmol/L in the incubation of 20 d. It was assumed that the microbial communities capable of arsenic reduction were dominated at this time. In the final stage of incubation, the released arsenic in both group G and group S showed different degrees of fixation under the addition of humic acid. Different concentrations of humic acid led to different amounts of arsenic release. XRD results showed that the transformation of arsenic-bearing ferrihydrites was relatively higher in group S, with goethite the dominant secondary mineral in both groups. Redundancy analysis (RDA) indicated that the addition of arsenic and humic acid influenced the overall succession of microbial community composition. Comamonadaceae, Desulfobacteraceae, and Burkholderiaceae became the predominant populations in group G, while populations of Pseudomonadaceae, Comamonadaceae, and Burkholderiaceae were dominated in group S. [Conclusion] The amendments of different concentrations of humic acid into arsenic-bearing ferrihydrites led to differentiated successions of microbial communities, which might play different effects on iron mineral transformation and arsenic release.
Keywords: high arsenic groundwater    dissolved organic matter    humic acid    arsenic-bearing ferrihydrites    microbial community    

砷(arsenic, As)是一种有毒的非金属元素,在自然界中主要以矿物的形式存在于雄黄、砷黄铁矿等矿物中。在水岩相互作用下,地层中的砷会溶解进入地下水系统中,形成高砷地下水(As浓度 > 10 μg/L)。长期饮用高砷水会引起皮肤癌、肾癌等各种疾病,严重威胁人类的健康。因此,高砷地下水问题已在世界范围内得到广泛关注[1]

在砷的迁移转化机制中,还原型地下水中的砷主要来源于微生物参与有机质降解过程中对沉积物中铁的氧化物矿物的还原性溶解,溶解性有机质(dissolved organic matter, DOM)在其中起着关键作用。腐殖酸(humic acid, HA)是自然界中常见的DOM,也是高砷地下水中最主要的DOM。目前研究表明HA在砷的迁移中可能起到的作用包括:(1) 与砷竞争矿物表面吸附位点,促进砷从矿物表面释放[2];(2) 与砷形成HA-As-Fe络合物,降低砷的溶解性[3];(3) 作为微生物的碳源或电子供体(穿梭体),促进微生物介导的砷释放[4-5];(4) 加入水铁矿中抑制矿物转化,从而抑制砷的释放[6]。另外,由于HA含有的氨基、羧基等多种基团可作为有毒金属离子的潜在结合位点,可以有效吸附金属离子[7]。由此可见,HA在介导砷的迁移转化中存在多重复杂作用。

HA对微生物铁还原和矿物转化也存在不同的影响。研究表明,当溶解的HA浓度超过5 mg C/L时,微生物和铁氢氧化物矿物之间就会发生电子穿梭;当HA浓度为25 mg C/L或更高时,HA的电子穿梭作用达到饱和[8]。另外,在添加磷酸盐的高浓度铁氧化物矿物中,少量加入的HA几乎全部吸附在矿物表面;在HA浓度较高时,部分HA进入水相,并且仅当溶解的HA浓度在0–240 mg/L时,存在电子穿梭体作用[9]。铁矿物的还原溶解过程中也伴随着矿物的转化。吸附态亚铁和微生物均会促使水铁矿发生转化,并且其浓度和种类也会促使次生矿物的种类发生改变[10-12]。在最近的研究中,HA的存在被证明会阻碍铁矿物的转化,并由于As(Ⅴ)在(次级)铁矿物中的结构中掺入较少,从而导致更多的As(Ⅴ)释放[13]

近年来,高砷含水层中微生物介导的地球化学过程在砷迁移转化中的重要作用也得到了广泛的关注和认识[14]。随着含水层中氧化还原条件的改变,功能微生物群落包括异化砷酸盐还原菌、异化铁还原菌、硫酸盐还原菌等可能依次转变为高砷地下水系统中的优势群落,它们也可以协同发生作用,直接或间接介导砷的转化[15]。已有研究证实,HA可以通过控制原位微生物群落的多样性和功能来影响含水层中砷的生物地球化学过程[16-17]。但是,目前的研究多集中在单一浓度的HA下微生物群落介导砷迁移释放的研究,对于不同HA浓度下原位高砷含水层中的关键微生物群落对砷迁移的影响研究较少。因此,本研究在对原位高砷样品中的铁还原功能微生物群落富集的基础上,构建室内微宇宙体系,将富集菌群加入含砷水铁矿—HA体系中进行厌氧培养,通过分析体系中砷形态、铁形态及它们浓度的变化,结合高通量测序技术和矿物表征,探究不同HA浓度下参与含砷水铁矿转化的微生物类群组成和丰度变化及对砷释放的影响,预测原位高砷环境中功能微生物群在参与有机质—含砷铁矿物转化和砷释放中的功能。

1 材料与方法 1.1 高砷含水层中铁还原功能菌群的富集

选取高砷地下水样品砷浓度为433 μg/L,选取的沉积物样品为高砷区深度16 m的样品,其砷含量为28 mg/kg。分别用IRM培养基(iron reduction medium, 液体培养基成分为:KCl 0.1 g/L,NH4Cl 1.5 g/L,NaHCO3 2.5 g/L,NaH2PO4 0.6 g/L,酵母膏0.5 g/L,乳酸钠20 mmol/L,柠檬酸铁20 mmol/L,培养基pH为6.7)筛选分离厌氧铁还原功能微生物群落,得到2份富集产物,如图 1A所示,并且2种富集产物铁还原功能存在差异,如图 1B所示。将分离得到的铁还原菌富集产物,用除氧灭菌的生理盐水清洗菌体3–5次后,加入HA-含砷水铁矿实验体系。

图 1 微宇宙体系中液相砷浓度随时间变化 Figure 1 Aqueous phase As speciation in groundwater-enrichment batches or sediment-enrichment batches under different HA addition, The error bar represents the standard deviation between the results of the three parallel experiments. A: Groundwater As(Ⅲ). B: Sediment As(Ⅲ). C: Groundwater As(Ⅴ). D: Sediment As(Ⅴ). E: Groundwater As(T). F: Sediment As(T).

1.2 含砷水铁矿-HA的合成

水铁矿的合成方法主要参考标准方法[18]。用去离子水离心清洗合成的水铁矿沉淀3遍以去除多余的盐分。于厌氧手套箱[COY, 天美仪拓实验室设备(上海)有限公司]中用除氧灭菌的纯水配制含砷水铁矿(As: Fe=0和0.1),并包上锡箔纸避光,使之在手套箱中且黑暗条件下保持搅动24 h。配制HA饱和溶液[19],再稀释得到相应终浓度(0、1.5、7、14 mg C/L)的HA母液。将已搅拌24 h的含砷水铁矿溶液与不同浓度HA母液混合得到4种HA浓度的(As)Fh-HA混合液,再置于手套箱中黑暗条件下搅拌24 h。

1.3 微宇宙体系的构建和运行

本研究在100 mL厌氧瓶进行,在合成的含砷水铁矿-HA体系中加入10 mmol/L HEPES,10 mmol/L乳酸钠和铁还原富集产物(约3.6×107 cell/mL)。体系中终Fe(Ⅲ)为12 mmol/L,As(Ⅴ)浓度为1.2 mmol/L。每个实验组设置3组平行,另外设置非生物对照组,接种后用胶塞铝盖将厌氧瓶密封完全,外层包裹锡箔纸,再将其放置于摇床中30 ℃、120 r/min保持不间断振荡反应。

于添加铁还原菌富集产物后的第1、3、5天,之后每7 d进行取样,总周期为50 d。每次取样全程严格在厌氧手套箱中进行。取悬浊液离心(7 000×g, 10–15 min),得到的上清液使用0.22 μm硝化纤维膜过滤,一部分用于溶液态形态砷的测试,另一部分上清液再用0.8 mol/L HCl酸化处理后用于测试溶液态Fe(Ⅱ);取一份离心下层沉淀使用2 mL 0.4 mol/L的盐酸酸化10 min后再次离心,取上清液用于测试吸附态Fe(Ⅱ)。取初始悬浊液和反应50 d末期样品经离心(7 000×g, 10–15 min),取下部沉淀冷冻干燥,用于X-射线衍射测试。

1.4 理化参数测试和微生物群落结构分析

铁形态的测试采用Ferrozine染色、酶标仪(赛默飞世尔科技有限公司)测试562 nm处吸光度得到。形态砷含量使用液相-原子荧光(北京海光仪器有限公司)测试。矿物的微观形态观察采用中国地质大学(武汉)生物地质与环境地质重点实验室的环境扫描电子显微镜(Hitachi公司)。晶相结构的分析采用中国地质大学(武汉)材料与化学学院的X-射线衍射仪2 (布鲁克科技公司)。

使用土壤DNA提取试剂盒Fast DNA Spin Kit for Soil (Qbigene)对反应初期和末期悬浊液样品的微生物群落DNA进行提取,经DNA质量和浓度检测后(Thermo Scientific),进行16S rRNA基因高通量测序(诺禾致源生物信息科技有限公司)。得到的原始数据在生物信息学服务器按照如下步骤进行分析:(1) 将原始下机数据进行过滤,获得clean数据;(2) 提取出非重复的序列,降低分析过程中间的冗余计算量;(3) 去除单序列;(4) 按照相似性对分类操作单元(operational taxonomic unit, OTU)进行聚类,在聚类过程中去除嵌合体序列,获得OTU代表序列;(5) 将OTU代表序列与数据库进行比对,获得OTU物种注释信息。原始序列被存放在NCBI序列数据库中(序列号:PRJNA954693)。

对微生物群落组成进行α多样性分析,包括Chao1、Richness、Shannon、Simpson和Equitability指数。其中,Chao1常用来估计物种总数,Chao1值越大代表物种总数越多;Richness指数反应的是实际OTU丰富度;Shannon和Simpson指数均是用来估算样本中微生物多样性的指数,Shannon值越大,说明群落多样性越高,而Simpson值越大,说明群落多样性越低。Equitability用来表征群落均匀度。使用R Studio中的vegan包进行冗余分析(redundancy analysis, RDA),即约束化的主成分分析,探究体系中水化条件变化与微生物群落之间的相关性。使用SPSS 25进行相关性分析。

2 结果与讨论 2.1 不同浓度HA影响下含砷水铁矿中砷的转化释放

微宇宙体系中液相砷形态变化如图 1所示,2种铁还原菌富集物作用下液相砷迁移有明显差异。由于制备HA-含砷水铁矿过程中,后加入的腐殖酸会与砷竞争铁矿物表面的吸附位点[2],导致在砷铁共沉淀体系中未与铁结成稳固化学键的砷进入液相,因此反应初期均有约0.55 μmol/L的As(Ⅴ)进入液相,且HA浓度越高,初期液相As(Ⅴ)浓度越高。地下水样品组(G组)中液相As(Ⅴ)在前7 d内逐渐升高(0.6–0.9 μmol/L),之后较为稳定,且液相As(Ⅴ)浓度与体系中HA浓度呈反比;体系中As(Ⅲ)一直呈现低浓度游离态(0.01–0.05 μmol/L),不同HA浓度组之间差别不大,推测地下水样品组群落主要以铁还原功能的群落占优势。总体来说,G组中液相砷主要形态为As(Ⅴ),30 d后As(Ⅴ)随着矿物转化而被重新固定,浓度降至0.40–0.74 μmol/L。沉积物样品组(S组)随着含砷水铁矿的还原性溶解,液相中As(Ⅴ)量持续升高,7 d左右达到峰值约1 μmol/L,而后逐渐降低。此时不同HA浓度下As(Ⅴ)释放量差距不大,大致是HA=14 > 1.5=7 mg C/L。S组中反应前期液相As(Ⅲ)浓度几乎为0,但当反应到达30 d时As(Ⅲ)浓度增至高达3.4 μmol/L,不同HA浓度下As(Ⅲ)释放量为HA=14 > 1.5 > 7 mg C/L,后期S组中液相主要砷形态为As(Ⅲ),由此推测具有砷还原功能的群落在实验中期逐渐占得优势地位,将液相中游离的As(Ⅴ)还原,又将矿物中的As(Ⅴ)还原为As(Ⅲ)进一步释放到液相中。当反应达到45 d时,与不添加HA的体系相比,G组和S组中液相砷在添加HA下均呈现不同程度的固定。从图 1E1F中看出,G组液相总砷在添加HA时从0.75–0.93 μmol/L下降至0.4–0.5 μmol/L,S组液相总砷在添加HA时从1.0–3.4 μmol/L下降至0.2–2.3 μmol/L,可见S组的砷形态变化幅度较大(0.3–3.5 μmol/L)。且S组在不同HA浓度下的砷固定程度差异与G组不同,G组的砷固定程度基本随HA浓度增大而增大,而S组则不成类似的正相关关系,在HA为7 mg C/L时砷释放量最低。HA浓度与S组中砷固定程度并不成一致的正相关关系,推测HA浓度的进一步增加,一方面提高了微生物砷铁还原速率,但另一方面HA会与释放的液相砷铁形成三元络合物,这类三元络合物的尺寸大于研究中证实的HA平均尺寸210–280 nm[20],因此在液相砷测试时(样品过0.22 μm滤膜)很有可能被过滤掉而造成砷浓度的损失;此外,次生矿物转化过程中对砷的吸附也会导致砷的释放量降低[21],但高浓度的HA也会导致有大量的HA包裹在矿物表面抑制矿物转化[22],并与砷竞争吸附导致As(Ⅲ)释放量较高。末期添加HA组相比无HA组液相砷含量明显下降,可能是由于矿物的还原溶解过程,易导致砷被砷铁比更大的次生矿物强烈吸附[23],或是含羧基的有机碳会与矿物以更高的结合度存在[24],从而固定更多的砷。

2.2 不同HA浓度影响下含砷水铁矿的铁还原和矿物转化

随着反应的进行,G组和S组铁还原趋势缓慢上升,并在30 d左右达到稳定状态(图 2),其中含砷水铁矿体系中铁还原量较高,为0.27– 0.35 mmol/L (图 2C2D)。相比于G组,S组的铁还原量更高且速率更快,在反应进行到30 d左右开始检测到液相Fe(Ⅱ) (约0.19 mmol/L),而G组则未检出液相Fe(Ⅱ)。不同浓度HA体系中吸附态Fe(Ⅱ)含量不同,但G组和S组呈现出相同的趋势,即随着HA浓度增高铁还原量也升高(HA为7 mg C/L时铁还原量较高),而当HA继续升高到14 mg C/L时吸附态Fe(Ⅱ)含量较低。已有研究指出加入低浓度HA与铁还原量成正比[9],这说明HA促进铁还原过程。

图 2 微宇宙体系中吸附态Fe(Ⅱ)含量变化 Figure 2 The variation of adsorbed Fe(Ⅱ) concentrations in groundwater enrichment-ferrihydrites (A), sediment enrichment-ferrihydrites (B), groundwater enrichment-As-bearing ferrihydrites (C) and sediment enrichment-As-bearing ferrihydrites (D). The error bar represents the standard deviation between the results of the three parallel experiments.

从反应50 d样品X-射线衍射(X-ray diffractometer, XRD)结果对比来看(图 3),矿物转化结果均以针铁矿(goethite)为主,纤铁矿(lepidocrocite)、磁铁矿(magnetite)为辅,这与多项研究中对水铁矿在微生物参与的砷铁还原作用下矿物转化结果相类似[25-26]。沉积物砷添加组中水铁矿转化明显受到抑制,已有研究表明,Fe/As的摩尔比和砷的种类强烈地影响了铁氧化物矿物的形态和矿物之间的催化转化[27]。而地下水组矿物转化程度均较低,铁还原趋势较平缓且砷释放不明显,后期又逐渐固定化,推测地下水组的富集菌群整体铁还原功能较弱,前期矿物的还原性溶解受到抑制,一部分新生的次级矿物吸附液相中的As(Ⅴ),导致矿物的砷铁比增大[23],导致终产物的矿物转化未完全。不同HA浓度下,矿物转化程度也存在差异,在HA为7 mg C/L时转化程度最高,而HA为1.5、14 mg C/L时转化程度较低,这也说明HA的浓度也会对铁氧化物矿物的还原溶解重结晶过程造成不同程度的影响。

图 3 高砷地下水组和沉积物组在不同HA浓度下矿物转化XRD谱图 Figure 3 XRD diffraction patterns of the precipitant under different concentrations of HA in groundwater enrichment batches and sediment enrichment batches. A: Groundwater-Fh. B: Groundwater-Fh-As. C: Sediment-Fh. D: Sediment-Fh-As.

在40 d的培养期中,G组在不同浓度HA体系中吸附态Fe(Ⅱ)前20 d内逐渐升高,后趋于稳定(约0.3 mmol/L),体系中几乎没有液相Fe(Ⅱ)生成(0.01 mmol/L)。由于未发生砷还原,液相砷形态以As(Ⅴ)为主,As(T)浓度与As(Ⅴ)浓度呈显著正相关(r=0.983, P≤0.01)。

在没有HA的体系中(图 4A),吸附态Fe(Ⅱ)与液相As(Ⅴ)的浓度均呈现持续逐步上升趋势,即随着铁还原的进行,As(Ⅴ)释放进入液相;而当HA存在时(图 4B4D),前期液相中As(Ⅴ)的释放趋势与水铁矿的还原溶解相一致,后期液相As(Ⅴ)的浓度后期整体呈下降趋势,但不同HA浓度下(HA为1.5、7、14 mg C/L)铁还原量和As(Ⅴ)固定量差别不大。

图 4 高砷地下水实验组中不同HA浓度下砷铁形态变化 Figure 4 The co-variation of liquid phase Fe(Ⅱ), adsorbed Fe(Ⅱ), liquid phase As(Ⅲ) and As(Ⅴ) under HA concentrations of 0 mg C/L (A), 1.5 mg C/L (B), 7 mg C/L (C) and 14 mg C/L (D) in groundwater enrichment batches. The error bar represents the standard deviation between the results of the three parallel experiments.

在S组中,吸附态Fe(Ⅱ)与液相Fe(Ⅱ)的浓度均随着微生物铁还原反应逐步升高后达到稳定(图 5),分别为0.25–0.40 mmol/L和0.01– 0.25 mmol/L,并呈现显著正相关(r=0.923, P≤0.01)。由于发生了较明显的砷还原现象,液相中As(Ⅴ)与As(Ⅲ)呈现负相关。吸附态Fe(Ⅱ)与As(Ⅲ)呈显著正相关(r=0.820, P≤0.01),与As(Ⅴ)负相关,这说明铁还原和砷还原可能同时发生并相互促进[28-30]

图 5 沉积物实验组中不同HA浓度下砷铁形态变化 Figure 5 The co-variation of liquid phase Fe(Ⅱ), adsorbed Fe(Ⅱ), liquid phase As(Ⅲ) and As(Ⅴ) under HA concentrations of 0 mg C/L (A), 1.5 mg C/L (B), 7 mg C/L (C) and 14 mg C/L (D) in sediment enrichment batches. The error bar represents the standard deviation between the results of the three parallel experiments.

在不同HA浓度下,砷、铁形态的相关性存在差异。图 5A显示吸附态Fe(Ⅱ)与液相As(Ⅲ)的浓度均呈现持续逐步上升趋势,呈正相关;而图 5B5D中由于HA的作用导致液相As(Ⅲ)的浓度后期整体呈下降趋势,这与吸附态Fe(Ⅱ)后期浓度趋势相反,结合前面XRD表征结果,这可能是由于HA的存在加速了次级矿物的形成,导致了砷的再固定。

2.3 参与砷释放和矿物转化的微生物群落多样性和组成的变化

基于群落α多样性可以看出(表 1),原始S组富集菌群的多样性大于G组,Richness指数633 > 598,Shannon指数6.27 > 5.45。随着反应进行到20 d左右,G组中Chao1指数为从650.1增至918.7–2 228.9 (平均值1 986.1),S组中Chao1指数为从638.8增至954.4–1 918.7 (平均值1 243.2),即2组中群落丰富度均显著提高。与原始富集菌群的Shannon指数(G组5.45,S组6.27)相比,反应后有砷组群落多样性均降低,而无砷组G组群落多样性增高而S组减少。HA的加入使含砷水铁矿组中的群落多样性降低。在不同浓度的HA组,HA-1.5样点以及HA-7样点群落多样性、均匀度相对较高,Shannon指数在3.72–4.69,Equitability指数在0.473–0.698。另外,对砷、铁形态变化与多样性指数的相关性进行分析,发现有砷S组液相Fe(Ⅱ)与Richness指数呈显著正相关(r=0.924, P≤0.05),与Shannon呈显著负相关(r=–0.932, P≤0.05),说明液相Fe(Ⅱ)浓度对群落的丰富度和多样性存在影响。

表 1. 地下水组(G组)和沉积物组(S组) 20 d前后微生物群落α多样性指数的变化 Table 1. The alpha diversity of microbial community composition within different microcosm batches in day 0 and day 20
#Sample Chao1 Dominance Equitability Richness Simpson Shannon
G Initial 650.1 0.927 0.591 598 0.073 5.45
G HA-0 2 330.0 0.985 0.762 2 206 0.015 8.46
G HA-1.5 2 118.1 0.946 0.598 1 997 0.054 6.55
G HA-7 2 020.9 0.945 0.576 1 831 0.055 6.24
G HA-14 2 145.4 0.951 0.568 1 913 0.048 6.19
G HA-0 As 2 228.9 0.813 0.532 2 122 0.187 5.88
G HA-1.5 As 918.7 0.383 0.248 773 0.617 2.38
G HA-7 As 2 130.4 0.868 0.473 1 907 0.132 5.16
G HA-14 As 1 996.4 0.644 0.395 1 777 0.356 4.26
S Initial 638.8 0.929 0.622 633 0.071 6.27
S HA-0 1 337.6 0.251 0.168 1 205 0.749 1.19
S HA-1.5 1 089.9 0.949 0.542 955 0.051 3.72
S HA-7 1 237.5 0.930 0.595 1 157 0.070 4.20
S HA-14 1 150.9 0.955 0.571 956 0.045 3.92
S HA-0 As 1 918.7 0.995 0.877 1 882 0.005 6.61
S HA-1.5 As 1 289.6 0.947 0.698 1 489 0.058 4.69
S HA-7 As 954.4 0.885 0.461 742 0.115 3.05
S HA-14 As 967.3 0.865 0.468 784 0.135 3.12

从微宇宙体系群落组成变化图可以看出(图 6),起初高砷地下水和沉积物中铁还原富集产物在门水平上主要为ProteobacteriaFirmicutesBacteroidetes,在G组和S组中占比分别为28%、43%、23%和31%、55%、10%。在科水平上,均以VeillonellaceaePorphyromonadaceaeLachnospiraceae为主,其中高砷地下水铁还原功能富集产物以Aeromonadaceae为特殊优势菌群,沉积物铁还原功能富集产物以Shewanellaceae为特殊优势菌群。这些菌群均已在相关文献中查明具有铁氧化还原功能[31],其中有文献指出AeromonadaceaeShewanellaceae多以兼性厌氧菌为主,可以进行异化铁还原,并参与硝酸盐、硫酸盐还原等[32-33],侧面印证在氧气含量较低的地下水和沉积物中菌群的功能特征。

图 6 不同浓度HA及砷影响下地下水和沉积物实验组在门水平(A)和科水平(B)群落组成变化 Figure 6 Variation of microbial community composition at phylum level (A) and family level (B) in groundwater batches and sediment batches with different concentrations of HA addition.

随着反应进行到20 d左右,S组门水平群落仍以ProteobacteriaFirmicutesBacteroidetes为主,而G组中群落在门水平上以Proteobacteria占绝对优势。同时,2组中均出现了2%–12%比例的Actinobacteria

在科水平上,群落组成和相对丰度也发生较大差异。G组中起初占优势的荆芥科(Veillonellaceae)、卟啉科(Porphyromonadaceae)、气单胞菌科(Aeromonadaceae)相对丰度均有所下调,无砷添加时ComamonadaceaeEnterobacteriaceaeBurkholderiaceae的相对丰度增加(增幅5%–60%),有研究指出Enterobacteriaceae可以转运不溶的铁和可溶的亚铁[34],且Burkholderiaceae中的罗尔斯通属(Ralstonia)与铁氧化还原关系密切[35]。其中添加HA时群落组成更加多样,Veillonellaceae、肠杆菌科(Enterobacteriaceae)、ComamonadaceaeBurkholderiaceae、诺卡迪亚科(Nocardiaceae)等的相对丰度均在5%–19%;而有砷添加时Comamonadaceae的相对丰度则呈较优势地位(占51%–68%),有研究说明Comamonas在厌氧条件下可以利用铁水合物、针铁矿等作为末端电子受体进行铁还原[36]

S组无砷添加时,随着起初占优势地位的Veillonellaceae、毛螺菌属(Lachnospiraceae)、希瓦氏菌属(Shewanellaceae)相对丰度下降,Porphyromonadaceae、柄桿菌科(Caulobacteraceae)优势科则明显居于较优势地位,在不同浓度HA下均呈现群落组成多样化且占比平衡,这与G组类似;而砷的添加导致VeillonellaceaeComamonadaceaePseudomonadacea的相对丰度提高。在群落组成变化过程中,PseudomonadaceaeShewanellaceae的相对丰度则保持稳定,这些均是较典型的砷还原菌[31, 37-38]

另外,不同HA浓度下群落组成与丰度差异较为明显。在高砷地下水砷添加组中,HA为1.5 mg C/L时Veillonellaceae的相对丰度达到约27%,而其余HA浓度下此优势科相对丰度均仅约4%–6%,有研究证实Veillonellaceae中的Sporomusa属能进行铁还原[39]。在沉积物砷添加组中,HA为1.5和7 mg C/L时Comamonadaceae的相对丰度达到约40%,而HA为1.5和7 mg C/L时此优势科相对丰度仅约4%。有文献指出Comamonas可利用HA加速铁还原进程[40],当HA浓度达到7 mg C/L时,其相对丰度明显增多,此时铁还原效率较高。也有文献指出Comamonas含有砷还原酶[41],推测这可能也是加速进入砷还原进程的原因之一。

RDA分析显示了微宇宙体系中砷铁浓度变化和群落组成变化之间的关系。如图 7所示,G组中第1排序轴与第2排序轴解释度分别为80.49%和8.06%,S组中解释度分别为80.46%和15.53%。G组中砷铁形态之间均呈现正相关,群落分布主要受到As的影响,无砷组的关键微生物群落包括EnterobacteriaceaeBurkholderiaceae,而有砷组优势群落为Comamonadaceae。S组中As(Ⅲ)浓度与液相、吸附态Fe(Ⅱ)呈现正相关,群落分布主要受到HA的影响,无HA组的关键微生物群落为Pseudomonadaceae,而有HA组则以ComamonadaceaeBurkholderiaceae为优势群落。总的来说,砷和HA对高砷含水层中的砷铁功能群落组成变化具有显著影响。

图 7 科水平下地下水(A)和沉积物(B)的RDA分析 Figure 7 Redundancy analysis of microbial community groundwater batches (A) and composition in sediment batches (B) at the family level. Fe(Ⅱ)(l) and Fe(Ⅱ)(ab) represent the liquid phase Fe(Ⅱ) and adsorbed state Fe(Ⅱ), respectively.

3 结论

高砷地下水和沉积物中富集得到的铁还原功能菌落具有明显差异。与地下水富集群落组相比,沉积物组的铁还原量较高且速率较快,但铁矿物转化结果均以针铁矿为主。液相砷迁移转化在2组中存在明显差异,地下水组液相中As(Ⅴ)含量先上升后趋于稳定,As(Ⅲ)一直呈现低浓度游离态,实验中期体系中的优势微生物群落主要以具有铁还原功能的群落ComamonadaceaeDesulfobacteraceae为主。沉积物样品组前期As(Ⅴ)量持续升高,7 d左右达到峰值约1 μmol/L后逐渐降低,20 d左右As(Ⅲ)产量增加高达3.4 μmol/L,群落组成显示具有砷铁还原功能、能够利用HA进行电子穿梭功能的群落ComamonadaceaeBurkholderiaceaePseudomonadaceae在实验中期占得优势地位。砷和HA分别对地下水和沉积物的关键微生物群落组成产生主要影响。在不同浓度HA作用下,地下水组中砷的释放与矿物转化程度和HA浓度呈正比,而沉积物组中则在HA为7 mg C/L时矿物转化程度最高而砷释放量最低。反应末期随着次级矿物的生成,液相中的砷被重新固定。总的来说,在HA-微生物群落-含砷水铁矿体系中,不同浓度的HA会对铁矿物转化和高砷含水层关键微生物群落的组成产生不同影响,从而造成不同程度砷的迁移转化。研究结果可以为进一步预测原位高砷环境中关键微生物群在参与有机质—含砷铁矿物转化和砷转化释放中的功能提供依据。

References
[1] SMEDLEY PL, KINNIBURGH DG. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17(5): 517-568. DOI:10.1016/S0883-2927(02)00018-5
[2] MLADENOV N, ZHENG Y, SIMONE B, BILINSKI TM, MCKNIGHT DM, NEMERGUT D, RADLOFF KA, RAHMAN MM, AHMED KM. Dissolved organic matter quality in a shallow aquifer of Bangladesh: implications for arsenic mobility. Environmental Science & Technology, 2015, 49(18): 10815-10824.
[3] GUO HM, ZHANG B, LI Y, BERNER Z, TANG XH, NORRA S, STUBEN D. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao Basin, Inner Mongolia. Environmental Pollution, 2011, 159(4): 876-883. DOI:10.1016/j.envpol.2010.12.029
[4] MUEHE EM, SCHEER L, DAUS B, KAPPLER A. Fate of arsenic during microbial reduction of biogenic versus abiogenic As-Fe(Ⅲ)-mineral coprecipitates. Environmental Science & Technology, 2013, 47(15): 8297-8307.
[5] CAMPBELL KM, MALASARN D, SALTIKOV CW, NEWMAN DK, HERING JG. Simultaneous microbial reduction of iron(Ⅲ) and arsenic(Ⅴ) in suspensions of hydrous ferric oxide. Environmental Science & Technology, 2006, 40(19): 5950-5955.
[6] CHEN CM, KUKKADAPU R, SPARKS DL. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: implications for carbon dynamics. Environmental Science & Technology, 2015, 49(18): 10927-10936.
[7] RASHID M, STERBINSKY GE, PINILLA MÁG, CAI Y, O'SHEA KE. Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles. The Journal of Physical Chemistry C, 2018, 122(25): 13540-13547. DOI:10.1021/acs.jpcc.7b12438
[8] JIANG J, KAPPLER A. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environmental Science & Technology, 2008, 42(10): 3563-3569.
[9] AMSTAETTER K, BORCH T, KAPPLER A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(Ⅲ) reduction. Geochimica et Cosmochimica Acta, 2012, 85: 326-341. DOI:10.1016/j.gca.2012.02.003
[10] WILLIAMS AGB, SCHERER MM. Spectroscopic evidence for Fe(Ⅱ)-Fe(Ⅲ) electron transfer at the iron oxide-water interface. Environmental Science & Technology, 2004, 38(18): 4782-4790.
[11] HANSEL CM, BENNER SG, NEISS J, DOHNALKOVA A, RAVI K, FENDORF KS. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 2003, 67(16): 2977-2992. DOI:10.1016/S0016-7037(03)00276-X
[12] KOCAR BD, BORCH T, FENDORF S. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochimica et Cosmochimica Acta, 2010, 74(3): 980-994. DOI:10.1016/j.gca.2009.10.023
[13] HU M, CHEN PC, SUN WM, LI FB, CUI JH. Physiological and genomic characterization of a nitrate-reducing Fe(Ⅱ)-oxidizing bacterium isolated from paddy soil. Geomicrobiology Journal, 2019, 36(5): 433-442. DOI:10.1080/01490451.2019.1566416
[14] GUO HM, JIA YF, WANTY RB, JIANG YX, ZHAO WG, XIU W, SHEN JX, LI Y, CAO YS, WU Y, ZHANG D, WEI C, ZHANG YL, CAO WG, FOSTER A. Contrasting distributions of groundwater arsenic and uranium in the western Hetao Basin, Inner Mongolia: implication for origins and fate controls. Science of the Total Environment, 2016, 541: 1172-1190. DOI:10.1016/j.scitotenv.2015.10.018
[15] LI P, JIANG Z, WANG YL, DENG Y, van NOSTRAND JD, YUAN T, LIU H, WEI DZ, ZHOU JZ. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Research, 2017, 123: 268-276. DOI:10.1016/j.watres.2017.06.053
[16] ISLAM FS, GAULT AG, BOOTHMAN C, POLYA DA, CHARNOCK JM, CHATTERJEE D, LLOYD JR. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004, 430(6995): 68-71. DOI:10.1038/nature02638
[17] CHEN Z, WANG YP, JIANG XL, FU D, XIA D, WANG H, DONG GW, LI QB. Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. Science of the Total Environment, 2017, 574: 1684-1694. DOI:10.1016/j.scitotenv.2016.09.006
[18] HUANG YY, WU J. Preparation and characterization of graphene oxide/polyaniline/carbonyl iron nanocomposites. Materials, 2022, 15(2): 484. DOI:10.3390/ma15020484
[19] LIAO P. Effect of redox oscillations on the formation, aggregation and transport of iron-based colloids and implications for subsurface fate of Cr and As[D]. Wuhan: Doctoral Dissertation of China University of Geosciences (Wuhan), 2013 (in China).
廖鹏. Redox扰动对含铁胶体的形成、聚合、运移及对Cr/As归宿的影响[D]. 武汉: 中国地质大学博士学位论文, 2013.
[20] PALMER NE, von WANDRUSZKA R. Dynamic light scattering measurements of particle size development in aqueous humic materials. Fresenius' Journal of Analytical Chemistry, 2001, 371(7): 951-954. DOI:10.1007/s002160101037
[21] AN WH, WU C, XUE SG, LIU ZY, LIU M, LI WC. Effects of biochar/AQDS on As(Ⅲ)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: abiotic and biological conditions. Chemosphere, 2022, 291: 133126. DOI:10.1016/j.chemosphere.2021.133126
[22] YANG HY, LUO WJ, GAO Y. Effect of Acidithiobacillus ferrooxidans on humic-acid passivation layer on pyrite surface. Minerals, 2018, 8(10): 422. DOI:10.3390/min8100422
[23] CAI XL, YIN NY, WANG PF, DU HL, LIU XT, CUI YS. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Journal of Hazardous Materials, 2020, 398: 122886. DOI:10.1016/j.jhazmat.2020.122886
[24] ZHAO Y, MOORE OW, XIAO KQ, CURTI L, FARIÑA AO, BANWART SA, PEACOCK CL. The role and fate of organic carbon during aging of ferrihydrite. Geochimica et Cosmochimica Acta, 2022, 335: 339-355. DOI:10.1016/j.gca.2022.07.003
[25] AEPPLI M, VRANIC S, KAEGI R, KRETZSCHMAR R, BROWN AR, VOEGELIN A, HOFSTETTER TB, SANDER M. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental Science & Technology, 2019, 53(15): 8736-8746.
[26] ZHOU Z, MUEHE EM, TOMASZEWSKI EJ, LEZAMA-PACHECO J, KAPPLER A, BYRNE JM. Effect of natural organic matter on the fate of cadmium during microbial ferrihydrite reduction. Environmental Science & Technology, 2020, 54(15): 9445-9453.
[27] ZHANG GQ, YUAN ZD, LEI L, LIN JR, WANG X, WANG SF, JIA YF. Arsenic redistribution and transformation during Fe(Ⅱ)-catalyzed recrystallization of As-adsorbed ferrihydrite under anaerobic conditions. Chemical Geology, 2019, 525: 380-389. DOI:10.1016/j.chemgeo.2019.08.002
[28] WANG YX, PI KF, FENDORF S, DENG YM, XIE XJ. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews, 2019, 189: 79-98. DOI:10.1016/j.earscirev.2017.10.007
[29] GLODOWSKA M, STOPELLI E, STRAUB D, THI DV, TRANG PTK, VIET PH, BERG M, KAPPLER A, KLEINDIENST S. Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 2021, 407: 124398. DOI:10.1016/j.jhazmat.2020.124398
[30] LI Y, GUO HM, HAO CB. Arsenic release from shallow aquifers of the Hetao Basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater. Ecotoxicology, 2014, 23(10): 1900-1914. DOI:10.1007/s10646-014-1313-8
[31] DREWNIAK L, STASIUK R, UHRYNOWSKI W, SKLODOWSKA A. Shewanella sp. O23S as a driving agent of a system utilizing dissimilatory arsenate-reducing bacteria responsible for self-cleaning of water contaminated with arsenic. International Journal of Molecular Sciences, 2015, 16(12): 14409-14427. DOI:10.3390/ijms160714409
[32] UHRYNOWSKI W, DECEWICZ P, DZIEWIT L, RADLINSKA M, KRAWCZYK PS, LIPINSKI L, ADAMSKA D, DREWNIAK L. Analysis of the genome and mobilome of a dissimilatory arsenate reducing Aeromonas sp. O23A reveals multiple mechanisms for heavy metal resistance and metabolism. Frontiers in Microbiology, 2017, 8: 936. DOI:10.3389/fmicb.2017.00936
[33] UHRYNOWSKI W, DEBIEC K, SKLODOWSKA A, DREWNIAK L. The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. Science of the Total Environment, 2017, 598: 680-689. DOI:10.1016/j.scitotenv.2017.04.137
[34] CARPENTER C, PAYNE SM. Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. Journal of Inorganic Biochemistry, 2014, 133: 110-117. DOI:10.1016/j.jinorgbio.2014.01.007
[35] SWANNER ED, NELL RM, TEMPLETON AS. Ralstonia species mediate Fe-oxidation in circumneutral, metal-rich subsurface fluids of Henderson Mine, CO. Chemical Geology, 2011, 284(3/4): 339-350.
[36] WU CY, ZHUANG L, ZHOU SG, LI FB, LI XM. Fe(Ⅲ)-enhanced anaerobic transformation of 2, 4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiology Ecology, 2009, 71(1): 106-113.
[37] DONG H, ZHANG F, XU T, LIU YL, DU Y, WANG C, LIU TS, GAO J, HE YL, WANG XT, SHE YH. Culture-dependent and culture-independent methods reveal microbe-clay mineral interactions by dissimilatory iron-reducing bacteria in an integral oilfield. Science of the Total Environment, 2022, 840: 156577. DOI:10.1016/j.scitotenv.2022.156577
[38] FREIKOWSKI D, WINTER J, GALLERT C. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India. Applied Microbiology and Biotechnology, 2010, 88(6): 1363-1371. DOI:10.1007/s00253-010-2856-0
[39] KATO S, YUMOTO I, KAMAGATA Y. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Applied and Environmental Microbiology, 2015, 81(1): 67-73. DOI:10.1128/AEM.02767-14
[40] WANG YB, WU CY, WANG XJ, ZHOU SG. The role of humic substances in the anaerobic reductive dechlorination of 2, 4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. Journal of Hazardous Materials, 2009, 164(2/3): 941-947.
[41] ZHANG Y, MA YF, QI SW, MENG B, CHAUDHRY MT, LIU SQ, LIU SJ. Responses to arsenate stress by Comamonas sp. strain CNB-1 at genetic and proteomic levels. Microbiology, 2007, 153(11): 3713-3721. DOI:10.1099/mic.0.2007/011403-0
高砷含水层参与腐殖酸-铁矿物转化的关键微生物群落及其对砷迁移转化的影响
田雪歌 , 宋腾龙 , 罗然 , 吴泽宇 , 王艳红